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Abstract

Classification and characterization of variable phenomena and transient phenomena are critical for astrophysics and
cosmology. These objects are commonly studied using photometric time series or spectroscopic data. Given that
many ongoing and future surveys are conducted in a time domain, and given that adding spectra provides further
insights but requires more observational resources, it would be valuable to know which objects we should prioritize
to have a spectrum in addition to a time series. We propose a methodology in a probabilistic setting that determines
a priori which objects are worth taking a spectrum of to obtain better insights, where we focus on the insight of the
type of the object (classification). Objects for which we query their spectrum are reclassified using their full
spectral information. We first train two classifiers, one that uses photometric data and another that uses photometric
and spectroscopic data together. Then for each photometric object we estimate the probability of each possible
spectrum outcome. We combine these models in various probabilistic frameworks (strategies), which are used to
guide the selection of follow-up observations. The best strategy depends on the intended use, whether it is
obtaining more confidence or accuracy. For a given number of candidate objects (127, equal to 5% of the data set)
for taking spectra, we improve the class prediction accuracy by 37% as opposed to 20% of a non-naive (non-
random) best-baseline strategy. Our approach provides a general framework for follow-up strategies and can be
extended beyond classification to include other forms of follow-ups beyond spectroscopy.

Unified Astronomy Thesaurus concepts: Computational methods (1965); Astronomy data analysis (1858);
Astrostatistics tools (1887); Variable stars (1761)

1. Introduction

Variable phenomena have been astronomical objects of great
interest as they reveal important information about our universe
(Groenewegen 2018). Some examples are RR Lyrae stars,
which are used to trace distances within our galaxy, allowing us
to improve our understanding of the Milky Way structure and
evolution (Minniti et al. 2016); Mira variables, which are long-
period red giants that correspond to a late-stage phase in the
evolution of stars like our Sun (Perrin et al. 2004); Cepheids,
which are used as distance indicators with well-studied
physical properties (Tanvir 1999; Freedman et al. 2001);
supernovae, which are explosive events, some of which act as
standard candles in the cosmological distance scale and have
been key in recent discoveries related to dark energy (Riess
et al. 1998; Perlmutter et al. 1999; Hicken et al. 2009); and
quasars, or active galactic nuclei (AGN), which are static
transients that help us understand the nature of their host
galaxies (Nolan et al. 2001) and early stages of galaxy
formation (Eilers et al. 2018). The classification of transients
and the identification of novel variable phenomena is critical
for astrophysics and cosmology research. This is reflected in
the scientific objectives of past, current, and near-future wide-
field time-domain surveys such as the Supernova Legacy
Survey (Astier et al. 2006; Perrett et al. 2010); ESSENCE
(Miknaitis et al. 2007), the Large Synoptic Survey Telescope
(LSST; Ivezić et al. 2008); the Sloan Digital Sky Survey-II
(SDSS-II; Frieman et al. 2008; Sako et al. 2008); the Square
Kilometre Array (Lazio 2009); the Catalina Real-Time
Transient (CRTS; Djorgovski et al. 2011); the Dark Energy
Survey (Bernstein et al. 2012; Abbott et al. 2018); the Palomar
Transient Factory (Surace 2015), which transitioned to the

Zwicky Transient Facility (ZTF; Smith et al. 2014); and the
Panoramic Survey Telescope and Rapid Response System
(Pan-STARRS1; Chambers et al. 2016; Scolnic et al. 2018). Of
these, ongoing surveys such as the ZTF (Smith et al. 2014) and
future survey like the LSST (Ivezić et al. 2008) will provide
extensive data sets, with an estimated number of alerts per
night equal to 0.1 million for the ZTF (Masci et al. 2019) and
10 million for the LSST (LSST 2014) from which variable
phenomena have to be automatically detected.
Photometry from time-domain surveys allows us to detect

time-variable phenomena such as explosions, accretion, pulsa-
tions, eclipses, and relativistic phenomena that cannot be
detected by other means (Djorgovski et al. 2011; Kessler et al.
2015). The emerging of synoptic sky surveys that scan sky
areas repeatedly have leveraged time-domain astronomy in past
years (Djorgovski et al. 2012), so that recent and future
research for variable phenomena discovery and classification of
different real transients has focused on automatic methods that
mostly rely on photometry (Debosscher et al. 2007; Richards
et al. 2011; Bloom & Richards 2012; Pichara et al. 2012;
Pichara & Protopapas 2013; Mackenzie et al. 2016; Castro
et al. 2018; Martínez-Palomera et al. 2018).
In addition to photometry, spectroscopic data provide

information such as physical properties: gravity, temperature,
chemical compositions, and radial velocities, which are hard to
obtain in any other way (Massey & Hanson 2013). Spectro-
scopic surveys usually target objects selected from photometric
surveys, and often their main purpose is to obtain a redshift
(Djorgovski et al. 2013). Examples are The Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013) and the
Large Sky Area Multi-object Fiber Spectroscopic Telescope

The Astronomical Journal, 159:16 (14pp), 2020 January https://doi.org/10.3847/1538-3881/ab557d
© 2019. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-6099-7071
https://orcid.org/0000-0002-6099-7071
https://orcid.org/0000-0002-6099-7071
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0002-9372-5574
https://orcid.org/0000-0002-9372-5574
https://orcid.org/0000-0002-9372-5574
https://orcid.org/0000-0003-3541-1697
https://orcid.org/0000-0003-3541-1697
https://orcid.org/0000-0003-3541-1697
mailto:jfastudillo@uc.cl
mailto:jfastudillo@uc.cl
mailto:jfastudillo@uc.cl
http://astrothesaurus.org/uat/1965
http://astrothesaurus.org/uat/1858
http://astrothesaurus.org/uat/1887
http://astrothesaurus.org/uat/1761
https://doi.org/10.3847/1538-3881/ab557d
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab557d&domain=pdf&date_stamp=2019-12-13
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab557d&domain=pdf&date_stamp=2019-12-13


(LAMOST; Luo et al. 2015). In addition to redshift estimation,
spectra become helpful for object identification. An example
would be supernovae (SNe) Ia, which play a role as distance
indicator and are distinguishable from other type of supernovae
mainly by the lack of hydrogen lines in their spectra and the
presence of pronounced silicon features (Campbell et al. 2013).
Another example are quasars or AGNs, which are among the
brightest objects and help us understand the nature of their host
galaxies (Nolan et al. 2001) and early stages of galaxy
formation (Eilers et al. 2018). The most certain way to confirm
these object types and redshift is through the analysis of their
spectroscopy (Peters et al. 2015). Last, RR Lyraes may be
distinguished from eclipsing binaries through their spectra
jointly with their light curves (Kinman & Brown 2010). A
spectrum with a resolution of 1Å can provide enough
information to distinguish between a pulsating variable and
an eclipsing binary even at low amplitudes.

Although photometry usually is the first available resource
for inspecting an object, the spectra ultimately let us understand
their physical properties. It is consequently beneficial to have
both to achieve better insights. Unfortunately, spectra use many
more resources (observational time) and are therefore infre-
quently available. For instance, the SDSS (York et al. 2000), an
ongoing photometric and spectroscopic survey, has imaged
nearly one billion objects, while for spectra it has around four
million objects.5 Because of this reason, the spectroscopic
follow-up strategy remains a challenge, primarily because of
the increasing data stream from imaging surveys along with
potential new interesting objects that need to be studied in
depth. Assuming that we mostly have photometric data and that
we can achieve better prediction of the object class by adding
spectra at a specific cost, which objects should we prioritize?

