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ABSTRACT

We present a new approach to the analysis of time symmetry in light curves, such as those in the X-ray at the
center of the Scorpius X-1 occultation debate. Our method uses a new parameterization for such events (the
bilogistic event profile) and provides a clear, physically relevant characterization of each event’s key features.
We also demonstrate a Markov chain Monte Carlo algorithm to carry out this analysis, including a novel
independence chain configuration for the estimation of each event’s location in the light curve. These tools
are applied to the Scorpius X-1 light curves presented in Chang et al., providing additional evidence based on
the time series that the events detected thus far are most likely not occultations by trans-Neptunian objects.
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1. INTRODUCTION

As new surveys accumulate vast databases of astronomical
light curves (Hodapp et al. 2004; Starr et al. 2002), the identifica-
tion and analysis of events in these time series are becoming the
increasingly important tasks (e.g., Preston et al. 2009; Stewart
2009). One of the topics of such analyses is examining the sym-
metry of such events. Traditionally, symmetry has been analyzed
by examining the skewness of each event, sometimes after stack-
ing the light curves (for examples, see Jones et al. 2006, 2008).
However, this approach is not satisfactory for X-ray light curves
due to the small number of counts involved, particularly during
suspected occultation events. Additionally, the nonparametric
approach of examining skewness has significantly lower power
than a parametric analysis with a well-parameterized model, es-
pecially considering the large mean-squared errors of common
skewness estimators (see Joanes & Gill 1998). This means that,
for a given false-positive rate, a well-designed parametric anal-
ysis will have a lower false-negative rate than a nonparametric
approach.

The debate over the nature of the observed Scorpius X-1
events has raged in the literature since 2006. It began with the
publication of Chang et al. (2006), which claimed the detection
of at least 58 occultations of Scorpius X-1 by small (diameter <
100 m) trans-Neptunian objects (TNOs). The size distribution
of these small TNOs bears important clues of the dynamical
evolution of the early solar system (e.g., Pan & Sari 2005;
Kenyon & Bromley 2004), yet the vast majority of the TNO
population is still way beyond the limit of direct observation
by even the largest ground-based telescopes. Occultation of
background stars by TNOs is the only present observational
method able to reach the smaller objects (Bailey 1976; Lehner
et al. 2009; Roques et al. 2006; Bickerton et al. 2008; Bianco
et al. 2009). This finding was challenged later that year by Jones
et al. (2006). The latter group claimed that the observed events
were unlikely to be occultations by TNOs because the stacked
profile for these events was asymmetric. However, this analysis
was not entirely satisfactory from a statistical perspective. It

was performed on shifted and stretched versions of the original
data and did not take into account the discrete nature of the
observations, thereby failing to use all available information
from the data. The stretching we refer to is the normalization of
event widths using the full widths at half-maxima (FWHMs)
from Gaussian fits, which can distort results by combining
observations with fundamentally different timescales. However,
the most important statistical issue is that the analysis of Jones
et al. (2006) provided no measures of uncertainty or significance
with regard to asymmetry.

Chang et al. responded to this analysis in Chang et al. (2007),
wherein they claimed that they had identified 12 events in
the Scorpius X-1 data that appeared to be actual occultation
events, while acknowledging that most dip events found thus
far were most likely artifacts. However, this claim was chal-
lenged again by Jones et al. (2008). Jones et al. presented
evidence that the observed events were due to charged par-
ticle events in the detectors. Their argument relied again, in
part, on the claim that the observed events were not tem-
porally symmetric. Unfortunately, their analysis had not pro-
ceeded beyond a simple stacking-based approach (analogous to
Jones et al. 2006), so the validity of these conclusions remains
uncertain.

Most recently, Liu et al. (2008) presented a new analysis of
72 ks of data of Sco-X1 taken in the year 2007. Liu et al. con-
cluded that no significant dips, which might be real occultation
by 60–100 m TNOs, were observed.

In this paper, we introduce a new parameterization for uni-
modal events in light curves, called the bilogistic event profile.
This parameterization can describe a wide range of possible
events and naturally yield estimates of physically interesting
quantities such as the FWHM of the event. Additionally, our pa-
rameterization can be applied in both the Poisson and Gaussian
regimes.

