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Abstract. Image quality plays a big role in CNN-based image classifi-
cation performance. Fine-tuning the network with distorted samples may
be too costly for large networks. To solve this issue, we propose a transfer
learning approach optimized to keep into account that in each layer of a
CNN some filters are more susceptible to image distortion than others.
Our method identifies the most susceptible filters and applies retraining
only to the filters that show the highest activation maps distance between
clean and distorted images. Filters are ranked using the Borda count elec-
tion method and then only the most affected filters are fine-tuned. This
significantly reduces the number of parameters to retrain. We evaluate
this approach on the CIFAR-10 and CIFAR-100 datasets, testing it on
two different models and two different types of distortion. Results show
that the proposed transfer learning technique recovers most of the lost
performance due to input data distortion, at a considerably faster pace
with respect to existing methods, thanks to the reduced number of pa-
rameters to fine-tune. When few noisy samples are provided for training,
our filter-level fine tuning performs particularly well, also outperforming
state of the art layer-level transfer learning approaches.

1 Introduction

In recent years, deep neural networks (DNNs) have become increasingly good at
learning a very accurate mapping from inputs to outputs, from large amounts
of labeled data, across different applications [8,9,15,18].

The unfortunate downside of these models is their inability to generalize
whenever they are presented different conditions from the ones that they have
encountered during training. In the literature, this scenario is known by the
name of dataset shift [16]. More formally, in classification problems, where the
need for the model is to learn a mapping from X → Y , the class label y is
causally determined by the values of the covariates x, which together determine
the joint distribution P (x, y). Dataset shift appears whenever training and test
joint distributions (Ptr(x, y) and Ptst(x, y), respectively) are different. That is,
when Ptr(x, y) 6= Ptst(x, y).
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The aforementioned deep learning models are commonly trained on care-
fully annotated datasets. In most realistic applications, data is collected from an
infinite number of novel and cluttered scenarios, many of which would not be
represented by the properly annotated data on which the model was trained on.
The trained model would then be ill-prepared to make predictions on this new
type of ”noisy” data.

Obtaining accurately annotated data is a tedious process and often imprac-
tical in many situations. It would then be ideal to transfer knowledge gathered
by the model on undistorted data (source domain), to enable training of another
model to properly classify noisy inputs (target domain), even when few labeled
observations from this noisy setting are available.

In our work, we focus on applying this transfer learning approach to the con-
text of image classification, where, starting from a model trained on undistorted
images, we assess which are the parts of the network that are most sensitive to
input data distortion, fine-tuning them with noisy inputs such that the model is
then able to properly classify distorted images.

In most realistic computer vision applications, an input image undergoes
some form of image distortion including blur and additive noise during image
acquisition, transmission or storage. However, most popular large scale datasets
do not have images with these artifacts, thus testing pre-trained DNN models
(trained on such images) on slightly perturbed ones, would cause a considerable
degradation in classification performance, even though the added distortion does
not hinder the human ability to classify the same images [4].

Borkar and Karam [2] proved that features learned from a dataset of high
quality images are not invariant to image distortion or noise and cannot be
directly used for applications where the quality of images is different than that
of the training images. The feature spaces of the source and target domain are
different (i.e., XS 6= XT ).

Through our study, we try to address this problem directly acting on on
the features learned by the model on the source domain, so that they become
invariant to image distortion, ideally obtaining features such that XS ≈ XT .

As in [2], we prove that among all the filters of the convolutional layers of a
DNN, some filters are more susceptible to input distortions than others and that
correcting the activations of these filters can help recover the lost performance.
However, instead of correcting the activations, like in [2], we act directly on the
filters, so that the learned features become nearly invariant to image distortion.

Leveraging this finding, we propose a novel technique to rank the
filters that are most affected by input data distortion, through an
appropriate distance metric and voting technique that we will detail in
Section 3.2.

We will then present a detailed methodology to directly act on a subset of
the aforementioned most affected filters per layer, so that the output activations
become robust to image distortion, preventing the considerable degradation in
classification performance that would normally take place if the DNN was only
trained on undistorted inputs.
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Differently from the usual fine-tuning of pre-trained models, that rely on
retraining all the filters in some convolutional layers of the network, we show that
fine-tuning only a subset of the most affected filters of those layers, achieves a
better overall performance and a lower training cost than retraining all the filters
of those layer, when data in the target domain is limited.

The remainder of the paper is organized as follows. Section 1.1 details a more
formal definition of the problem. Section 1.2 provides an overview of the related
work in assessing and improving robustness of DNNs to input image perturba-
tions. Section 2 clarifies some of the necessary tools and ideas described in this
paper. Section 3 presents a detailed description of our proposed approach, while
Section 4 delineates the experiments to validate the technique, whose results will
be discussed in Section 5. Concluding remarks are given in Section 6.

1.1 Problem

Problem Setting To provide a more formal definition of the problem, suppose
we have a dataset DT , of limited size, where DT = {(xT1 , y1), ..., (xTn , yn)} ⊆
XT × Y, in which XT and Y respectively denote the domain of predictors XT

and classes Y , while n = |DT |. We know for a fact that this set of collected data
points have undergone some form of image distortion, which can be modeled
as a function g(·). DT can then be described as DT = {(xT1 , y1), ..., (xTn , yn)} =
{(g(xC1 ), y1), ..., (g(xCn ), yn)} where xCi represents the undistorted data point,
sampled from a ”clean” dataset DC = {(xC1 , y1), ..., (xCn , yn)} ⊆ XC × Y, in
which XC and Y respectively denote the domain of predictors XC and classes Y.

The goal is to use the set of distorted data points DT to train a DNN to
perform a generic classification task. If DT is not of sufficient size to train a
DNN model from scratch (with random initialization), we may have to move
to pre-trained models. Focusing our attention to image classification settings,
a pre-trained model is a convolutional neural network (CNN) which has been
trained on a very large set of undistorted images DS = {(xS1 , yS1 ), ..., (xSm, y

S
n )}

⊆ XS ×YS (where XS and YS respectively denote the domain of predictors XS

and classes YS , while m = |DS |) which is known to perform very well in the task
of classifying images.