In this paper, we propose a model that efficiently finds the
celestial objects for which obtaining spectra could improve
classification results, with regard to either accuracy or
confidence. Each unique object in the data set is classified,
using its time series, into one of the classes with an associated
level of confidence. Classification of a given object may be
poor either because the classification is incorrect (wrong class)
or because the confidence in the classification is low. For each
object, if its spectrum is queried and used alongside its time
series to reclassify the object, either the class or the confidence,
or both, may change. Note that we aim to use the full spectral
information in addition to time-series information to make
more informed classifications. Our model helps us to find the
objects for which querying for their spectra helps to change to
the true class or increase its confidence. Similarly, it avoids
objects of which we either know, with high confidence, what
their class is or of which there is no chance of improving our
knowledge.

Our model assigns a priority to each object by measuring the
information gain and indicator (of the classification change)
outcome caused by the addition of a spectrum to already
available time series. For this, we first extract features from
objects (in both a training and a test set) for which both time
series and spectrum are available. For spectrum features, we
first learn automatic feature extraction using autoencoders
(Section 3.2), while for time series, we use a set of already
existing features. We then train classifiers on time series only
and on time series and spectra combined. Then we leave the

spectra aside and estimate the spectrum for each object given
only its time series. For each object, we estimate the
information gain and an indicator between the estimated
spectra jointly with the time series with just the time series. We
assign a priority to each object using the latter estimators, and a
subset of the objects with the highest priority is selected for
follow-ups. Objects in the subset are classified according to
their time-series and real spectrum features, whereas non-
selected objects are classified using only time-series features.
Our approach is mainly focused on catalogs of variable
phenomena, although it could be applied to any object that has
available time series, and potentially available spectra. Note
that for at least a subset of them we need both spectra and time
series for the training phase.
Section 2 presents related work. Section 3 describes the

general background theory. Section 4 defines how we assess
the information gain and the indicator, and Section 5 is
dedicated to the proposed method. In Section 6 we summarize
the data we used for the experiments. Section 7 mentions the
libraries and hardware we used to implement the different
models. Section 8 presents the results from the experiments and
further work. Finally, Section 9 presents overall conclusions
and future work.

2. Related Work

In this section, we describe related works and compare them
to ours. First, we present the work of Peters et al. (2015), which
combines different types of data. We then describe the
spectrum follow-up strategy of Ishida et al. (2019), which
selects objects for labeling to efficiently train a classifier. Next,
we show the design of the experiment approach mentioned in
Yang et al. (2015), which deals with the optimal set of filters
for estimating the true spectral energy distributions (SED).
Last, we describe the Xia et al. (2016) method, which optimizes
the decision-making process regarding which objects to
observe given limited telescope time.
Peters et al. (2015) aimed to combine different types of data

to enhance classification. They compare the objects using band
color features only, time-domain features only, and both for the
task of detecting quasars, which implies a classification into
quasar or non-quasar. The color features correspond to those of
the SDSS (York et al. 2000) adjacent colors (u−g, g−r, r−i, i
−z), while the time-series features come from fitting a structure
function (Schmidt et al. 2010) that characterizes the variability
of a time series for each band and object. This is motivated by
the fact that variability-based classification misses some
quasars at high redshifts, while a color-based classification
becomes highly confused at medium-redshift zones. Their
results show that the highest completeness (the number of
known quasars correctly classified as quasars divided by the
number of known quasars) is reached using both types of
features. This is consistent with our motivation for combining
data to obtain a better insight into selected variable phenomena.
Similar to our work, they seek to improve classification results
by increasing the available information (more features) of the
objects and do not improve classification models for the same
information. Differently from us, they use features from broad
color bands, while we use spectra. Spectra have much more
detailed color information.
A relevant work is the spectrum follow-up strategy of Ishida

et al. (2019) because, as proposed in this work, it selects objects
for spectrum querying, although it was proposed for a different5 For further details regarding SDSS data statistics, seeSDSS Scope page.
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use case. The authors focus on improving type Ia versus non-Ia
SNe photometric classification using active learning (AL; Cohn
et al. 1996). AL refers to algorithms that select the best objects
to label in order to improve classification prediction the most at
each training step. It is thereby a way to improve a
classification prediction at minimum labeling cost. In their
work, labeling is obtained by means of spectrum confirmation
because SNe Ia may be distinguished from non-Ia through
some specific spectral features that are linked to a particular
physical process (Campbell et al. 2013).

The classifiers obtained through their method can improve
purity (reduce the incorrectly predicted SNe Ia) compared to
two proposed baseline strategies: the passive-learning strategy,
and the canonical strategy. In the passive-learning strategy,
objects to be labeled are randomly selected from the unlabeled
set, while in the canonical strategy, they are randomly selected
from a sample that closely follows their initially labeled data-
set distribution. Similar to our work, they propose a spectro-
scopic follow-up design strategy that uses AL strategies to
select follow-up objects. The main difference with our work is
that we propose to use spectral features to improve the
reliability of the prediction, while they query for labels
(through the spectra) to retrain the classifier to reduce the
false-positive predictions. We automatically extract features
that compress the full spectral information into a set of features
so as to increase the available information of each object. This
may potentially complement regular classification (by an
expert) because the latter also entails some uncertainty. This
allows taking full advantage of the spectra and thus obtaining
more informed decisions when classifying.

The described follow-up strategy could belong to the much
broader umbrella of the design of experiment area
(Fisher 1935). Generally speaking, it concerns which data
should be collect for an experiment and how this should be
done to avoid wasting resources or missing important data. One
example of this sort is the work of Yang et al. (2015), which
determines how the optimal set of filters can be chosen to be
used to estimate the true SED of an astronomical object.
Similar to our work, the authors aim to make efficient use of
telescope resources. Differently from us, they optimize the
observations (i.e., which and how many filters) that are
required to build the SED for a single object, while we decide
which objects to observe in the first place (i.e., taking the
spectra).

The work of Xia et al. (2016) presents a method for selecting
objects to observe in a batch fashion optimizing use of
telescope resources. It takes into account the field of view
(FOV) of the telescope in use so that many objects may be
observed at the same time. It also proposes updating and
recommending objects to observe in batches, given that the
infrastructure in a telescope is not able to update the
observations schedule in real time, but it can do this in
batches. The authors use AL to select objects and take
advantage of the location of the candidates in the sky to reach
feasible ways of scoring them. They use other AL approaches
to evaluate the performance of their method. These include (1)
randomly selecting the points, (2) selecting the most uncertain
points for the current classifier, (3) selecting the most
undersampled points according to the training set distribution,
(4) selecting points that maximize the change in the predicted
probabilities, and (5) AL and semi-supervised learning methods
from other works. Their approach surpasses all of the rest

regarding the observing time and number of queries required to
reach a given accuracy. Similar to our work, they select objects
to observe to improve the classifier prediction without wasting
telescope resources. Differently from us, they do not mix
different sourced data, but instead only use time-series features
(FATS; Nun et al. 2015) to classify. Furthermore, their focus is
not to add information to already observed objects and hence
gain better insight, but rather to improve their classifiers
through labeling.

3. Background Theory

3.1. Information Theory and Entropy

Information theory was conceptualized in Shannon (1948) to
solve the problem of optimal information transmission over a
noisy channel. In his seminal work, Shannon proposed
information entropy as a measure of uncertainty. Initially
conceived as the average rate of information produced by a
stochastic process, it has been broadly used for quantifying
information, choice, and uncertainty. Shannon’s entropy is
defined as

( )å= -
=

H p plog , 1
i

n

i i
1

where p1...pn are the probabilities associated with a set of
possible outcomes correspondingly. For this particular work,
Equation (1) will always refer to the entropy of one single
object. It can be seen from the definition that the less probable
an event is, the higher its contribution to entropy, which
translates into more information needed to describe those
events.
Two of the main properties that make it a suitable measure

regarding the amount of information are (1) H=0 when there
is only one certain event and therefore no amount of
information is needed to describe it. (2) H is maximum when
all pi are equal (i.e., 1/n), and consequently, the uncertainty on
the outcome is maximum so that more information is needed to
describe it.