Additionally, we demonstrate a computational approach to
inference with the bilogistic event profile using Markov chain
Monte Carlo (MCMC) methods. This includes the introduction
of a novel approach to the construction of a proposal distribution
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Figure 1. Bilogistic event profile for c = 50, α = 40, k1 = k2 = 1, and τ = 50.
Varying h1 and h2 from 1 to 16.

Figure 2. Bilogistic event profile for c = 50, α = 40, h1 = h2 = 8, and τ = 50.
Varying k1 and k2 from 1 to 8.

for the center of the event, improving the efficiency of our
simulations.4

Finally, we apply our parameterization and computational
approach to the occultation events identified in the Scorpius X-1
Rossi X-Ray Timing Explorer (RXTE) data in Chang et al. (2006)
and Chang et al. (2007). Our analysis lends further support to
the argument that the events identified thus far are instrumental
in origin, as suggested by Jones et al. (2006) and Jones et al.
(2008).

In Section 2, we describe the details of our data model for the
Scorpius X-1. We present the details of our MCMC approach in
Section 3. The results of applying our method to simulated data
are discussed in Section 4. Our primary scientific results on the
Scorpius X-1 light curves comprise Section 5. We conclude the
paper in Section 6.

4 In Metropolis–Hastings-type MCMC methods, each step of the Markov
chain consists of two stages. In the first, a new value for the variable is
generated from a proposal distribution with a known density. Then the
proposed value is accepted or rejected as the next value of the chain with a
certain probability (calculated using the target and proposal densities). By
constructing a proposal distribution that is similar to the target distribution we
are attempting to draw from with our MCMC method, we are able to improve
the efficiency of our algorithm.

Figure 3. Simulated light curves for symmetric events. For the top event,
h1 = h2 = 5 and k1 = k2 = 2. For the bottom event, h1 = h2 = 1.5 and
k1 = k2 = 1.

2. MODEL

2.1. Context and Specification

We have a time series of counts {yt }, t ∈ {0, . . . , T − 1}. We
assume that each count is distributed as an independent Poisson
random variable, conditional on the source intensity at time t:

yt ∼ Poisson(λt).

We also believe that an event of some kind has occurred in
this time series. For the sake of this discussion, we assume that
this event is characterized by a dimming of the source (e.g.,
a transit). However, this framework can be extended trivially
to events character by increased intensity (e.g., supernovae) or
the high-count regime (with a Gaussian distribution replacing
the Poisson). The key constraint is that we know a priori the
sign of the expected deviation from the baseline intensity. We
characterize the intensity λt as

λt = c − α g(t; τ, θ ),

where limt→∞ g(t; τ, θ ) = limt→−∞ g(t; τ, θ ) = 0 and
sup

R
g(t; τ, θ ) = g(τ ; τ, θ ) = 1. We will call g(t; τ, θ ) the

event profile, as it characterizes the pattern of intensity changes
throughout the event. The parameter τ is the time index about
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Figure 4. Histogram of posterior distributions of c and α for simulated events.
For the top event, h1 = h2 = 5 and k1 = k2 = 2. For the bottom event,
h1 = h2 = 1.5 and k1 = k2 = 1.

which the event is hypothesized to be time-symmetric, and θ
is a vector of parameters characterizing the event. c sets the
baseline intensity of the source, and α sets the peak size of the
deviation from the baseline intensity during the event. All of
these parameters must be estimated from the data.

Putting all of these points together with the log-likelihood for
the model, we obtain

�(c, α, τ, θ; y) =
T −1∑
t=0

[yt ln (λt ) − λt ] + const. (1)

Following the Bayesian approach, we can express the pos-
terior probability as a function of the likelihood and the prior
probabilities as

p(c, α, τ, θ | y) ∝ �(c, α, τ, θ; y) × p(c, α, τ, θ ). (2)

Having obtained the posterior of our parameters (up to a
normalizing constant), we have all the information needed
to make inferences about the parameters of interest. We can
characterize our inferences about the locations of parameters
via their posterior means and medians. Our uncertainty about
these parameters can be characterized by 68% posterior intervals
or posterior standard deviations. However, it still remains to
specify a functional form for the event profile g(t; τ, θ ).