Nevertheless, as shown in [4], testing distorted images with a pre-trained
DNN model, even though such image distortions g(·) do not represent adversar-
ial samples for the DNN, results in a considerable drop in classification perfor-
mance. The reason for this degradation is attributed to the distortion function
g(·), which is responsible for increasing the effects of the phenomenon known as
covariate shift [16], defined as the case in which there is a change in the distri-
bution of the input variables between training and testing data. More formally,
assuming that the distribution of the undistorted images P (XC) is the same
distribution of the images used to train the pre-trained model, we have that
P (XC) = P (XS). However, because of the distortion function g(·), the distribu-
tion of the ”clean” images, is different from the distribution of their distorted
counterparts (i.e., P (XC) 6= P (XT )), which means, due to the transitive prop-
erty, that P (XC) 6= P (XS). This result indicates that features learned from a
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dataset of high quality images, such as DS , are not invariant to image distortion
or noise, and cannot be directly used for applications where the quality of images
is different than that of the training images (DT ).

Problem Definition The goal for our work is to show an approach to poten-
tially shrink the effect of the covariate shift caused by the distortion function
g(·), to eventually come up with a model that is robust to this type of phe-
nomenon, leveraging the potential of the proposed transfer learning method,
while keeping the number of parameters to train into a feasible range, consid-
ering the limited amount of training samples. Starting from a CNN trained on
pristine images, we demonstrate that in each of its convolutional layers, some
filters are more susceptible to image distortion than others. Through a proper
election method, we rank these filters based on the impact that distortion has
on them. Finally, we fine-tune only the most affected ones, eventually achieving
the goal of learning convolutional filters that are nearly invariant to input data
distortion.

1.2 Related Work

In literature we can find a multitude of approaches that address the covari-
ate shift issue, in image datasets, due to input data distortion. Starting from
[4] for example, which determined how different kinds and intensities of image
distortion affect CNNs performance on image classification; they found all net-
works they tested to be susceptible both to blur and noise, but they observed
that deeper networks performance falls off slower than the one of shallower net-
works; they concluded that deeper structures give the network more room to
learn features that are not affected by noise. They also observed that blur does
not significantly affect early filter responses, but in spite of this the last layer
activations exhibit significant changes, so even slight differences in early layers
propagate to deeper layers. Noise on the other hand causes many activations in
the first layer due to its high frequency nature, and this translates in significant
changes in the last layer responses.

[26] performed a similar analysis on the effects of distortions on image clas-
sification, but they also proceeded to propose two solutions to such problem:
fine-tuning and retraining. In fine-tuning they start from a pre-trained model
and continue training the first N layers with distorted samples while keeping
the rest of the network fixed; when performing retraining instead they train
the entire network on the distorted dataset starting from random weights. They
observed that both techniques reduce the classification error rate of distorted
samples, but such improvement in performance depends on the network and
training dataset size: if the number of trainable parameters is large, fine-tuning
is a better alternative than retraining since it is less prone to overfitting on small
datasets. They also show that both fine-tuning and retraining tend to adjust the
image representation, making it similar to the representation of the undistorted
image from the pre-trained model; to prove this they show that, for blurred
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images, fine-tuning and retraining both increase the variance of the gradient of
the activations, showing that such activations actually contain more information
with respect to the ones produced by the original model on the distorted images.

Following the work of [26], [2] proposed an alternative solution to improve
the performance of pre-trained CNNs on distorted images: the authors observed
that for each layer of a CNN, certain filters are far more susceptible to input
distortions than others and that correcting the activations of these filters can
help recover lost performance. Starting from this observation they rank the con-
volutional filters in order of the highest gain in classification accuracy upon
correction; then they proceed to correct the activations of the top ranked filters
by appending small blocks of stacked convolutional layers at their outputs, and
training them while keeping the rest of the network fixed. By doing so, they are
able to significantly improve the robustness of the network against image dis-
tortions while reducing the number of trainable parameters and achieving faster
convergence in training with respect to fine-tuning entire layers. That said, the
amount of parameters to train to implement this technique remains consider-
ably high with respect to our approach; moreover, the ranking of the filters is
applicable only when the clean and noisy version of the same image is available,
and this may not always be a viable option in real world problems.

2 Background

2.1 Convolutional Neural Networks

Here we provide a brief overview of deep neural networks based on [7]. A deep
neural network is a collection of small and simple elements called neurons, orga-
nized in multiple layers, thus the adjective deep. In general each neuron computes
the following function:

f(x) = φ(wTx + b) (1)

where x is the input, w is a weight vector, b is a bias term and φ is a nonlinear
function. The nonlinear function is an important aspect of the neuron composi-
tion because it allows each layer to learn a non-linear function of its inputs; since
the network is composed of stacked layers, the output of each layer becomes the
input of the following one.

For image recognition problems, the network receives in input an image;
usually each input neuron receives information about the entire input sample,
but in this case connecting all neurons to all pixels in the image would result
in prohibitive memory and computation requirements. To solve this issue we
connect each neuron to a small, locally connected portion of the input called
receptive field, and we move this window across all the image; this way the
number of parameters and the quantity of memory needed to compute each
sample is drastically reduced. Such technique, also known as weight sharing,
is equivalent to convolutional filtering where the filters are represented by the
shared weight vectors. Layers arranged in this way are called convolutional layers.
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Following convolutional layers we usually find pooling layers; such layers
apply a pooling operation over a window of fixed size across the convolutional
layer response, producing in output a single value for each input region. There
are different kinds of pooling operations, but the most common one is the max
operator, where the maximum neuron response in the window is produced as
output. These layers serve two purposes: they improve noise robustness and
increase the size of the receptive field in deeper layers without increasing the size
of the filters.