3.2. Autoencoders

Autoencoders (Olshausen & Field 1996; Lee et al. 2006;
Vincent et al. 2008) are algorithms that learn data representa-
tions automatically. These representations can be used as
features for subsequent tasks of classification or clustering. The
most basic autoencoder is composed of a deterministic
encoding function that maps the input x to a hidden or latent
space z and a deterministic decoding function that returns x̂
from z. The model is trained by minimizing the error between x̂
and x. By imposing that z dimension is much lower than x, we
force the model to learn the most relevant features of the data.
Different techniques exist to enhance the encoding, such as
sparse autoencoders (Olshausen & Field 1996; Lee et al. 2006),
which through regularization force sparsity on z, and denoising
autoencoders (Vincent et al. 2008), which reconstruct x from a
corrupted version of it in order to make the model robust to
noise.
Autoencoders have been combined with recurrent neural

networks (Hochreiter & Schmidhuber 1997) so as to learn low
dimensional representations for time series (Srivastava et al.
2015; Witten et al. 2016). These so-called sequence-to-
sequence autoencoders have been developed for dense and
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regularly sampled time series. Important work related to our
work is Naul et al. (2018), where an autoencoder for
astronomical time-series classification was proposed. A short-
coming of this work is that it performs poorly on non-periodic
or unfolded time series.

On the other hand, the variational autoencoder (VAE;
Kingma & Welling 2013), or alternatively, the deep latent
Gaussian model (Jimenez Rezende et al. 2014), is a deep
generative model that resembles an encoder and a decoder
structure, but instead of looking for a deterministic encoding z
or decoding x̂, it seeks to estimate their distributions. The
authors provide an amortized model for variational inference
(VI; Blei et al. 2016), using the same model to estimate the
variational parameters of different data points, avoiding costly
loops per data point. VI is a family of techniques to
approximate computationally intractable posterior distributions
via solving an optimization problem. In VAE we approximate
the posterior of z given x using a factorized Gaussian
distribution. The encodings follow a regular geometry (usually
a Gaussian distribution) and are more meaningful than the
encodings obtained through a regular autoencoder. This model
may be used for artificial data generation, data representation,
and inference tasks. Some examples are collaborative filtering
(Liang et al. 2018) and image analysis (Wang et al. 2017).

Extensions to VAE for fitting sequential data have been
made, such as Bowman et al. (2015) for sentence generation,
Fabius & van Amersfoort (2014) for simple video game song
data sets, and Chung et al. (2015) for speech and handwriting
data sets. Sequence VAE were developed for regularly sampled
time series and are therefore not appropriate for astronomical
data. It is worth noting that training a sequence VAE is more
difficult than conventional VAE. The optimization challenges
of sequence VAE are described by Bowman et al. (2015) in
their Section 3.1 and byDieng et al. (2018) in their Section 4.2.

4. Problem Description and Notation

Our goal is to select objects for which spectra improve the
class prediction most when they are added to its time series,
with regard to either accuracy or confidence. We define two
metrics to assess classification improvement. The first is
information gain and addresses the confidence. It uses the
entropy (Shannon 1948, Section 3.1) over some estimator ŷ of
the label y (the real class of a given object),

( ˆ∣ ) ( ˆ ∣ ) ( ˆ ∣ ) ( )å= - = =
Î

H y x P y c x P y c xlog . 2
c C

* * *

Here ŷ is an arbitrary class predictor given certain data x*
and P is the probability of predicting a certain class c (i.e.,
ˆ =y c), where c is any class from the set of possible classes to
predict C. For example, ŷ could be the outcome of any
classification method that outputs class probabilities, so that the
prediction for a given object with data x* is the class with the
highest probability P. Entropy H (Shannon 1948, Equation (2))
lets us measure the confusion of a probability density function
(PDF), such as the outcome of a classification task. To calculate
entropy, we need to check the value of the PDF at each value in
the domain, which for our case is each of the possible classes to
predict. The higher the value of the entropy, the more confused
the outcome, while the lower the value, the less confused the
outcome. A confused outcome is whenever probabilities are
more even between them, and hence we are uncertain of the
class. A non-confused outcome is whenever the probabilities

are concentrated in one or a few classes, so that we are more
certain of the class. Note that our definition of H works for any
feature x*, not only for photometric or spectroscopically
features (xt and xs, correspondingly). This means that our
method could include the addition of any differently sourced
information as long as features may be extracted from it.
We now define the information gain for a given object x as

the reduction of entropy in the classification outcome caused by
the addition of spectrum features xs to the initially available
time-series features xt:

( ) ( ˆ∣ ) ( ˆ∣ ) ( )= -IG x x H y x H y x x, , , 3t s t t ts t s

where

( ˆ∣ ) ( ˆ ∣ ) ( ˆ ∣ )

( ˆ∣ ) ( ˆ ∣ ) ( ˆ ∣ )

( )

å

å

=- = =

=- = =
Î

Î

H y x P y c x P y c x

H y x x P y c x x P y c x x

log

, , log , .

4

t t
c C

t t t t

ts t s
c C

ts t s ts t s

We have used Hts, Ht to denote the difference between the
distributions of their corresponding class predictors Pts, Pt

depending on the given data. Note that we subtract the resulting
entropy from using spectrum features to the initial entropy
because we wish to measure the entropy reduction, or
equivalently, the confusion reduction.
In addition to the information gain metric, we develop a

second indicator metric that addresses the classification
accuracy. For a given object, it indicates if the predicted class
with time-series information is different from the prediction
with the spectrum information added. This facilitates the
detection of objects that are incorrectly classified ( false
positives) with only time-series features xt, but are correctly
classified when spectrum features xs are added. The indicator
function is as follows:

⎧⎨⎩ˆ ( ) ( ) ( )
( ) ( ) ( )D =

¹
=

y x x
l x l x x
l x l x x

,
1, ,
0, ,

5t s
t t ts t s

t t ts t s

( ) ( ˆ ∣ ) ( )= =l x P y c xarg max 6t t
c

t t

( ) ( ˆ ∣ ) ( )= =l x x P y c x x, arg max , 7ts t s
c

ts t s

,where lt is the class or label predicted given time-series data,
xt, calculated as the class with the highest probability assigned
by the predictor ŷ . Similarly, lts is the class predicted given
time-series and spectrum data, xt and xs.
In summary, we have time-series data, xt, for all objects and

spectrum data, xs, for only some of them. We also have a subset
of objects that have {xt, xs, y}, which we use to estimate
classifiers Pt and Pts, with their corresponding entropy
functions, Ht and Hts, respectively. This is depicted in
Figure 1. We wish to select objects that do not have xs and
have not yet been labeled (unknown y) to query for their
spectra, so as to improve their classification results the most.
These objects are those that either improve their classification
confidence or are reclassified into their real class when their
spectra are queried, embodied by functions IG(xt, xs)
(Equation (3)) and ˆ ( )Dy x x,t s (Equation (5)), respectively.
Both these equations assume that we know xs and require it in
their calculations; nevertheless, we evaluate them for objects
whose spectra have not been observed yet (unobserved xs). Our
method focuses on how to approximate xs. We propose to
replace the spectra (xs) with an average over the most probable

4

The Astronomical Journal, 159:16 (14pp), 2020 January Astudillo et al.



xs conditioned over xt. Thus we need to model the conditional
distribution of xs given xt.

5. Method Description

This section describes the methodology for developing the
selection criterion. Section 5.1 describes how we deal with the
fact that xs are not observed. Section 5.2 describes the
classification models, Pt and Pts, corresponding to Ht and Hts,
respectively. Section 5.3 describes the feature extraction
methods for xt and xs. Section 5.4 describes the proposed and
comparison strategies. Finally, Section 5.5 presents an over-
view of the proposed method.