Figure 5. Histogram of key symmetry-related parameters for simulated events.
For the top event, h1 = h2 = 5 and k1 = k2 = 2. For the bottom event,
h1 = h2 = 1.5 and k1 = k2 = 1.

2.2. Bilogistic Event Profile

The choice of the event profile g(t; τ, θ ) is quite important
to this analysis. One must achieve the proper balance between
parsimony in parameterization and giving the model enough
flexibility to fit a wide range of event shapes. To that end, we
introduce the bilogistic event profile:

g(t; τ, h1, h2, k1, k2) = 1 + e
−ht
kt

1 + e
|t−τ |−ht

kt

(3)

ht =
{
h1 t < τ
h2 t � τ

(4)

kt =
{
k1 t < τ
k2 t � τ.

(5)

This event profile is characterized by four parameters (in
addition to the location parameter τ ). The first two parameters
(h1 and h2) characterize the (approximate) half-maxima of the
event’s amplitude represented as deviations from the event’s
center; we will refer to them as the “half-life” parameters.
This holds only approximately because of the correction for

continuity in the numerator (the e
−ht
kt term), which ensures
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Figure 6. (k1 − k2) vs. (h1 − h2) for simulated events. For the top event,
h1 = h2 = 5 and k1 = k2 = 2. For the bottom event, h1 = h2 = 1.5 and
k1 = k2 = 1.

that the event profile is continuous at time τ . Thus, (h1 − h2)
characterizes the departure of our event from symmetry in terms
of the half-maxima, and (h1+h2) characterizes the (approximate)
FWHM for our event.

The second set of parameters (k1 and k2) characterizes the
rate at which the intensity changes during our event; we will
refer to them as the “curvature” parameters. The first parameter
(k1) characterizes how rapidly our source’s intensity diminishes
at the beginning of our event, and the second parameter (k2)
characterizes how rapidly the intensity returns to the baseline
at the end of our event. If k1 � h1 and k2 � h2, as is often
the case, the curvature parameters can be viewed as pivoting
our event profile through the half-intensity points set by h1
and h2, with higher values corresponding to sharper changes in
intensity. These features of the bilogistic event profile can be
seen in Figures 1 and 2, where we fix one set of parameters (h1
and h2 or k1 and k2) and vary the other.

To perform inference using this model, we first consider it in
a Bayesian light, assuming flat priors on all parameters except τ .
We place one restriction on τ a priori. We assume that the event
is centered within the interior of our light curve. In this context,
we take interior to mean far enough from the boundaries that
the event is contained within our light curve. This assumption
is reasonable for our analysis because the light curves we are
working with have been extracted and preprocessed to contain
one complete event each. Thus, we impose a prior probability
of zero on values of τ within m milliseconds of the edge of
the light curve for our analysis; for the analysis presented here,

Figure 7. Distributions of posterior medians of (k1 −k2) and (h1 −h2) for 1000
simulated events (per plot). For the top plot, h1 = h2 = 5 and k1 = k2 = 2. For
the bottom plot, h1 = h2 = 1.5 and k1 = k2 = 1.

we set m = 10 milliseconds. This assumption also improves
the computational properties of our posterior simulations by
preventing them from becoming “stuck” at values of the τ
parameter that are near the ends of the light curve. The end
result of these restrictions is that our prior on τ is uniform on
the set [m, T − m].5

We can then use a Markov chain Monte Carlo (MCMC)
technique (the Metropolis–Hastings algorithm) to draw from the
posterior distribution of our parameters. From these draws, we
can calculate quantities such as the posterior median and 68%
posterior intervals for (h1 − h2) and (k1 − k2) to characterize
the deviation of our events from symmetry and our uncertainty
about these properties. For an excellent introduction to the use
of the Metropolis–Hastings algorithm for statistical inference,
please consult Chib & Greenberg (1995).