The last stage of the network is usually a softmax layer, which translates the
output of the network to probabilities over the output classes. The output of this
layer is then compared to the true labels at training time and a loss function
representing how closely the predictions match the true labels is computed. The
gradient of this cost function is then propagated backward through the network
to compute the updates for the parameters of each neuron.

2.2 Image distortion

Deep neural networks structured as described before, also known as convolutional
neural networks, have been able to deal with multiple complex computer vision
tasks, achieving particularly good results in image classification. The availabil-
ity of large high quality image datasets [3] [5] has been crucial for successfully
training very deep and complex networks.

In practical applications though it is common for images to be affected by dif-
ferent kinds of distortions, usually in the form of blur or noise. Blur can be caused
by camera shake or lack of camera focus and it can also affect pictures taken with
high quality cameras; noise on the other hand is usually due to bad lighting con-
ditions or high sensor temperatures [26]. Distortions like these may impact the
ability of many deep learning models to perform as well as they do when they are
presented with clean images: [22] shows how state-of-the-art models trained on
high-quality image datasets make unreliable, albeit low-confidence, predictions
when they encounter blur in their inputs, due to their inability to generalize
from their sharp training sets; [4] instead demonstrates that both noise and blur
cause significant differences in the outputs of convolutional layers, when compar-
ing clean and distorted images. In both cases of distortion though a technique
called fine-tuning was found capable of recovering most of the lost performance;
it will be described in the next paragraph [22] [26].

2.3 Transfer Learning

As defined in [19]:

Given a source domain DS and learning task TS, a target domain DT and
learning task TT, transfer learning aims to help improve the learning of the

target predictive function fT(·) in DT using the knowledge in DS and TS, where
DS 6=DT, or TS 6=TT.
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Many applications of transfer learning techniques have been studied [19]; in
practice, in most deep learning scenarios doing transfer learning means trans-
ferring weights from an existing network trained on a large dataset to another
network. Training a network with limited data, poor initialization, and a lack
of regularization to control capacity, may very easily and slowly lead to find a
sub-optimal minima, thus failing to learn how to generalize well [17]. This is why
reusing the weights of another network as initialization can boost performance
even when small target training sets are available. In particular in [24] [25] it
was observed how the first layers of the network tend to learn simpler features
that generalize more easily to different tasks, with respect to deeper layers; for
networks trained on similar tasks and datasets, freezing the first few layers of the
source network, and training the remaining layers at a low learning rate proves
to be a good strategy. This process is called fine-tuning.

3 Methodology

This section is devoted to present in detail the steps of our proposed methodol-
ogy, which can be summarized through the following points: 1) We train a CNN
on a source dataset of pristine images, to serve as our baseline model; 2) We
measure the susceptibility of convolutional filters to input distortion using a pe-
culiar distance metric and rank said filters in the order of highest susceptibility
to input distortion; 3) We fine-tune only a subset of these most affected filters,
with a target dataset of distorted images, to attain a significant improvement
in terms of robustness of the network against input data distortion, achieved
at a notably smaller computational cost than the usual layer-wise fine-tuning
techniques.

3.1 Model training on source dataset

In order to simulate an authentic transfer learning scenario, first, we need a
model to be used as a starting point. Adopting the same notation of Section 1.1,
let’s define M as a CNN, trained on a source dataset DS of undistorted images,
to carry out the task of image classification (i.e., learning a mapping from an
input image xSi to its corresponding label ySi ). Since this baseline model M has
only been trained to classify images in a ”clean” data scenario, the model will
not perform as well when trained on ”noisy” data, as extensively proven in [4].

A fundamental aspect of our work is then to show how to assess which are
the parts of the network M that are most affected by the difference between
the ”clean” input data distribution (source domain) and the ”noisy” one (target
domain). This is what will be detailed in the upcoming section.

3.2 Noise impact analysis

Since our study addresses the problem of image classification, we focused our
attention to the portion of the network that is responsible to learn the latent rep-
resentation of every input image. To this regard, our study addresses the problem
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Sharp AWGN Blur

Fig. 1: Examples of the associative case: sharp and distorted images (with Addi-
tive White Gaussian Noise and blurring, respectively) refer to the same sample.

of finding a quantitative measure to determine the change introduced by noise,
with respect to the clean setting, at the convolutional layers level. Being the
convolutional layer the core building block to learn the latent representation of
every input image, the comparison is performed at the 2-dimensional activation
maps level, as we are willing to evaluate how noise impacts the learned latent
representation of every image.

To compute this difference, a (clean, noisy) image pair is necessary to per-
form the comparison. For empirical reasons, it is crucial to make a substantial
splitting, depending on the setting in which we want to take advantage of the
proposed technique: we will refer to associative pairs whenever the (clean, noisy)
image pair concerns the same image. In this scenario, adopting the same nota-
tion of Section 1.1, being xCi ∈ DC the clean image, and xTi ∈ DT the noisy one,
then xTi = g(xCi ), where g(·) is the function for the input distortion. Examples
of images that display this scenario can be observed in Figure 1.

We will instead refer to non associative pairs whenever this (clean, noisy)
image pair will not refer to the same image (xTi 6= g(xCi )), to accommodate
circumstances in which the clean and noisy pair of the same image will not be
available.

Being the non associative case a slight variation of the associative one, we
present the methodology assuming an associative setting. Details on the non
associative scenario will be given in Section 3.4.

Measuring filters’ susceptibility to input data distortion The funda-
mental objective of the noise impact analysis is to measure which are the feature
maps, for each convolutional layer, that are most affected by input data distor-
tion.Simply put, the goal is to measure which are the feature maps that vary the
most between their clean and noisy counterparts. This variation is a measure of
how much each convolutional filter, which generated each corresponding feature
map activation, is sensitive to input data distortion, indicating how much each
filter is responsible for the performance drop of the baseline model when tested
on noisy inputs.

