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Abstract

The time evolution of dynamical systems is frequently described by ordinary
differential equations (ODEs), which must be solved for given initial conditions.
Most standard approaches numerically integrate ODEs producing a single solution
whose values are computed at discrete times. When many varied solutions with
different initial conditions to the ODE are required, the computational cost can
become significant. We propose that a neural network be used as a solution bundle,
a collection of solutions to an ODE for various initial states and system parameters.
The neural network solution bundle is trained with an unsupervised loss that does
not require any prior knowledge of the sought solutions, and the resulting object
is differentiable in initial conditions and system parameters. The solution bundle
exhibits fast, parallelizable evaluation of the system state, facilitating the use of
Bayesian inference for parameter estimation in real dynamical systems.

1 Introduction

Many dynamical systems are described by ordinary differential equations (ODEs) which relate the
rates and values of state variables and external driving functions. While some simple ODEs have
closed form solutions to them, the vast majority have to be solved approximately using discretization
of the domain or by using spectral methods[1]. The former approximating methods are more general,
with Runge-Kutta and multi-step methods as typical examples. These methods seek to numerically
integrate the ODEs, starting from initial conditions and stepping forward until the desired final
time is attained. While these conventional methods are generally efficient for determining the state
of a system for a sequence of times, if we are only interested in the state at a specific later time,
substantial computational effort must still be expended determining all the states at steps leading up
to the state of interest. This causal order also limits parallelizability of the conventional single- and
multi-step methods since the task cannot be parallelized in time—until the preceeding state is known,
processors tasked with finding a segment of the system’s evolution over a later time interval cannot
start calculating the correct piece of the trajectory.

Previous work

The idea of approximating the solutions of differential equations with neural networks was first
developed by Dissanayake and Phan-Thien, where training was accomplished by minimizing a
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loss based on the network’s satisfaction of the boundary conditions and the differential equations
themselves[2]. Lagaris et al. showed that the form of the network could be chosen to satisfy boundary
conditions by construction, and that automatic differentiation could be used to compute the derivatives
appearing in the loss function[3]. After training, the approximate value of the solution at any point
within the training range can be computed in constant time without having to compute previous
states first. This method has been extended to systems with irregular boundaries[4, 5], applied to
solving PDEs arising in fluid mechanics[6], and software packages have been developed to facilitate
its application[7, 8, 9]. In the Lagaris approach, the neural network learns a single solution to the
ODE. For different sets of initial conditions, or for different sets of parameters in the differential
equation, the network has to be retrained on the new task.

Our contributions

We propose an extension of the Lagaris method[3] where the neural network is instead taught a
variety of solutions to a parameterized differential equation. This increases the reusability of the
trained network and can speed up tasks that require knowing many solutions, such as for Bayesian
parameter inference, propagating uncertainty distributions in dynamical systems, or inverse problems.
While it is straightforward to extend our approach to all the situations considered in the Lagaris paper,
i.e. for problems containing various types of boundary conditions, for partial differential equations
and higher derivatives, we focus on initial value problems in first-order ODEs. We show that our
method has promise when applied to a variety of tasks requiring quick, parallel evaluation of multiple
solutions to an ODE, and where it is useful to be able to differentiate the state at a particular time with
respect to the initial conditions or ODE parameters. Our contributions also include weighting the loss
function to improve global error and demonstrating an application of curriculum learning to help with
training. With the rapid advances in neural network development, as well as its supporting hardware,
employing this method will become cheaper and more efficient, further extending its applicability.

2 Solution Bundles

When working with ODEs it is common to require multiple solutions corresponding to different
initial conditions. In dynamical systems, each of these solutions represents a trajectory, tracing out
an alternate time evolution of the system state. In addition, when an ODE is parameterized, say
by a physical constant whose value has an associated uncertainty, it can be useful to have different
solutions for various values of the parameters.

2.1 Method Description

Consider the following general first-order differential equation parameterized by θ:

G

(
x,

dx

dt
, t ; θ

)
= 0, (1)

where x ∈ Rn is a vector of state variables, t is time, and θ ∈ Rp are physical parameters associated
with the dynamics. We assume that the ODE describes a deterministic system where initial conditions
x0 of the state variables uniquely determines a solution. The solutions to Eq. (1) over the time range
[t0, tf ], together with a subset of initial conditions X0 ⊂ Rn, and a set of parameters Θ ⊂ Rp, define
a solution bundle x(t;x0,θ), where x0 ∈ X0, θ ∈ Θ.