3. COMPUTATIONAL DETAILS OF POSTERIOR
SIMULATIONS

Although the model presented above is quite appealing, the
resulting posterior distribution for our parameters of interest is

5 However, for other analyses of time symmetry in events (such as the
analysis of longer duration events that are not fully contained in a light curve),
these assumptions could be relaxed.
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Figure 8. Distribution of normalized sample autocorrelations for split light
curves from Chang et al. (2007) with standard normal density.

not analytically tractable. Thus, to make inferences about these
parameters, we simulate a series of samples from their joint
posterior distribution. We use a blocked Metropolis–Hastings
algorithm for these simulations. This means that, instead of
drawing new values for all seven of our parameters at once and
accepting or rejecting them based on the Metropolis–Hastings
rule, we vary only a subset of the parameters at time, holding
all others fixed. The blocks used are: (1) τ , (2) c and α, and
(3) h1, h2, k1, and k2. So, for each iteration of our algorithm,
we first draw a new value of τ from our proposal distribution
and choose whether to accept it based on the Metropolis–
Hastings acceptance probability. This acceptance probability
is calculated holding the values of all other parameters (c, α, h1,
h2, etc.) fixed. Next, we draw new values of c and α from
our proposal distribution for these parameters and calculate
an analogous acceptance probability. Finally, we perform a
similar procedure on the shape parameters (h1, h2, k1, and
k2). Blocking in this way allows us to take advantage of the
structure in the model in constructing our simulation algorithm,
improving its efficiency. For more information on blocked
Metropolis–Hastings methods, please consult Section 6.2 of
Chib & Greenberg (1995).

3.1. Initialization

We look to the data to obtain starting values for our MCMC
algorithm. The first step is to obtain a smoothed version of
our signal yt, which we will denote as ỹt . This is generated by
taking a centered moving average of the original signal yt. For
the analyses presented here, a window of 5 ms wide was used
(for light curves sampled at 500 μs increments), although this
can be modified. The important point on the selection of the
window is that it should be narrow enough to localize the event
while still performing some noise reduction. If the window is
too wide, our smoothed light curve will not capture the structure
of the event; as a result, it would not be useful in determining
initial values for the magnitude (α) or in determining the location
of the event in the light curve. However, if the window is too
narrow, it will not well smooth the light curve. As a result, our
initializations would be far noisier than necessary.

Using ỹt , we can construct our initialization values and a
proposal distribution for τ . Focussing on initialization first, we
set c0 = median(ỹt ) and α0 = c0 − mint (yt ). We use a robust
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Figure 9. 68% posterior intervals and medians for FWHM (h1 + h2) for Chang
et al. (2007) occultation events. Second plot is zoomed.

measure of the typical baseline rate (the median). The motivation
for this initialization of c is that, if the event is brief relative to the
duration of the light curve and our smoothing window is not too
wide, our smoothed light curve should be near the baseline count
rate c for most of the times. In contrast, if we simply used the
overall mean, it would be contaminated by the event of interest.
Our initialization for α is relatively straightforward; we take
our estimate of the baseline rate (c0) and subtract the minimum
observed count rate to obtain an estimate of the magnitude of
our event.

To initialize h1 and h2, we take a similar approach. First,
we assume that a symmetric initialization will be an accept-
able starting point for our analysis. We then calculate h0 =
1
2 #

{
t : yt <

median(ỹt )+mint (yt )
2

}
and set h1 and h2 to h0.6 Based on

the above discussion of c0 and α0, this approach to initializing h1
and h2 appears quite natural. We are using our initial estimates
of c and α to estimate the FWHM of our event and attributing
equal parts of this time to h1 and h2. Finally, we initialize k1 and
k2 manually. Our posterior simulations were quite insensitive to
the initializations of these parameters; values between 1 and 20
yielded similar results.

6 # is the cardinality operator, which gives the number of items in the given
set.
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Figure 10. 68% posterior intervals and medians for (h1 − h2) for Chang et al.
(2007) occultation events. Second plot is zoomed.

3.2. Metropolis–Hastings Steps

Keeping in mind the prior discussed in Section 2.2, we can
obtain a proposal distribution for τ using the procedure outlined
in Algorithm 1.