To measure this variation between feature maps activations, because of its
informal intuition, we adopted the Earth mover’s distance (EMD), which is also
known, in mathematics, as the Wasserstein metric. In principle, if the distribu-
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Di = [d0, ... , dF]Pre-trained
CNN

Distorted samples

Clean samples

Clean activations

Distorted activations

EMD
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trained on
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Fig. 2: High level diagram of the associative method. The clean and noisy version
of the same image are fed into the same baseline model, producing two different
sets of feature maps activations, which are then compared using the EMD met-
ric to generate an array of distances, where each element represents the scalar
distance between each of the single feature map activations in the investigated
layer.

tions - that in our case are represented as feature maps activations - are treated
as two different ways of piling up a certain amount of dirt over a certain region
R, then the EMD represents the minimum cost of turning one pile into the other,
where the cost is assumed to be the amount of dirt moved, times the distance
by which it was moved [20].

On a purely iterative fashion, repeating the comparison for each (xCi , xTi )
pair of training images, we can now compute, for each convolutional layer, the
EMD metric between the feature map activations generated when the clean
version of the image is fed into the baseline model M , and the feature maps
activations generated when the noisy version of the same image is fed into the
network. An high level diagram of the detailed approach is shown in Figure 2.

After having computed the EMD for each (xCi , xTi ) input pair, we now have
a rectangular distance matrix D, of shape N x F , where N represents the size
of the training dataset (N = |DC | = |DT |), while F describes the number of
feature maps activations present in the examined convolutional layer C. This
matrix now represents, for each image at index i ∈ {1, ..., N}, how distant each
feature map activation at index j ∈ {1, ..., F} is between its clean and noisy
form.

Ranking filters by susceptibility to input distortion The remaining aspect
of the noise impact analysis consists in aggregating all the computed distances,
to determine which are the feature maps that are most affected by noise. Asso-
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Algorithm 1 Ranking convolutional filters per layer with Borda count

Input: convolutional layer l, input images samples
for filter in l do

Initialize borda count of filter = 0
end for
for (clean img, noisy img) in samples do

distance = compute distance(l, (clean img, noisy img))
ranked filters = argsort(distance)
Truncate ranked filters at 10 items
Initialize idx = 0
while idx < 10 do

candidate filter = ranked filters at position idx
points = 10 - idx
Increase borda count of candidate filter by points
Increase idx by 1

end while
end for

ciating a large value of EMD to a greater change due to noise, the objective is to
produce a final ranking that sorts, from the most changing feature map, to the
least changing one, all the feature maps indices in the examined convolutional
layer C. To accomplish this task, we relied on an election method known by
the name of Borda count [14]. The voters (images) rank the list of candidates
(feature maps) in order of preference. Points are then given to each candidate
in reverse proportion to their ranking, so that higher-ranked candidates receive
more points. When all votes have been counted, and the points added up, the
candidate with the most points wins. In our setting, candidates receive 10 points
each time they are ranked first, 9 for being ranked second, and so on, with the
10th candidate receiving just 1 point, while the remaining ones receive 0 points. A
general overview of the pseudo-code related to this approach can be appreciated
in Algorithm 1.

Because this voting technique tends to elect broadly-acceptable candidates,
rather than those preferred by a majority (i.e. only the one that varies the
most, the majority of the times), Borda count proved to be the most successful
technique to provide the ranking for the feature maps most affected by noise.

3.3 Model fine-tuning on target dataset

Once we assessed which are the feature maps activations that change the most
due to the input noise, we can proceed to fine-tune the filters that produced them.
Parameters fine-tuning in convolutional neural networks is usually performed
taking a previously trained network, and retraining some of its convolutional
layers, in order to adapt them to the target task or domain. Since our objective
is not to accomplish a new task, but rather to mitigate the noise impact on the
source model, we are going to retrain only the filters that produced the most
changing activation maps, instead of all the filters in the layer.



Selective CNN-Filters Fine-Tuning 11

In details, we will train a ”partially trainable” neural network, where, unlike
the standard transfer learning approach of ”freezing” at the layer level (i.e.
keeping constant all the parameters for the layer), we will do it at the filter
level. As a result, within the same convolutional layer C, some filters will be
re-trainable, while others will not.

The intuition behind this approach is that, by only acting on the filters that
are most affected by noise (i.e. the most corrupted ones), we directly act on the
parts of the network that are most responsible for the performance drop when
moving from a clean data setting to a noisy one.

3.4 Non associative method

In Section 3.2, we assumed to have a (clean, noisy) input pair of the same image.
In practical applications, this might not always be the case. In the previously
defined approach, not having the (clean, noisy) input pair for the same image,
would prevent the applicability of the technique, as it would not be possible to
compute the EMD between feature maps of the clean and noisy image pair. In
this non associative setting, each noisy image xTi is not generated applying the
distortion function g(·) to its corresponding clean version xCi . Instead, it is an
independently collected noisy image, of which its corresponding clean version is
not available. Formally, xTi 6= g(xCi ).

To overcome this problem, we had to rely on the idea of finding images that
would serve as representatives for a given class of images, where the class labels,
in this case, would not be their actual categories. Instead, images would be split
based on whether they were noisy or not. The two representatives would then be
compared against each other to compute the Earth mover’s distance. Inspired
by these ideas, we decided to rely on the concept of clusters exemplars.

Exemplars The k-medoids algorithm is a clustering algorithm that breaks the
dataset up into groups, attempting to minimize the distance between points
labeled to be in a cluster and a point designated as the center of that cluster
[10]. In contrast to the more popular k-means algorithm, k-medoids chooses data
points as centers, named medoids or exemplars, that are defined as members of
the input set that are the most representative for the assigned cluster. We pre-
ferred k-medoids to other clustering techniques that find exemplars, like affinity
propagation [6], because through the k hyperparameter, we are able to fix the
number of clusters to find. Since we are only interested in finding one exemplar
per dataset, we fix k = 1, which is the equivalent of finding the exemplar that
lies in the middle of the dataset, in its multidimensional vector space.