5.1. Unobserved xs

Because we do not observe the spectra prior to selecting the
candidates, evaluating ( ˆ∣ )H y x x,ts t s from Equation (3) directly
is not feasible. Instead, we propose to replace it with an average
over the most probable xs conditioned over xt, which in turn is
represented by a learned distribution ( ∣ )Q x xs t as follows:

( ˆ∣ ) ( ˆ∣ ) ( ∣ )

[ ( ˆ∣ )]

( ˆ ∣ ˆ ) ( )

( ∣ )

ò

å

=

=

» =

~

=



H y x H y x x Q x x dx

H y x x

N
H y y x x

,

,

1
, , 8

ts t ts t s s t s

x Q x x ts t s

i

N

ts t s i
1

,

s s t

ˆ ( ∣ ) ( )~x Q x x . 9s i s t,

We use a Gaussian mixture model (GMM) to estimate the
joint distribution Q(xt, xs) from which we derive the conditional
distribution ( ∣ )Q x xt s using Bayes’ rule. We use GMM due to its
flexibility to approximate any distribution. We approximate

( ˆ∣ )H y xts t through a Markov chain Monte Carlo process, were
x̂s i, is the ith spectrum sampled from the GMM conditioned on
xt.

When we replace ( ˆ∣ )H y x x,ts t s for ( ˆ∣ )H y xts t in Equation (3),
the information gain function of an object is

( ) ( ˆ∣ ) ( ˆ∣ ) ( )» -IG x H y x H y x . 10t t t ts t

Similarly, for lts(xt, xs) defined in Equation (7), the predicted
class of Pts(xt, xs) is replaced with

( ) [ ( )]
[ ( ˆ )] ( )

( ∣ )

ˆ

=
»

~l x l x x

l x x

mode ,

mode , , 11
ts t x Q x x ts t s

x ts t s i,

s s t

s i,

ˆ ( ∣ ) ( )~x Q x x . 12s i s t,

This means that Equation (5), the indicator function, is replaced
with

⎧⎨⎩ˆ ( ) ( ) ( )
( ) ( )

( )D =
¹
=

y x
l x l x

l x l x

1,

0, .
13t

t t ts t

t t ts t

The calculation of our updated information gain IG(xt) and
indicator ˆ ( )Dy xt requires that the classifiers Pt and Pts are
trained with Î xt

t and with { } Î +x x,t s
t s correspondingly.

5.2. Pt and Pts

As mentioned in Section 4, Pt and Pts may be any type of
classifier that outputs probabilities rather than just hard
predictions. The models in this work are based on random
forest (RF) classifiers (Breiman et al. 1984). RF classifiers are
shown to be a good compromise between performance,
efficiency, and easy training when features are already
extracted. Pts is trained over the joint space { } Î +x x,t s

t s and
Pt over Î xt

t space. The proportion of trees voting for each
class is taken as the output probability.

5.3. xt and xs

In general, the performance of the GMM is inversely
proportional to the dimensionality of the features. This is
explained by the curse of dimensionality (Bellman et al. 1961),
a term that refers to the issues that arise when working in high
dimensional spaces. As explained in Bishop (2006), a Gaussian
distribution probability mass spreads on the tails as the
dimensionality increases, so that most mass becomes concen-
trated in a thin shell, thereby losing its characteristic shape and
becoming unsuitable for some tasks. For this reason, it is more
suitable that xt and xs are of low dimension.
xt is a subset of expert features (FATS; Nun et al. 2015),

while xs is built from learned features (μ(z)), where expert
refers to well-known studied features and learned are those that
are automatically extracted, for instance, with an autoencoder
(Section 3.2). μ(z) is the mean of the latent space z of a VAE
trained to encode and decode spectra. Note that we use a VAE
only for spectrum feature extraction and that time series will
use a set of already existing features. Spectra need to be
preprocessed to have a common input shape for the VAE, as
described below in Section 6.4 and depicted in Appendix A.1.
As mentioned in Section 3.2, the latent space of a VAE follows
a regular geometry, which simplifies the GMM modeling.
Because we do not know the most suitable dimensionality of
the latent space z for certain, for our framework we try different
dimensionalities d and select the dimensionality that best
reconstructs the spectra over a test set. The test set contains
multiple spectra that were not used for training to provide an
unbiased evaluation of the model being tested. We train
multiple VAE for d ä [1, 15], Î d , Î z d . The selected d is
the one with the least test R2 (coefficient of determination)
between the original spectra and the reconstructed spectra,
which is the output of the VAE. As mentioned in Section 3.2,
current extensions of VAE for sequences are both difficult to

Figure 1. Problem description. Time-series data (xt) are available for all objects
in the data set, but spectroscopic data (xs) for only some of them. A subset of
objects has {xt, xs, y}, which are used to estimate Pt, Pts, Ht, and Hts. We wish
to select objects from the subset spectra query candidates to query for their
spectra so as to improve their classification results the most.
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train and not capable of dealing with unevenly sampled and
non-periodic time series. For time-series features we opt to use
a subset of FATS (Nun et al. 2015).

We select xt⊆FATS and xs⊆μ(z) jointly to avoid repeated
information. We build candidate subsets { ( )}mÍ¢C FATS z,d ,

Î¢ ¢Cd
d with ∣ ∣ ∣ ( )∣m¢ + d FATS z1 . The latter notation

refers to the cardinality of the set so that ¢Cd may be a subset of
size 1 at the minimum and a subset with a size equal to the
number of FATS together with μ(z) at the maximum. Subset

¢Cd corresponds to the ¢d most important features (Gini
importance) according to an RF classification task as described
in Breiman et al. (1984). Note that xt is not necessarily of the
same dimensionality as xs. The selected features are the
smallest ¢Cd that improves the possible improvement of the
accuracy by more than 90% between the subset with the worst
accuracy and the subset with the best accuracy. The selection is
depicted in Figure 2.

5.4. Strategies

To assign a priority to query for spectrum for each object in
the data set, we develop multiple strategies and compare them
with two baseline strategies and one ideal scenario strategy.
Each strategy assigns a priority to each object and selects a
subset of objects to whose available information spectrum
features xs are added. For any arbitrary subset size (s), the s
objects with the highest priority are selected for each strategy.
Selected objects are classified according to their xt and xs
features. Non-selected objects are classified using only xt
features. We consider two baseline strategies to compare
with ours:

1. Random: randomly selects the objects from the data set.
2. Ht: selects the objects with the highest entropy on the

time-series classification outcome ( ˆ∣ )H y xt t . This strategy

Figure 2. Proposed method overview. (1) We first extract time-series and spectrum features for all objects in our data set. (2) We then train classifiers with these
features. (3) After this, we model the joint space of time-series and spectrum features so that (4) the spectrum is estimated from its time-series features to calculate
information gain and indicator function. (5) Different strategies are proposed to assign a spectrum query priority to each object. (6) Finally, objects with highest
priority are selected and classified using their time-series and spectrum features, while non-selected objects are classified with just time-series features.
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is similar to common AL strategies that query for the
label, such as Ishida et al. (2019).

We develop three strategies that assign priority to each
object according to the estimated information gain IG(xt)
(Equation (10)) and indicator ˆ ( )Dy xt (Equation (13)):

1. IG(xt): selects the objects with highest approximate
information gain IG(xt) (Equation (10)).

2. ( ) ˆ ( )+ DIG x y xt t : first selects the objects with
ˆ ( )D =y x 1t (Equation (13)) and then according to the

highest IG(xt). This strategy prioritizes the objects whose
predicted class using the sampled spectra (Equation (13))
is different from objects whose class only uses the time
series (Equation (6)). The focus is to detect the objects
that are incorrectly predicted with time-series features xt
only ( ( ) ¹l x yt t ), but which are correctly predicted when
spectrum features xs are added (lts(xt, xs)=y).