Algorithm 1 Construction of Proposal Distribution for τ

Require: ỹt for t ∈ {1, . . . , T }, m ∈ N, p > 0, ε > 0
w̃t ← (maxt (ỹt ) − ỹt )p

w̃t ← w̃t + ε
if t < m or (T − t) < m then

w̃t ← 0
end if
wt ← w̃t∑

t w̃t

Calculate points along the cumulative distribution function
(CDF) as pt = ∑

s�t ws

Calculate the CDF F (t) via the linear interpolation of {pt }
Calculate the quantile function q(p) via linear interpolation
Calculate the density function f (t) as the derivative of F (t)
for t /∈ N

At the conclusion of this procedure, we have the density,
cumulative density, and quantile functions for our proposal
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Figure 11. 68% posterior intervals and medians for (k1 − k2) for Chang et al.
(2007) occultation events. Second plot is zoomed.

distribution of τ . Through a series of numerical experiments, we
found that the values of p between 2 and 5 typically produced
the best proposal distributions; p was set to 4 in the subsequent
analyses. The ε term serves to ensure that all wt are nonzero,
avoiding an issue with the interpolation of our quantile function
(where a wt of zero leads to a vertical segment). We use
linear interpolation because it is the only spline method that
produces identical functions when the axes are exchanged. This
is vital in our application because we are conducting separate
interpolations of {pt } to obtain our CDF and its inverse (the
quantile function). If we had used any other type of polynomial
interpolation, the inverse of the calculated spline for the CDF
would not be another polynomial spline. However, with a linear
spline, the inverse of the interpolated function is simply another
linear spline. Thus, we can avoid complex calculations and
use standard interpolation routines to calculate our quantile
function. Our method of generating a proposal for our location
parameter is quite versatile, adapting naturally to the presence of
multiple potential events in the light curve. We will discuss some
potential applications of it beyond this analysis in Section 6.

The proposal generated by the above procedure allows us
to use an independence chain Metropolis–Hastings method for
τ . With this class of methods, the proposal distribution for the
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Figure 12. Light curve for event 2 from Chang et al. (2007).

Figure 13. Light curve for event 107 from Chang et al. (2007).

parameter being simulated is independent of that parameter’s
current value in the MCMC simulation. If the proposal is well
constructed, this can greatly improve the convergence properties
of the simulations; in the ideal case, we would make our proposal
the same as our posterior to maximize efficiency. However, for
such a procedure to be effective, one must have some prior
knowledge of the parameter’s posterior distribution. This is what
the above procedure extracts from the light curve.

Using the initial values and proposal distribution obtained
above, we construct proposal distributions for the parameters
of our model (excepting τ ). All proposals are Gaussian and are
thus characterized by their means and standard deviations:

(c, α) : μ = (c0, α0), σ =
(√

c0

T
,
√

α0

)
(6)

(h1, h2) : μ = (
hi−1

1 , hi−1
2

)
, σ =

(√
h0

2
,

√
h0

2

)
(7)

(k1, k2) : μ = (
ki−1

1 , ki−1
2

)
, σ =

(√
k0

2
,

√
k0

2

)
. (8)

With these proposals and the blocking scheme described previ-
ously, we have fully specified our MCMC simulation approach.
We now demonstrate its effectiveness with simulated data.

Figure 14. Histogram of posterior medians for (h1 −h2) for Chang et al. (2007)
occultation events.

Figure 15. Histogram of posterior medians for (k1 − k2) for Chang et al. (2007)
occultation events.

4. RESULTS ON SIMULATED SYMMETRIC EVENTS

To test our approach, we simulated two 500 timestep light
curves with symmetric events resembling those observed in the
Scorpius X-1 data. For the first simulation, we set c = 50,
α = 40, h1 = h2 = 5, k1 = k2 = 2, and τ = 300. For the
second, we narrowed the event by setting h1 = h2 = 1.5 and
k1 = k2 = 1. All other parameters remained as in the first
simulation. The resulting light curves can be seen in Figure 3.

The results of the posterior simulations are summarized in
Figures 4–6. From the first of these (Figure 4), we observe that
the posterior distributions for both the baseline count rate (c)
and the magnitude of the event (α) are centered around their
true values of 50 and 40, respectively, for the wider event. For
the narrower event, the posterior distribution for α is much wider
and exhibits significant skew; however, it still covers the true
value. The posterior on c is significantly more concentrated than
the posterior on α in both the cases, as we would expect; we
can use nearly every point in the light curve to infer the value
of c, but we can only use the points during the event to infer the
value of α. The posterior distributions of (h1 −h2) and (k1 −k2)
are considerably more diffuse, as Figure 5 demonstrates. These
posteriors are, however, centered near the true value of 0. The
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Figure 16. Events 4, 19, 41, and 66 from Chang et al. (2007).

relationship between the posterior distributions of these two
quantities can be seen from Figure 6. There appears to be a
significant negative dependence between the two deviations.