In a totally unsupervised fashion, it possible to apply this clustering technique
to each of the two separate datasets, the clean one DC and the noisy one DT ,
that are now perfectly independent, to find a representative (exemplar) image
for each dataset: one being the exemplar for the clean dataset xCex ∈ DC , while
the other one being the exemplar for the noisy one xTex ∈ DT .

Going back to the approach defined in Section 3.2, we can now compute
the distance among feature maps activations, for a given convolutional layer C,
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between the exemplar for the clean dataset xCex, and the exemplar for the noisy
dataset xTex. The result, differently from the associative scenario, is not a distance
matrix anymore. Instead, it is a one dimensional vector of scalar values, each
representing the distance of each feature map activation at index j ∈ {1, ..., F},
of the convolutional layer C, between the clean and noisy exemplar.

Ranking Being the computed distance vector a one dimensional array, there is
no need to adopt any voting technique like in the associative approach anymore.
In fact, it is now possible to simply calculate which are the indices that would
sort the vector descendingly, so as to come up with the final ranking of the most
affected feature maps activations for the convolutional layer C.

As for the associative case, the produced ranking will be the building block
for the next and final step, which consists in fine-tuning only a subset of the
convolutional layer filters, corresponding to the most affected ones by noise, as
detailed in Section 3.3.

4 Experimental Setting

Here, we describe the various datasets, image distortions, network architectures
and clustering details used to validate the proposed transfer learning technique.

4.1 Datasets

We used two popular image classification datasets: CIFAR-10 and CIFAR-100
[12]. CIFAR-10 consists of 60000 32x32 pixels colour images in 10 classes, with
6000 images per class. There are 50000 training images and 10000 test images.
The training set contains exactly 5000 images from each class, while the test
set contains exactly 1000 randomly-selected images from each class. The classes
are completely mutually exclusive (e.g. there is no overlap between automobiles
and trucks). The CIFAR-100 dataset is just like the CIFAR-10, except it has
100 classes containing 600 images each. There are 500 training images and 100
testing images per class. We split both, CIFAR-10 and CIFAR-100, using an
80-20 ratio: 40000 images for training and 10000 for validation.

4.2 Distortions

We focus on evaluating two important and conflicting types of image distortions:
Gaussian blur and Additive White Gaussian Noise (AWGN), each over 3 levels
of distortion severity. Gaussian blur, often encountered during image acquisition
and compression, represents a distortion that eliminates high frequency discrimi-
native object features like edges and contours, whereas AWGN is commonly used
to model additive noise encountered during image acquisition and transmission.

Since we use datasets with the same input resolution, we use identical sets
of distortion parameters for each dataset. For AWGN, we use a noise standard
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Fig. 3: Network architectures for our baseline models. Convolutional layers are
parameterized by kxk-conv-d-s-p, where kxk is the spatial extent of the filter,
d is the number of output filters in a layer, s represents the filter stride and p
indicates the zero-padding added to both sides of the input. Max-pooling layers
are parameterized as kxk-maxpool-s-p, where s is the spatial stride and p indi-
cates the implicit zero padding to be added on both sides. Batch normalization
layers are parameterized by d-bn, where d is the number of features in the layer.
Dropout layers are parameterized by pr-dp, where pr is the dropout probability
value. Fully connected linear layers are parameterized by d-fc, where d represents
the dimensionality of the output space. Top: Simple convolutional network for
CIFAR-10. Bottom: All-Conv Net for CIFAR-100.

deviation σg ∈ {5, 15, 25} and µg = 0. For the Gaussian blur, we instead use a
standard deviation σb ∈ {0.25, 1.25, 2.25}. For both CIFAR-10 and CIFAR-100,
the size of the blur kernel is set to 4 times the blur standard deviation σb.

4.3 Network Architectures

Due to the larger number of classes to separate from between CIFAR-10 and
CIFAR-100 datasets, which accounts for a greater level of complexity in classi-
fying each input image, we used two different network architectures, specifically:
a simple convolutional neural network with two pairs of convolutional and max
pooling layers, followed by a fully connected layer with a final 10-way softmax
layer for CIFAR-10, and a fully-convolutional network that consists of only con-
volutional layers with a final 100-way softmax layer for CIFAR-100. We adopt
the term ”pre-trained” or ”baseline” network to refer to any network that is
trained on undistorted images.

The architecture for our simple convolutional network, which serves as our
baseline model for CIFAR-10 dataset, is very similar to the original LeNet one
[13]. The first convolutional layer has 32 filters and kernel size equal to 3, while
the second one has 16 filters, with the same kernel size. Both max pooling layers
have a kernel size of 2. The fully connected dense layer has 128 neurons, with
a dropout probability of 0.5. ReLU nonlinearities are adopted after every batch
normalization operation, and as activation functions for the classifier neurons in
the fully connected dense layer.
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Our version of the fully-convolutional network is based on the All-Conv Net
proposed by Springenberg et al. [21], with the addition of batch normalization
units after each convolutional layer, and is used as our baseline model for the
CIFAR-100 dataset. A summary of both networks architectures can be observed
in Figure 3.

For what concerns the training details of the baseline models, we adopted the
cross entropy loss for both models, minimized through Adam optimizer, with the
standard hyperparameters listed in Adam’s paper [11]. Model fitting was done in
an validation-based early stopping setting, adopting a patience hyperparameter
of 15 epochs.