3. ˆ ( )+ DH y xt t : first selects the objects with ˆ ( )D =y x 1t
(Equation (13)) and then according to the highest entropy
on the time-series classification outcome ( ˆ∣ )H y xt t . Similar
to the previous strategy, it focuses on detecting
incorrectly predicted objects by combining the baseline
strategy Ht and our proposed indicator (Equation (13)). It
avoids choosing objects with certain classification (low

( ˆ∣ )H y xt t ) and lifts objects that might have a change in
prediction when spectrum information is added.

Finally, one ideal scenario for IG(xt) is included:

1. Ideal scenario: selects the objects according to the current
value for IG(xt, xs) (Equation (3)) using ( ˆ∣ )H y x x,ts t s
instead of its approximation IG(xt) (Equation (10)), which
uses ( ˆ∣ )H y xts t . Note that this is not a feasible strategy for
selection (because it uses xs), but a reference of how
IG(xt) would perform if the estimation of the spectra for
each object were the real spectrum.

5.5. Overview of the Method

We give a brief description of our method below:

1. Feature extraction. We extract low dimensional features
of time series ( Î xt

t) and spectra ( Î xs
s) for all

objects that have both available simultaneously. xt is a
subset of expert features (FATS; Nun et al. 2015), while
xs is built from learned features (μ(z)). μ(z) is the mean of
the latent space z of a VAE trained to encode and decode
spectra. xt and xs are jointly chosen as the smallest subset
of the most important features according to an RF
classification task, which achieves over 90% of the
maximum improvement between the subsets with the
lowest and highest accuracy.

2. Train classifiers. Two RF classifiers are trained over
Î xt

t space and over the joint space { } Î +x x,t s
t s.

The output classifiers are ( ˆ∣ )P y xt t and ( ˆ∣ )P y x x,ts t s .
3. Model feature space. An empirical GMM is fit over the

joint space { } Î +x x,t s
t s so that Q(xt, xs) is the

distribution over the joint space. The conditional
distribution ( ∣ )Q x xs t is obtained from the GMM
properties.

4. Metrics approximation. For each object we evaluate
( ˆ∣ )H y xt t , ( ˆ∣ )H y xts t , lt(xt), ( )l xts t , the entropy, and predicted

classes of the classifiers trained over the xt and the {xt, xs}

space, respectively. With these we assess IG(xt) and
ˆ ( )Dy xt , the approximate information gain and indicator

function.
5. Strategies. We assign a priority to each object with

calculated metrics through different strategies.
6. Selection and evaluation. For each strategy, we select

objects with highest priority according to a threshold or to
a fixed number of candidates. For selected objects we
query for their observed spectrum features and classify
them according to ( ˆ∣ )P y x x,ts t s . Note that in the latter case
there is no need to approximate the spectrum features xs
because it is given information. Non-selected objects are
classified with ( ˆ∣ )P y xt t .

The above description is depicted in Figure 2.

6. Data

We perform a cross-match over two catalogs to find objects
with both time-series and spectra data. The reached surveys are
the Catalina Sky Surveys (CSS, Larson et al. 2003) for time
series and the SDSS (York et al. 2000) for spectra. Both
surveys are better detailed in Sections 6.1 and 6.2, respectively.
The built merged data set is better detailed in Section 6.3.
In addition to the previous data set, we gather more spectra

to train the VAE for spectrum feature extraction from the
SDSS. This is due to the insufficient spectra in the cross-match
for training this kind of network. The spectra-only data set is
better detailed in Section 6.4.

6.1. CSS Survey

The CSS6 (Larson et al. 2003) is a NASA-funded project that
searches for Near-Earth Objects and covers between decl.
δ=−75 and +65 degrees (Drake et al. 2014). It started in 2004
and has three telescopes: the CSS and the Mount Lemmon
Survey in Tucson, Arizona, and the Siding Spring Survey in
Siding Spring, Australia. They set fields that tile their observed
sky. Photometry is obtained using the aperture-photometry
program SExtractor. In this work we use data from their first
Data Release (CSDR1; Drake et al. 2014), which follows 198
million discrete sources monitored between 2005 April and
2011 June with an average of 250 observations per field and an
exposure time of 30 seconds. More specifically, we use 47,000
objects from the Catalina Surveys Periodic Variable Star
Catalog Drake et al. (2014) that were found to be periodic
variables. An inspection was held by a single person for the
labeling of 112,000 periodic candidates. It consisted of the
examination and comparison of the phased time-series morph-
ology with known types of periodic variables. The class
distribution is shown in column “CSDR1” in Table 1.

6.2. SDSS Survey

The SDSS7 (York et al. 2000) is an ongoing project that
started its operation in 2000 and consists of three main stages:
SDSS-I/II, SDSS-III, and SDSS-IV, each of them composed of
multiple surveys. It is headquartered at Apache Point
Observatory in southeast New Mexico and Las Campanas
Observatory in northern Chile. Two main spectographs are

6 https://catalina.lpl.arizona.edu
7 https://www.sdss.org/
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used in its surveys (Smee et al. 2013): the SDSS spectrograph8

and the BOSS spectograph.9 The SDSS spectrograph contains
640 fibers of 3″ of diameter per plate, it covers along
3800–9200Å and has a resolution of 1500 at 3800Å and
2500 at 9000Å . On the other hand, the BOSS
spectrograph contains 1000 fibers of of 2″ of diameter per
plate, covers 3600–10,400Å, and has a resolution of
1560–2270 in the blue channel and 1850–2650 in the red
channel.

The data used in this work are taken from Data Release 14
(DR14), part of the fourth phase of SDSS (SDSS-IV; Blanton
et al. 2017). All observations used the 2.5 m Sloan Foundation
Telescope (Gunn et al. 2006). All of these spectra share the
same wavelength grid spacing, but differ in the starting or
ending point.10

6.3. Time Series and Spectrum Data Set

There are 2683 unique objects in the original cross-match of
SDSS DR14 spectra and CSDR1 photometry shrunk to 2554
after initial data preprocessing. All objects have one time series
but may have two spectra. Their labels are retrieved from Drake
et al. (2014). The class distribution is shown in column “Cross-
match” in Table 1. The original number per class is shown in
parentheses beside the resulting number after discarding
elements. Elements may be discarded either because their class
represents less than 1% of the data set or because they do not
have spectrum features xs. A spectrum may not have spectrum
features xs if its wavelength coverage is shorter than required
by the VAE input. The latter is better detailed in the following

Section 6.4. The resulting cross-match data set used in our
framework has objects from six different classes: equivalen
width (EW; contact binary, 29.3%), EA (semidetached binary,
5.8%), RRab (fundamental mode RR Lyrae, 13.4%), RRc
(first-overtone RR Lyrae, 46.7%), RRd (double-mode RR
Lyrae, 3.1%), and RS CVn (RS Canum Venaticorum, 1.7%).

6.4. Spectrum Data Set

For training the VAE for spectrum feature extraction, 20,949
spectra from SDSS DR14 are retrieved, as shown in Table 2. A
VAE implemented with a fully connected neural network has a
fixed input size, nevertheless, not all spectra have the same
wavelength grid, as explained in Section 6.2. Hence we have to
preprocess the spectra so that they all have a common
wavelength grid. For this, we establish a starting and ending
wavelength. Each is chosen following the value on the 99th
percentile of the sorted starting and ending points from all
spectra correspondingly. Any spectrum that has a higher
starting point or a lower ending point is dismissed. We keep the
same wavelength spacing because it is the same for all entries.
The resulting starting and ending wavelength are 3830Å and
9174Å, correspondingly, with a grid of size 3794. The
processed data set has 20,602 spectra, which is 1.7% less than
the original one.