The properties of our estimates for symmetry-related pa-
rameters ((h1 − h2) and (k1 − k2)) are further supported by
a second set of simulations. Using each of the parameter values
given above, we simulated 1000 light curves and ran our algo-
rithm on each one. This allows us to quantify some frequentist
properties of our Bayesian estimators, such as the coverage
of our posterior intervals.7 The results of these simulations
are summarized in Figure 7. Both distributions appear cen-
tered around zero. Coverage properties are not perfectly

7 The coverage of an interval estimator is defined as the percentage of
intervals that will cover the true value of the parameter of interest across
repeated sampling. By checking the coverage of our key estimators, we can
quantify their classical error rates in addition to their Bayesian properties. For
further details, Wasserman (2004) provides an excellent reference in
Sections 6.3.2 and 11.9.

calibrated (as this is a Bayesian method), but they appear reason-
able. In our 1000 simulated light curves with wider events, 938
of our 68% posterior intervals for (h1 −h2) included the true pa-
rameter value of zero, as did 816 of our 68% posterior intervals
for (k1 − k2). Similarly, in our 1000 simulated light curves with
narrower events, 989 of our 68% posterior intervals for (h1 −h2)
included the true parameter value of zero, as did 808 of our 68%
posterior intervals for (k1 − k2). Thus, in both simulated cases,
our method provided greater than nominal coverage.

Overall, the results of this exercise with simulated events
serve to increase our confidence in the validity of our method.
We now apply our model and algorithm to the analysis of the
Scorpius X-1 dip events.

5. RESULTS ON SCORPIUS X-1 EVENTS

Using the above model, we analyzed all 107 events from
Chang et al. (2007). Each light curve consisted of 205
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Figure 17. (k1 − k2) vs. (h1 − h2) for event 90 from Chang et al. (2007).

equally spaced observations spanning approximately 100 ms
(each observation covers approximately 500 μs). All data
were assembled by Chang et al. from Rossi X-Ray Timing
Explorer/Proportional Counter Array (RXTE/PCA) archival
data spanning 1996 through 2002 (564 ks in all). According to
Jahoda et al. (2006), measurement errors should not be signifi-
cant given the data spacing and number of Proportional Counter
Units (PCUs) used by Chang et al. (2007). As both of these
groups also note, variation in the light curve should follow a
Poisson distribution—conditional on the source intensity. For
occultation events, this assumption should hold, as the count
rate at time t would be reduced from λ(t) to (1 − p)λ(t), where
λ(t) is the unobstructed count rate, and p is the proportion of
incident photons obstructed by the occulting body. However,
dead-time and coincidence-event effects, which could induce
autocorrelation in our data (thereby violating the assumptions
of our model), remain a concern.

To check for autocorrelation in our light curves, we split
each light curve into two series of 92 observations each, remov-
ing the central 21 observations. This removes the dip in each
light curve, allowing us to obtain estimates of the intrinsic au-
tocorrelation of the observations with systematic (event-driven
effects). For each of the resulting 214 series, we estimate the
first 10 autocorrelations. As noted in Box & Pierce (1970),
if our data are actually white noise, the kth autocorrelation is
distributed approximately as a normal random variable with a
mean of zero and variance n−k

n(n+2) for moderately large sample
sizes. Thus, to check for autocorrelation in our data, we first
normalize each estimated autocorrelation by dividing by its the-
oretical standard deviation. This yields 2140 observations (10
for each series), each of which should follow a standard normal
distribution if our light curves exhibit no autocorrelation. Their
distribution is plotted against the density function of a standard
normal in Figure 8. We also conducted a Kolmogorov–Smirnov
test8 to determine if we could reject the standard normal distribu-
tion for our normalized autocorrelations. We obtained a p-value
of 0.798, indicating that there is not sufficient evidence to reject
the standard normal distribution. Therefore, we conclude that
our data do not exhibit significant autocorrelation.