4.4 Clustering

The last experimental setting is related to the clustering method, mentioned in
Section 3.4. We decided to experiment different approaches, varying on which
features to use to cluster each image and on which distance metric to adopt to
compare the data points. For what concerns the features, we decided to cluster
either directly on the pixels, where each feature is one of the 32x32 pixels of the
image, or on the one-dimensional collapsed version of the baselines’ feature maps
activations, at the output of the low-level convolutional layers. With respect to
the distance metric, only Euclidean distance [1] was considered when features
where represented by image pixels, whereas also Hamming distance [23] was
tested for the convolutional feature maps case. In case Hamming distance was
used, feature maps activations were first converted into binary vectors, setting
each element to 1, whenever the corresponding value was greater than 0, whereas
set to 0 whenever this condition was not met.

5 Results and Discussion

5.1 Noise impact on baseline model

Before focusing our attention to the effectiveness of the proposed transfer learn-
ing technique, it is important to demonstrate whether, for a network trained
on undistorted images, only some of the convolutional filters in the network are
susceptible to noise or blur in the input image. As we can see in Figure 4, it
is clear how certain convolutional filters are far more susceptible to input dis-
tortions than others. Considering for example only the first convolutional layer,
in our baseline model trained on CIFAR-10 data, and applying our associative
method described in Section 3.2, we can see how some activations always tend
to be ranked higher by our voting technique. This demonstrates that their cor-
responding convolutional filters are far more sensitive to input distortion than
others. Restoring the activations of only the filters that are more susceptible to
input distortions can reduce the time and computational resources involved in
enhancing DNN robustness to such distortions.

Interestingly enough, this set of convolutional filters vulnerable to input dis-
tortion, seems to be independent from the type of distortion. Indeed, even though
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Fig. 4: Distortion susceptibility of convolutional filters in the first convolutional
layer of both baseline models, when tested on clean and blurred image pairs
respectively from CIFAR-10 and CIFAR-100. Similar results can be observed in
case of AWGN distortion.

the Borda counts are slightly different between the blur and AWGN distortions,
the ranking of the most susceptible filters tends to be independent of the type of
distortion applied. In fact, if we looked at the rankings produced in the AWGN
case compared to the blur one, we could see how the filters that were most af-
fected by noise in the AWGN case, tend to be the same filters in the blurring
case, with the exception of a few elements. In fact, considering only the 25% of
the most sensitive feature maps of the first convolutional layer, for both models,
6 out of 8 times there is a match in the selected filters, for the CIFAR-10 case,
while a 19 out of 24 ratio for the CIFAR-100 one. This is an interesting result:
since the set of filters to fine-tune is shared among the two types of distortion,
by simply fine-tuning the baseline models with distorted images from one of the
two, the network could end up being robust to the other type of distortion too.
This investigation could be subject of future work.

5.2 Filters fine-tuning on target dataset

In this section, we evaluate the proposed approach of fine-tuning baseline mod-
els with distortion affected inputs, from the two datasets and architectures men-
tioned in Section 4. For the reproducibility of the results of the experiments, it is
important to note that the classification performance is evaluated independently
for each type of distortion. Furthermore, for the baseline trained on CIFAR-10,
all shown results are obtained with the fully connected layer unchanged, mean-
ing no fine-tuning was performed on the classifier’s weights. We did so, because
we wanted to evaluate the impact of our technique on the representation learn-
ing capabilities of the network, rather than just measuring the improvement in
terms of accuracy. Nonetheless, the reader should be aware that, when perform-
ing transfer learning, it may also be necessary to retrain a new classifier from
scratch, due to differences between source and target tasks.

Improving classification accuracy of the baseline model One of the major
objectives of our proposed transfer learning technique is to improve the classifi-
cation performance of the baseline model when tested on noisy samples. Figure
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5 summarizes the results of the conducted evaluation of such technique, when
only 25% of the convolutional filters of each of the corresponding convolutional
layers are fine-tuned. For the CIFAR-10 baseline, convolutional filters are fine-
tuned in both convolutional layers simultaneously, while in the All-Conv Net,
trained on CIFAR-100, only early convolutional layers are corrected. Precisely,
only the first three convolutional layers. This because, as confirmed by [2], the
best performance is achieved correcting filters in early convolutional layers of
the network. In fact, as we go deeper in the network, accuracy diminishes for
correcting a fixed percentage of convolutional filters, which indicates that, as
we go deeper in the network, all the convolutional filters become more or less
equally susceptible to distortion in the input data.

The results in Figure 5, which plot classification accuracy as a function of the
number of noisy training points used to fine-tune the baseline models, clearly
demonstrate how, for small training set sizes, fine-tuning only the most affected
convolutional filters yields a better classification performance than fine-tuning
all the filters in the selected layers, or fine-tuning only the filters that are least
susceptible to input distortion, confirming our hypotheses. Instead, for larger
dataset sizes, fine-tuning the entire set of filters in the considered layers proves to
be more convenient, as expected. These conclusions are supported by the graphs
at columns 1 and 3 of the tabular representation in Figure 5: independently
of the type of noise and network architecture, a moderate level of distortion
- as the ones considered in such configurations - is efficiently handled by our
technique. In fact, for limited amount of training noisy samples used to fine-
tune the baseline networks, the ”most” configuration is able to outperform the
other two, considerably reducing the computational requirements to fine-tune all
the convolutional filters in the layer. Instead, when a larger set of noisy samples
is available, fine-tuning all the convolutional layers proves to be the most efficient
solution.

For what concerns the scenarios that involve the smallest amount of distor-
tion that we studied, which we did not include in the plot for spacing restrictions,
other considerations need to be made. In these settings, it is evident how our
proposed technique is meaningless, if not even detrimental. For such limited lev-
els of distortion, fine-tuning the baseline models with distorted samples is not
necessary, because the dataset shift problem, first mentioned in Section 1, is es-
sentially nonexistent, as the the difference between source and target images is
fundamentally absent. If we looked at the plots, we would see that the improve-
ment would be in the order of an ideal 2% margin, which would not justify the
need for such transfer learning process.