7. Implementation

The libraries used to implement our method are Tensor-
flow11 and scikit-learn (Pedregosa et al. 2011). To train the
VAE, we use a GPU GeForce GTX1080Ti, 11 GB, and the
selected model takes 746 s. (12.43 minutes) to train. The RF
with tenfold cross validation and GMM are trained with a
2.3 GHz dual-core seventh-generation Intel Core i5 processor
and take 31.97 s. and 2.27 s, respectively. The sampling (with
N= 200) and calculation of ( ˆ∣ )H y xts t from Equation (8) and

( )l xts t from Equation (13) take 437 s. (7.17 minutes) using the
latter hardware. All code is provided here.12 Data can be found
here.13

8. Results

This section describes the necessary components xs, xt, and
Q(xt, xs) to test our methodology and presents the results for the
different strategies described in Section 5.4. Section 8.1 details

Table 1
Data Set Label Distribution

CSDR1 Cross-match

EW 30,743 749 (764)
EA 4,683 148 (149)
beta Lyrae 279 L(7)
RRab 16,797 343 (346)
RRc 5,469 1193 (1219)
RRd 502 78 (81)
Blazkho 223 L(5)
RS CVn 1,522 43 (43)
ACEP 64 L(1)
Cep-II 124 L(3)
HADS 242 L(28)
LADS 7 L(L)
LPV 512 L(9)
ELL 143 L(4)
Hump 25 L(L)
PCEB 85 L(23)
EA_UP 155 L(1)

Total 61,575 2554 (2683)

Note. The second column shows time series from CSDR1. The third column
shows unique objects in the cross-match between CSDR1 with SDSS DR14.
The original number of objects is shown in parentheses, while the objects kept
to build the data set used in our experiments are shown without parentheses.
Labels that represented less than 1% are removed, together with objects that do
not present spectrum features xs. Labels are retrieved from Drake et al. (2014).

Table 2
Data Set Overview

Spectra Time Series Cross-match

Survey SDSS CSS CSS and SDSS
Data Release All DR1 DR1 and All
Source Type Spectra Photometry Photometry and

Spectra
Labeled No Yes Yes
No of Time
Series

L 2683 2683

No of Spectra 20,602
(20,949)

L 3296

8 http://classic.sdss.org/dr7/instruments/spectrographs/index.html
9 https://www.sdss.org/instruments/boss_spectrograph/
10 http://www.sdss3.org/dr9/spectro/spectro_basics.php

11 https://www.tensorflow.org/
12 https://github.com/jfastudillo/An-Information-Theory-Approach-On-
deciding-Spectroscopic-follow-ups.git
13 https://drive.google.com/drive/folders/1AVentdOhgknlfCAz8aWOOm_
fLU3BuosS
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the selected xt and xs, as described in 5.3. Section 8.2 describes
the fitted joint distribution Q(xt, xs). Finally, Section 8.3
presents a comparative study of the performance for multiple
metrics for the different strategies.

8.1. Features

For the xs features we train 15 VAE models, each with a
different latent space dimensionality d ä [1, 15], Î z d ,
xs⊆μ(z), as described in Section 5.3. The training set is the
spectrum data set described in Section 6.4, composed of 20,602
spectra, as indicated in Table 2. The models are trained over
100 epochs with annealing14 (Kirkpatrick et al. 1983) over the
loss function, as done in Bowman et al. (2015). We preprocess
spectra so that they have a common wavelength grid between
3830 and 9174Å and normalize the flux to the [0, 1] range for
each spectrum. We select the model with ( )m Î z 7 that reports
R2=0.96 (coefficient of determination) over the test set
between the original spectra and the reconstructed spectra, as
explained in Section 5.3. The selected model consists of four
encoding fully connected layers with ReLU (Glorot et al. 2011)
activations with 2847, 1,900, 953, and 7 units, respectively.
Symmetrically, the decoder has four layers with an output layer
size of 3794 units and a sigmoid activation at the output.15 The
final model is depicted in Appendix A.1.

xt is a subset of expert features (FATS; Nun et al. 2015),
while xs is built from learned features (μ(z)), xt⊆FATS, and
xs⊆μ(z). They are jointly chosen as the smallest subset of the
most important features according to an RF classification task,
which achieves over 90% of the maximum improvement
between the subsets with the lowest and highest accuracy.
Further details are described in Section 5.3. To refer to each
dimension of μ(z), we use the notation μi, i=0, K, 6. The
data set used to select the xt and xs features is the cross-match
data set (Table 2) detailed in Section 6.3. The selected features
are xt={PeriodLS, Freq1_harmonics_amplitude_0, Media-
nAbsDev, Q31, FluxPercentileRatioMid35, FluxPercentileRa-
tioMid50, Freq1_harmonics_amplitude_1} and xs={μ2, μ5}.
The cumulative relative importances (Gini impurity) of the
selected features xs, xt, and {xt, xs} according to an RF are 0.08,
0.39, and 0.46, respectively. The average accuracy of the RF
trained over 10 stratified data folds using the selected {xt, xs}
features is 0.87, which equals to 93% of the maximum
improvement over the accuracy between the worst selection of
xt and xs (with the lowest accuracy equal to 0.73) and the best
selection of xt and xs (with the highest accuracy equal to 0.88).

8.2. Joint Distribution

A joint distribution of the features xs and xt over the cross-
match data Set (Table 2) is estimated using a GMM. As
mentioned in Section 5.3, xs by construction of the VAE
follows a regular geometry (in this case, a single-mode
Gaussian), but FATS need more modes to fully describe the
distribution. Because of this, the number of clusters is set equal
to the number of classes as an initial guess and the number of
components adapts according to the data with a variational

Bayesian method, as explained in Bishop (2006) and provided
in the scikit-learn package (Pedregosa et al. 2011). The
resulting GMM has the same number of components as the
initial guess, which is six for this case.

8.3. Candidate Selection

To assign a query priority to the spectrum of each object in
the data set, we propose three strategies (IG(xt);

( ) ˆ ( )+ DIG x y x ;t t ˆ ( )+ DH y xt t ) and compare them with two
baseline strategies (Random and Ht) and the ideal scenario
strategy. Each strategy assigns a priority to each of the objects
and selects a subset of them for which to add spectrum features
xs to their available information. For any arbitrary subset size
(s), the s first objects with the highest priority are selected for
each strategy. Selected objects (in the subset) are classified
according to their xt and xs features (lts(xt, xs)). Non-selected
objects are classified using only xt features (lt(xt)).
All strategies are detailed in Section 5.4. Our developed

strategies are based on IG(xt) (Equation (10)), which prioritizes
the objects with the highest approximate information gain and

ˆ ( )Dy xt (Equation (13)), which prioritizes the objects that are
most likely to change their classification if the spectrum
features were added. The Ht baseline strategy prioritizes the
objects with highest entropy on the time-series classification
outcome, while Random gives random priorities to the objects.
Ideal scenario selects the objects according to their actual
information gain instead of their approximation IG(xt). Note
that the latter is not a feasible strategy for selection, but it is
included to study how the IG(xt) strategy would perform if the
real spectra were used instead of the estimated spectra.
A comparative performance of the strategies is shown in

Figure 3. We evaluate our method using three metrics and
different selected subset sizes (s) (x-axis). The left plot shows
the subset average improvement of the ground truth probability
(GTP), i.e., the average probability assigned to the label y (the
real class) for each object. Our ( ) ˆ ( )+ DIG x y xt t strategy yields
the highest GTP average improvement, especially for smaller
s.16 The next best strategy is IG(xt), which surpasses