For each event, we ran our MCMC algorithm for 400,000
iterations, discarding the first 200,000 as burn-in.9 To run in a

8 For details on the Kolmogorov–Smirnov test, see Massey (1951).
9 In MCMC simulations, it is common to discard the earliest portion of the
results as burn-in to ensure that we are only basing our conclusions on draws
from the Markov chain’s stationary distribution (which is, by design, our
posterior).
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parallel Harvard’s Odyssey cluster, these runs required approx-
imately 400 s in total (approximately 43,000 CPU seconds).
Typical acceptance rates for the individual Metropolis–Hastings
steps were between 10% and 40%. The results of these simula-
tions are summarized in Figures 9–11.

From Figure 9, we see that the FWHM of a typical event from
Chang et al. (2007) is between 1 and 2 ms (with 68% posterior
probability). Events 2 and 107 appear to be the only significant
deviation from this pattern with FWHMs of approximately 3.5
and 6.5 ms, respectively. Visual inspection of these events (in
Figures 12 and 13) reveals that both are unusual in appearance.
Event 2 is characterized by a more gradual change in intensity
than most and appears to have two minima. Event 107 appears
to have two clear, significant minima.

The posterior intervals for (h1 − h2) in Figure 10 appear to
be relatively evenly scattered around zero. However, although
most of these intervals (90 of 107) cover zero, there is notable
tendency toward the negative values of (h1 − h2). This can
be seen in the posterior median, with 81 of the 107 posterior
medians below zero. Using a classical sign test of the hypothesis
that each posterior median is equally likely to be positive
or negative (Dixon & Mood 1946), we obtain a p-value of
9.4 × 10−8, indicating that there is a significant deviation from
symmetry in the relative half-maxima for this collection of
events. The sign test is conducted by first counting the number
of positive posterior medians. We then calculated the probability
of observing a result at least as far from an even split of positive
and negative medians as was observed, assuming that each
median is equally likely to fall above or below zero. In this
case, the p-value was calculated as 2 × P (X � 26|p = 1

2 ),
where X is the number of observed positive medians. Under
the null hypothesis that positives and negatives are equally
likely, X ∼ Bin(107, 1

2 ), so the preceding probability can
easily be calculated using standard techniques for the binomial
distribution. The pattern of negative deviations in (k1 − k2) can
also be seen in Figure 14; the deviation of this distribution from
the symmetric case (seen in Figure 7) is clear. Events 2 and
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Figure 19. |k1 − k2| vs. estimated diameter for 57 of the 58 events from Chang
et al. (2006) (58th event omitted due to anomalous nature).

107 appear somewhat anomalous in Figure 10; this is consistent
with the unusual structure of these events discussed above.

Finally, the posterior medians for (k1 − k2) are concentrated
below zero (90 of 107 are negative). Inspection of the posterior
intervals in Figure 11 indicates that very little posterior support is
typically found above zero (only 55 of the 107 intervals included
zero). A classical sign test on the posterior medians (as above)
yields a p-value of 3.5 × 10−13. This indicates that the observed
pattern of posterior medians is quite unlikely to occur if the true
distribution of posterior medians is evenly distributed above
and below zero. This is consistent with the findings of Liu et al.
(2008), as a negative value of (k1 − k2) indicates that the count
rate decreased more quickly than it increased. The pattern of
negative deviations in (k1 − k2) can also be seen in Figure 15;
the deviation of this distribution from the symmetric case (seen
in Figure 7) is again apparent.

The concentration of (h1 − h2) and (k1 − k2) across the
events indicates that the observed events are characterized by a
relatively rapid decrease in the count rate followed by a more
gradual return to the baseline level; that is, the typical event
profile is right-skewed. This pattern can be seen in Figure 16,
which shows four representative events from Chang et al. (2007).