On the other hand, scenarios that involve a substantial level of distortion, as
the ones illustrated on the right hand-side of Figure 5, present totally different
issues. When the input samples are seriously corrupted, two outcomes occur: 1)
The ”all” configuration consistently outperforms the other two configurations
(e.g. CIFAR-100 with blur distortion); 2) The ”all” configuration needs fewer
noisy training samples to surpass the ”most” configuration, with respect to the
”central” level of image distortion that we previously discussed (e.g. CIFAR-100
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Fig. 5: Fine-tuning effects on the classification performance of noisy inputs, as a
function of the number of training distorted images used to perform such fine-
tuning. For each plot, three different configurations were considered: (1) most :
fine-tuning is performed only on the 25% of the layer convolutional filters most
susceptible to image distortion; (2) least : fine-tuning is performed only on the
25% of the layer convolutional filters least susceptible to image distortion; (3)
all : fine-tuning is performed on all convolutional filters of the layer, indepen-
dently from their susceptibility to image distortion. For the plots in the first
two columns, fine-tuning was done on the baseline model trained on CIFAR-10
undistorted images, correcting the convolutional filters from both convolutional
layers of the network. For the plots in the last two columns, fine-tuning was
performed on the baseline model trained on CIFAR-100 pristine samples, cor-
recting the convolutional filters only from the first three convolutional layers of
the network.

with AWGN distortion). What these configurations results clearly imply is that
the higher is the level of distortion, the greater is the number of parameters
that need to be corrected to account for such conspicuous corruption. Limiting
the number of filters to retrain, would then be too high of a constraint for the
baseline model to be able to accordingly adapt to classify so distorted samples.
However, it is important to point out that the downsides of the proposed ap-
proach on this high level values of distortion is relevant because of the input
data resolution. Being CIFAR datasets images so little, the effects of the corrup-
tion on the images is substantial. On higher resolution samples (e.g. ImageNet),
severely larger corruption intensities would be needed to incur in the drawbacks
that we have just presented.

To further improve the classification performance of the baseline model, it
is important to note that, in order to maximize the effectiveness of the pro-
posed technique, fine-tuning a subset of the most affected filters from multiple
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layers proved to be more successful than fine-tuning only a single layer of the
network at a time. This result proves to be intuitive, as a larger amount of
parameters is fine-tuned, enabling a potentially greater level of correction capa-
bilities on the network. Nonetheless, the number of parameters is still limited,
with respect to fine-tuning all the convolutional filters of the considered layers,
causing our proposed technique to outperform the usual fine-tuning of the entire
layer parameters, in the aforementioned circumstances, while also limiting the
computational requirements to perform the fine-tuning.

In conclusion, it is also relevant to point out that, as mentioned at the begin-
ning of the section, we decided to fine-tune only one fourth of the convolutional
filters present in each convolutional layer. This decision was not based on a thor-
ough assessment of how many filters to fine-tune per layer and we leave this task
as a subject for future work. A starting point could be to fine-tune only the set
of convolutional filters whose EMD metric is above a certain threshold. By doing
so, we would make sure to fine-tune only the filters who account for the greatest
degradation in performance, and not include also those who happen to be in the
considered 25% but do not vary as much as the other ones at the top of the
ranking. Nonetheless, it is clear how our convolutional filters ranking methodol-
ogy, detailed in Section 3.2, proves to always be beneficial. In fact, fine-tuning
the top 25% of the convolutional filters most susceptible to input data distortion
- according to our ranking - is consistently better than retraining the bottom
25%. Evidence on this remark can be observed in every configuration depicted
in Figure 5.

Reducing the covariate shift effects As the last intrinsic result of our trans-
fer learning technique, we recall that one of the fundamental objectives of our
method was to overcome the problem of covariate shift, first mentioned in Sec-
tion 1.1. This phenomenon was said to be responsible for the degradation in
performance of our baseline models when tested on distorted images. The reli-
able performance of the fine-tuned models to several noise intensities suggests
that the fine-tuned networks learned to be invariant to such noises. Inspired by
[22], we replicated their empirical evaluation methodology to assess such feature
invariance to input distortion. In detail, we look at the similarity in activations of
different layers of both the baseline and the fine-tuned All-Conv Net model, when
sharp and noisy versions of the same image are given as input to the network.
Specifically, we consider the feature maps at the output of the first three con-
volutional layers in the All-Conv networks, being them the only convolutional
layers that were subject to our fine-tuning approach. We convert the feature
vector at every location into a binary string representing whether each feature
channel had a positive or zero response. In Figure 6, we visualize Hamming dis-
tances between corresponding binary strings produced from a sharp and AWGN
distorted versions of the same example image, for the baseline All-Conv model,
and the models fine-tuned on images affected by AWGN, both when the fine-
tuning was done on all convolutional filters per layer, or only the most affected
ones. What we can assess from the heatmaps in the figure is that the baseline
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Fig. 6: Disparity between corresponding layer activations on sharp and noisy
versions of an example image. Each heat-map represents the Hamming distance
between binarized feature vectors (i.e., if each channel is positive or zero) at
corresponding locations in the sharp and Gaussian distorted inputs. We visual-
ize these distance maps for the first three convolutional layers in the All-Conv
Net architecture, comparing three different models: (a) Baseline, trained on
undistorted images; (b) Network where all the filters in the first three convo-
lutional layers where fine-tuned with 5000 Gaussian distorted training images
from CIFAR-100; (c) Network where only the top 25% of the convolutional fil-
ters most susceptible to Gaussian distortion in the first three convolutional layers
where fine-tuned with 5000 Gaussian distorted training images from CIFAR-100.
The numbers between the round brackets indicate the element-wise sum of each
element in the corresponding heat-map: the higher the number, the larger is the
disparity between the matching layer activations on the sharp and noisy version
of the example image. We see that model where only the filters most susceptible
to Gaussian distortion where fine-tuned produces feature activations that are
relatively invariant to the presence of Gaussian noise in the input image.

model produces different activations on the sharp and noisy inputs, at all layers.
In contrast, the fine-tuned models are able to achieve a reasonable amount of
noise invariance, with low distances between sharp and distorted activations in
all three fine-tuned layers, with the model fine-tuned only on the most affected
convolutional filters being slightly more invariant to image distortion than the
one where all the filters were fine-tuned. This result is in line with our hypotheses
and positively exhibits the reasoning behind our assumptions.