( ) ˆ ( )+ DH x y xt t t and Ht especially within the first s
(≈s<S510), and last, the Random strategy is the worst, with
a constant average GTP improvement of 0.026. In this scenario,

ˆ ( )Dy xt detects 113 objects that are most probable to have a
change of classification prediction (with ˆ ( )D =y x 1t ). Strate-
gies that use the indicator ˆ ( )Dy xt lift up all objects with

ˆ ( )D =y x 1t to have the highest priority so that they are the first
to be selected for spectra querying. In this way, the
performance of the latter strategies in any regard is affected
by this indicator only up to s=113.
We note that it is more important to have a good

performance at low s values rather than at high s values
because we aim to have the largest improvement in classifica-
tion prediction with the least querying for spectra. A close-up
of the left plot in Figure 3 for the lower values of s is shown in
the left plot of Figure 4. Here it is shown that ( ) ˆ ( )+ DIG x y xt t
has higher values for GTP mean improvement and also a higher
gap with the baseline strategies for low s values compared to
high s values. Take for example s=127, which represents 5%
of the data set. If the objects of this subset are selected with

( ) ˆ ( )+ DIG x y xt t , Ht, and Random strategies, it reaches a GTP

14 When annealing a VAE, a variable weight is added to the term that pushes
the encodings to follow a prior distribution (KL divergence) in the cost function
at training time, which starts at 0 and progressively increases to 1 through
training epochs. It is used so that the autoencoder first learns how to encode and
decode correctly and then to better shape the distributions of the encodings.
15 It is suitable to use a sigmoid for this case because inputs are normalized to
the [0, 1] range.

16 The ideal scenario does not compete because it is only a reference strategy
and not a feasible one.
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mean improvement of 0.13, 0.11, and 0.03, respectively. This
means that ( ) ˆ ( )+ DIG x y xt t improves the GTP 1.18 times as
much as the Ht strategy and 4.33 times as much as the Random
strategy. The same example but with s=510 (20% of the data
set) gives that ( ) ˆ ( )+ DIG x y xt t improves the GTP of each
selected object on average 1.11 times as much as the Ht

strategy and 3.33 times as much as the Random strategy.
These results show that using estimated spectra for object

selection leads to better results compared to not using them.
Strategies that use IG(xt) could be further improved to be as
good as the ideal scenario if we improve ( ∣ )Q x xs t so that the
estimation of the spectra is closer to the real spectra. Objects for
which we can achieve good estimations of their spectra may
not be worth spectrum querying, and hence we can save
observational resources by not observing them. This is depicted
in Figure 5, which shows the GTP improvement versus
spectrum uncertainty for each object. To calculate the spectrum
uncertainty for a given object with xt features, we first sample
the most likely spectra from the conditional distribution

( ∣ )Q x xs t , which is a GMM, as described in Section 8.2. Each
sampled spectrum x̂s has an assigned probability proportional
to ( ˆ ∣ )=Q x x xs s t . Uncertainty then is assessed as the entropy of
the sampled spectra ˆ ( ∣ )~x Q x xs i s t, , i ä [1...N] for each object
in the data set. We focus on objects with positive approximate
information gain (Equation (10)), i.e., objects that have a higher
priority assigned with the IG(xt) strategy. If the uncertainty is
high, the GTP improvement has a wide range of positive and
negative values, while if the uncertainty is low, the most likely
GTP improvement is near 0 (no gain). Whenever we are fairly
certain about an object spectrum, it is less likely to gain
improvement in classification results and thus it is not worth
querying for it. On the other hand, if we are widely uncertain of
an object spectrum, we may gain a significant improvement in
classification results if we query for its spectrum. In this way, it
is worth improving our estimation of the spectra ( ( ∣ )Q x xs t ) so
we can further save observational resources by not choosing
objects of whose spectrum outcome we are already certain and
instead choose objects of whose spectrum outcome we are
unsure.

Complementary to the GTP average improvement over the
selected subset, the right plot of Figure 4 shows the proportion
of objects in the selected subset that improve their GTP in any
positive amount, disregarding the average improvement. The
best results are reached with IG(xt) and ( ) ˆ ( )+ DIG x y xt t . After

these, ˆ ( )+ DH y xt t and Ht stay competitive, and finally,
Random presents the worst performance.
The middle plot of Figure 3 shows the accuracy (%)

improvement of the classification of the selected subset (y-
axis). If an arbitrary s is taken and it has an accuracy
improvement of 0.3 with some strategy, it means that it has
30% more objects in the selected subset that are correctly
classified using spectrum features (lts(xt, xs)=y) compared to
not using them (lt(xt)=y), for this strategy selection method.
As mentioned earlier in this subsection, ˆ ( )Dy xt signals 113
samples to prioritize first in the selection, and thus the
performance of strategies that use this indicator is affected by
this only up to s=113. ˆ ( )+ DH y xt t and ( ) ˆ ( )+ DIG x y xt t are
the best strategies for improving accuracy of the selected subset
on low s values (s<510). This is to be expected because

ˆ ( )Dy xt causes first a selection of objects that are most likely to
change their classification and hence improve accuracy. Next
follows Ht. For higher values of s, ˆ ( )Dy xt no longer affects the
selection, and any strategy that uses Ht is the best strategy.
IG(xt) performs worse than the previous strategies for all s, but
is still better than the Random strategy. The latter is to be
expected because IG(xt) selects objects that will improve their
classification confidence regardless of the accuracy
improvement.
We note that the ideal scenario is worse than most strategies

regarding accuracy improvement, even though it uses the real
spectra instead of an estimation. To improve accuracy, we must
select objects that are incorrectly predicted—false positives
(FP)—with time-series features but are correctly predicted if
spectrum features added, regardless of the amount of improve-
ment of their GTP. The ideal scenario uses only the current
value of information gain IG(xt), which selects objects that
most likely increase their GTP but will not necessarily change
their classification when spectrum information is added. This is
the reason why the ideal scenario is worse at selecting objects
that will improve accuracy compared to strategies that
use ˆ ( )Dy xt .
As mentioned before, ˆ ( )Dy xt returns the 113 (4% of the data

set) objects that are most likely to have a change of
classification prediction if xs were queried. Within these
objects, 46 change to their true class from a former incorrectly
predicted class. The number of available incorrectly predicted
—FP—objects in the data set is equal to 390, of which 101 can
correct their prediction if spectrum features are added. ˆ ( )Dy xt
detects most of the FP that can be corrected (46%) with less

Figure 3. Comparative performance of our selection strategies (IG(xt); ( ) ˆ ( )+ DIG x y x ;t t ˆ ( )+ DH y xt t ) with baseline strategies (Random; Ht) and the ideal scenario
strategy with respect to (left) the GTP average improvement on selected subset, (middle) accuracy (%) improvement on the selected subset, and (right) overall
accuracy. S510 represents the subset with 510 objects (equal to 20% of the data set).
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than 4% of the data set. This means that ˆ ( )Dy xt is a good
detector of incorrectly classified objects so that strategies that
use it can quickly detect and correct FP objects (at least up until
the number of objects with positive ˆ ( )Dy xt ).

The described FP object detection is depicted in Figure 6,
which shows the proportion of objects from the selected subset
that change from a former incorrectly predicted class (lt(xt)
¹y) to their label y (lts(xt, xs)=y). All strategies shows their
results over Random selection, which has a constant FP
detection ratio of 4%. Our method ˆ ( )+ DH y xt t has higher
values for FP detection ratio and also a wider gap with the other
strategies for low s values compared to high s values. For
s=127 (5% of the data set), if the objects of this subset are
selected with ˆ ( )+ DH y xt t , Ht, and Random strategies, it
corrects the classification of 37%, 20%, and 4% of the selected
objects, respectively. This means that ˆ ( )+ DH y xt t corrects the
classification of 17% and 33% more objects than Ht and
Random strategies, correspondingly. For s=510 (20% of the
data set) we see that ˆ ( )+ DH y xt t corrects the classification of
1% (20) and 11% more objects than Ht and Random strategies,
respectively.