It is interesting to note that (h1−h2) and (k1−k2) are typically
negatively correlated (when examining their joint posterior
distribution) for approximately symmetric events. An example
of this appears from our analysis of event 90 from Chang et al.
(2007). The joint posterior distribution of (h1 −h2) and (k1 −k2)
can be seen (as a scatterplot) in Figure 17. Two points are
immediately apparent from this figure. First, the deviation of
the distribution from the origin indicates that this event is most
likely asymmetric. Second, (h1 − h2) and (k1 − k2) are strongly
negatively correlated (r = −0.618). The intuition behind this
outcome is clear. We are allowing for two possible deviations
from symmetry in our model: deviations based on the half-
maxima (h1 − h2) and deviations based on the rate of change
(k1 − k2) in our source intensity. For very short events, we can
not be certain to which of these deviations we should attribute
the asymmetry of our event, as we can, to some extent, trade-

off between them. Our posterior distribution simply reflects this
trade-off.

It is also important to note that, when analyzed using our
method, the events identified as potentially noninstrumental in
origin by Chang et al. do not appear to deviate significantly from
the remaining events in the FWHM, half-maxima deviation, or
curvature deviation. This supports the conclusions of Chang
et al. (2007) and Liu et al. (2008) that the events detected thus
far (including those identified as possibly noninstrumental) are
most likely the result of dead-time effects and other instrumental
contamination, not TNOs occulting Scorpius X-1.

At the distance of the Kuiper Belt (∼ 40 AU) the size of
the objects given the width of the events is ∼ 50 m, and that

is close to the Fresnel scale, which is
√

λ D
2 , where λ is the

wavelength and D is the distance. We use λ = 0.3 nm (4 keV)
because most of the RXTE/PCA-detected photons from Sco X-1
are at this energy. As a result, these occultation events are
diffraction-dominated phenomena (see Roques et al. 1987 and
Nihei et al. 2007), and we expect that diffraction effects would
produce small count rate increases on either side of the dips.
According to Jones et al. (2006, 2008), these increases should
be detectable when combining information from all events, if
not for each individual event.

Also TNOs of this size are not expected to be spherically
symmetric (Roques et al. 1987) and therefore the resulting
occultation events in the light curves are not expected to be
time symmetric. However, for TNOs of the size of the Fresnel
scale or smaller the shape of the object does not translate into
asymmetry of the time series. Roques et al. (1987) has studied
light curves from different shaped TNOs and demonstrated that
when the effective size of the TNOs is smaller than the Fresnel
scale the resulting events in the light curve do not differ from the
light curves signatures of regularly spherically shaped TNOs.
The sizes of the 107 objects studied here are within the range
of the Fresnel scale, so some asymmetry on the light curves
should be manifested. Figures 18 and 19 show the measures
of asymmetry as a function of the size of the object for 57 of
the 58 events from Chang et al. (2006). As can be seen from
the figures, there is no clear relation between the estimated size
of an object and the level of asymmetry for its corresponding
event. This provides further evidence that the observed dips in
intensity do not correspond to TNO transit events, as Jones et al.
(2008) suggest.

6. CONCLUSIONS

Based on our analysis of the suspected Scorpius X-1 occul-
tation events, we conclude that there is significant evidence for
temporal asymmetry in these events. This finding is consistent
with the suggestion of Jones et al. (2008) that the observed dips
in brightness are due to dead-time effects. We also conclude
that the events identified in Chang et al. (2007) and Liu et al.
(2008) as possibly noninstrumental in origin are most likely not
occultations, as they previously found for the majority of their
proposed occultation events.

We also note that the approach presented herein can be applied
(with minor modifications) to the study of events in nearly any
light curve. Such studies need not be limited to examining the
symmetry of events, as the parameterization of our bilogistic
event profile and flexible Bayesian approach allow inference
to be made on quantities such as the FWHM. For example,
our approach could be extended to the analysis of exoplanetary
transits, supernovae, quasars or any other transient event.
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Furthermore, the method we have presented for constructing
a proposal distribution for the center of each event can be applied
quite generally. Even when using a physically motivated model
for occultations with parameters such as the body size, angle of
incidence, etc. (as opposed to our reduced-form approach), one
must account for uncertainties about the location of the event in
the light curve when making inferences about the parameters of
interest. This can be quite challenging using classical methods,
and even MCMC methods do not offer an panacea. Our approach
to constructing an independence chain proposal distribution for
the location parameter in such models makes them quite a bit
more tractable, especially in the case of multiple events.
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