5.3 Non associative ranking

To complete our discussion about the evaluation of the proposed methodology,
we evaluate the non associative technique proposed in Section 3.4. As previously
stated, this method is meant to provide a solution to the case in which the (clean,
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Layer 1 Layer 2 Layer 3

Distance Pixels FTM Pixels FTM Pixels FTM

Euclidean 18/24 14/24 13/24 13/24 19/24 19/24

Hamming - 13/24 - 11/24 - 17/24

Table 1: Comparison of the number of matching convolutional filters, per layer,
between the associative ranking and several configurations of the non associative
ones. All the non associative rankings, and the associative one used as ”ground
truth”, are based on the All-Conv Net baseline model, trained on undistorted
images from CIFAR-100. All three convolutional layers have 96 filters each, so
the top 25% of each layer only considers 24 filters. The noisy images that are used
to perform the comparison between clean and noisy activations were perturbed
with AWGN with distortion severity σ = 15 (comparable results are obtained
when blurring distortion is in place). Pixels indicates image pixels were used
as features for the clustering method, whereas FTM when the collapsed ver-
sion of the baseline feature maps activations - at the output of corresponding
convolutional layer - were adopted.

noisy) image pair, for each training image, is not available. We presented a way
to overcome this problem, relying on the so called exemplars.

Table 1 shows, for the first three convolutional layers in the All-Conv Net
baseline model, trained on CIFAR-100, how many filters identified by the dif-
ferent configurations of our non associative approach actually match the set of
filters identified by the associative technique.

As we can see from the table, the numbers of matching filters is definitely
promising, with the configuration that uses image pixels being the one that -
overall - was able to find the ranking closest to the associative one. It is impor-
tant to note that, even though such lists are produced as rankings in the first
place, the actual ordering is not relevant, because each of them simply represents
a set of convolutional filters that need to be fine-tuned. Because of this, the fact
that a given index value comes later in the ranking from the non associative
approach than the associative one, it is not going to have an impact on the fine-
tuning performance. Therefore, the highest the number of matching indices, the
better will be the fine-tuning. This result guarantees that fine-tuning the con-
volutional filters indicated by this technique will actually achieve approximately
the same performance of our associative approach, assuring the applicability of
our methodology to every empirical setting, associative or not.

6 Conclusion

Deep neural networks trained on uncorrupted images perform poorly when tested
on distorted images affected by image blur or additive white Gaussian noise.
Evaluating the effect of Gaussian blur and AWGN on the activations of convo-
lutional filters trained on undistorted images, we observe that some of the filters
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in each convolutional layer of the CNN are far more susceptible to input distor-
tions than others, and prove that this set of filters is nearly independent from
the distortion applied to the input data.

We propose a novel transfer learning technique to assess the susceptibility of
convolutional filters to input data distortion and use this procedure to identify
the filters that contribute the most to the drop in classification performance that
occurs when a DNN, trained on undistorted images, is tested on perturbed ones.
We demonstrate how our assessment is also applicable to situations in which
the correspondence between clean and noisy versions of the same image is not
available, providing a solution to scenarios that related works in the literature
would fail to assist.

We design a new way to perform transfer learning, moving on from the usual
fine-tuning of all convolutional filters of selected layers of the DNN, improving
the robustness of the network against image distortions by simply fine-tuning
only the most distortion-susceptible convolutional filters of the model, while
leaving the rest of the pre-trained (on undistorted images) filters in the network
unchanged. The resultant DNN models outperform DNNs fine-tuned with the
usual fine-tuning approach, when labeled data in the noisy domain is limited, and
achieves a comparable performance when training data in this setting is vastly
available. Additionally, our proposed technique requires training a significantly
lower number of parameters than the conventional fine-tuning approach - that
would be computationally unfeasible on very large networks - or than ad hoc
correction units that are added at the output of the most distortion susceptible
filters in each convolutional layer, that would exponentially increase the num-
ber of parameters to train. Such results are achieved with faster convergence
in training while still accomplishing the task of learning features invariant to
distorted input data.

References

1. Anton, H.: Elementary Linear Algebra. Wiley & Sons (1993)

2. Borkar, T.S., Karam, L.J.: Deepcorrect: Correcting DNN models against image
distortions. CoRR abs/1705.02406 (2017)

3. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition. pp. 248–255 (June 2009)

4. Dodge, S.F., Karam, L.J.: Understanding how image quality affects deep neural
networks. CoRR abs/1604.04004 (2016)

5. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. International Journal of Computer
Vision 88(2), 303–338 (Jun 2010)

6. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science
315(5814), 972–976 (2007)

7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

8. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild
with convolutional neural networks. CoRR abs/1412.1842 (2014)



22 M. Vendra et al.

9. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image
descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 664–676 (Apr 2017)

10. Kaufman, L., Rousseeuw, P.: Clustering by Means of Medoids. Delft University
of Technology : reports of the Faculty of Technical Mathematics and Informatics,
Faculty of Mathematics and Informatics (1987)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

12. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto (2009)

13. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE. pp. 2278–2324 (1998)

14. Lippman, D.: Math in Society. CreateSpace Independent Publishing Platform
(2017)

15. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., Riedmiller, M.A.: Playing atari with deep reinforcement learning. CoRR
abs/1312.5602 (2013)

16. Moreno-Torres, J.G., Raeder, T., Alaiz-RodŕıGuez, R., Chawla, N.V., Herrera, F.:
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