From Figures 3 and 6 we note that for high s values,
strategies that use Ht detect FP objects better than strategies that

do not. This means that after the ˆ ( )Dy xt indicator, which covers
low s values, the most important selection criterion is the
entropy of the time-series classification outcome ( ˆ∣ )H y xt t . This
is more clearly depicted in the right plot of Figure 3, which
shows the overall accuracy (%) of the classification of the data
set for different subset sizes and strategies. For any arbitrary
strategy and subset size, the objects that are selected are
classified using time-series and spectrum features (lts(xt, xs)),
while the non-selected objects are classified just with time-
series features (lt(xt)). Our ( ) ˆ ( )+ DIG x y xt t and ˆ ( )+ DH y xt t
strategies reach the same accuracies as the Ht and Random
strategies with smaller selected subsets for all accuracies below
0.862. To reach an accuracy of 0.86, the ˆ ( )+ DH y xt t , Ht, and
Random strategies need to query for the spectra of 101, 374,
and 1315 objects, correspondingly. ˆ ( )+ DH y xt t needs 27%
and 8% the number of objects that the baselines strategies need
to reach the same accuracy.
The presented results suggest that the best strategy to use

depends on the task that it is meant for. If the aim is to improve
the prediction probability (confidence), then ( ) ˆ ( )+ DIG x y xt t
is the best choice, while if it is to detect FP, then any method
that uses ˆ ( )Dy xt is the best choice. In both cases our
methodologies surpass baseline strategies (Ht and Random),
especially within small subset sizes.

Figure 4. (left) Selected subset GTP average improvement and (right) ratio of objects in the selected subset with increased GTP for different strategies and subset
sizes, over the Random selection strategy.

Figure 5. Ground truth probability (GTP) improvement vs. spectrum
uncertainty. Uncertainty is assessed as the entropy of the sampled spectra for
each object in the data set. Objects with positive approximate information gain
(Equation (10)) are plotted as red stars, and uncertain objects are plotted as
blue dots.

Figure 6. Comparison of the selected subset ratio that changes from a former
incorrectly predicted—FP—class (lt(xt)¹y) to their label y (lts(xt, xs)=y) for
different strategies and subset sizes, over the Random selection.

11

The Astronomical Journal, 159:16 (14pp), 2020 January Astudillo et al.



9. Conclusions

In this paper, we develop a general method for selecting
astronomical objects for which taking their spectrum would
improve our knowledge regarding their classification. Adding
spectrum information provides further insights to time-series
information, but requires more observational resources. Given
the current and future development of wide-field surveys such
as the LSST (Ivezić et al. 2008), it is valuable to know which
objects we should prioritize to have a spectrum in addition to
time series given the few spectroscopic facilities at hand.
Differently from other works, such as Ishida et al. (2019), we
make use of the full spectral information through automatic
spectrum feature extraction instead of querying for labels.
Additionally, we perform a multiclass classification of objects
as opposed to related works, such as Peters et al. (2015) and
Ishida et al. (2019), who performed a binary classification. As a
byproduct of our work, we develop a model for the estimation
of the spectrum of an object from its time series, which may be
used in other applications. To validate our method, we perform
extensive tests using a cross-match between spectra from SDSS
DR14 (Blanton et al. 2017) and CSS DR1 (Drake et al. 2014).
The cross-matched catalog is providedhere.

We propose multiple selection strategies based on two
metrics. The first metric is IG(xt) (information gain), which
gives higher selection priority to the objects that are likely to
improve their classification confidence if their spectra are
queried. The second metric is ˆ ( )Dy xt , which prioritizes the
objects that are likely to change their classification if their
spectra are queried. This metric ( ˆ ( )Dy xt ) uses spectrum
estimations to indicate the objects that will most likely change
their classification. If the estimate is close enough to the real
spectrum, then it is reasonable that if the object changes its
classification with the spectrum estimates, it will most probably
change with the real spectrum as well. We compare our
strategies mainly with the Ht strategy, which gives high priority
to the most uncertain objects on the time-series classification
outcome, similar to common AL strategies such as reported by
Ishida et al. (2019). Last, we also build strategies that mix Ht

and our metrics for object selection.
From the results, ˆ ( )Dy xt detects most of the incorrectly

predicted—FP—that can be corrected (46%) with less than 4%
of the data set. This means that ˆ ( )Dy xt is a good detector of
incorrectly classified objects so that strategies that use it can
quickly detect and correct FP objects. Subsets of candidates
selected using ˆ ( )Dy xt have a higher improvement on
classification accuracy than all other strategies, especially
when a small number of objects are selected for spectrum
follow-up. If more objects are selected, then ˆ ( )Dy xt no longer
affects the selection, and any strategy that uses Ht is the best
selection strategy. Subsets of candidates selected using IG(xt)
have a higher improvement on the GTP (probability assigned to
the real class) than baseline strategies. This suggests that
spectra querying may be used in addition to labeling to improve
the classification confidence of selected objects and more
broadly, the knowledge of these objects. Our developed
information gain IG(xt) metric leads us to select objects that
are likely to improve their GTP and avoids objects for which
we are fairly certain of their spectrum outcome and are not
likely to gain improvement in classification results. This metric
can be further enhanced if the estimation of the spectrum from
the time series becomes closer to the real spectrum. In this way,
we could further save observational resources by not choosing

objects for which we are already certain of their spectra
outcome.
As future work, improvement of xt features with unsuper-

vised time-series feature learning could be included. Our
method could be adapted for online selection so that the

( ∣ )Q x xs t and Pts may be trained alongside with the choice of
newly selected objects. The joint space of time-series features
and spectrum features can be modeled in a different way so that
the estimation of the spectrum is closer to the real spectrum.
Additionally, automatic determination of the optimum

number of objects to be queried could be developed so that
when no significant improvement over any metric (accuracy
and GTP for this case) is achieved, then no more spectra
queries are made. Further metrics could be included to evaluate
the improvement of our knowledge of the objects.
Different alternatives within the design of experiment may

be explored. For example, finding the minimum required
spectrum resolution that still adds information to the time
series. Alternatively, multiple options for enhancing the
available information of an object could be included (simulta-
neously). Some examples of this are adding more points to the
time series, changing the exposure time of observations, or
adding more color bands.
Finally, our methodology may be tested with other cross-

matched catalogs such as the Global Astrometric Interferom-
eter for Astrophysics (GAIA, Gaia Collaboration et al. 2018)
and the SDSS (York et al. 2000). Additionally, we could apply
our work to the recent Photometric LSST Astronomical Time
Series Classification Challenge (PLAsTiCC, Kessler et al.
2019) to rank objects for spectrum follow-up and compare with
current works related to it.
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Appendix
Appendix Material

A.1. VAN

Figure 7 depicts the selected VAE for spectrum feature
extraction, implemented with a neural network architecture.
The preprocessing includes the normalization of the flux of
each spectrum independently of the [0, 1] range and the
pruning of wavelengths in the tails so as to set a common
wavelength grid of size equal to 3794. The selected model
consists of four encoding fully connected layers with ReLU
(Glorot et al. 2011) activations with 2847, 1900, 953, and 7
units, respectively. Symmetrically, the decoder has four layers
with an output layer size of 3794 units and a sigmoid activation
at the output.17

ORCID iDs

Javiera Astudillo https://orcid.org/0000-0002-6099-7071

17 It is suitable to use a sigmoid for this case because inputs are normalized to
the [0, 1] range.
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