Let the approximating function to Eq. (1) for the solution bundle over (X0,Θ) be given by

x̂(t ; x0,θ) = x0 + a(t)N(t ; x0,θ ; w), (2)

where N : R1+n+p → Rn is a neural network with weights w, and a : [t0, tf ] → R satisfies
a(t0) = 0. This form explicitly constrains the trial solution to satisfy the initial condition x(t0) = x0.
The choice of a(t) can affect the ease of training the network. While a(t) = t − t0 is sufficient,
Mattheakis et al. demonstrated that a(t) = 1− e−(t−t0) results in better convergence in the Lagaris
method[10], and we observe similar benefits in our extension, likely due to its diminishing effect
farther from the initial time. We primarily use multilayer fully-connected neural networks in our
experiments, but it is worth exploring other architectures in the future.
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The unsupervised loss function used in training has the form

L =
1

|B|
∑

(ti,x0i,θi)∈B

b(ti)

∣∣∣∣G(x̂(ti ; x0i,θi),
∂x̂(ti ; x0i,θi)

∂t
, ti ; θi

)∣∣∣∣2, (3)

where the set B = {(ti,x0i,θi)} constitutes a training batch of size |B|, with ti ∈ [t0, tf ], x0i ∈ X0,
and θi ∈ Θ drawn from some distribution over their respective spaces. The function b : [t0, tf ]→ R
appearing in Eq. (3) is used to weight data points based on their time, as will be discussed later. We
typically use b(t) = exp (−λ(t− t0)), with hyperparameter λ > 0. We found that uniform sampling
over the spaces [t0, tf ], X0, and Θ, usually works well in practice, but there are situations where it is
helpful to use a different distribution to generate batches. For example, for the FitzHugh-Nagumo
model discussed in Section 5, a batch-number-dependent distribution over times [t0, tf ] was used
for curriculum learning. Finally, in the loss function, the time derivative of x̂(t) is computed using
automatic differentiation.

There is no concept of an epoch in the training process of this method since every batch will be
a unique sample of size |B| from the distribution across times, initial conditions, and parameters.
This is similar to meshfree implementations of the Lagaris method, which have been shown to
work better than operating on a fixed grid[11]. The model cannot overfit as we are effectively
operating in a regime of infinite data. The training ends when the approximation to the solution
bundle is deemed acceptable, based on either the history of past losses or on some other metric,
like its difference compared to a few solution curves computed via conventional methods. Ideally,
the training process should be carried out until the network weights are locally optimal, though in
general the approximation will still differ from the exact solution. To obtain incrementally better
solution bundles, one could increase the complexity of the network since the universal approximation
theorem[12, 13] guarantees the existence of a better approximating network to the true solution
bundle.

At the end of training, the neural network solution bundle x̂(t;x0,θ) can be used to evaluate, in
constant execution time, the approximate value of state x at any time t ∈ [t0, tf ] for any initial
condition x0 ∈ X0 and parameters θ ∈ Θ. Our approach is highly amenable to parallelization both
during the training and inference stages. The training is parallelized in time by distributing the points
in batch B across each processing unit, as seen in Section 3.1.1. During the inference stage, the
evaluation of the neural network can be parallelized, unlike in stepping methods where steps have to
be computed sequentially, and each step consists of too few operations to benefit from parallelization.
These strengths of our method are useful when the behavior of a distribution of solutions is desired,
such as for propagating state uncertainty or for performing Bayesian inference.

The neural network solution bundle also has a closed analytic form and is differentiable in all of its
inputs. This capability can be used for a variety of useful tasks. For example, in Bayesian estimation
differentiability in the initial conditions and ODE parameters enables gradient-based maximization,
simplifying the calculation of maximum a posteriori (MAP) estimates of these quantities. It also
simplifies the application of “shooting methods,” where a condition at a later time is known and the
parameters and initial conditions that are consistent with the constraint are sought. Differentiability
can also be useful for more general optimization tasks and sensitivity studies.

2.1.1 Discussion of the Weighting Function.

Given that the approximating function Eq. (2) will generally not be able to perfectly satisify the target
ODE everywhere, there will always be some bias error or epistemic uncertainty regardless of the
choice of w. If we do not weight the loss function Eq. (3), i.e. b(t) = 1, we do not get to influence
how the local error

ε(ti ; x0i,θi) ≡ G

(
x̂(ti ; x0i,θi),

∂x̂(ti ; x0i,θi)

∂t
, ti ; θi

)
(4)

is distributed across the training region. However, by applying an exponentially decaying weight
b(t) = e−λ(t−t0), we can convey in the loss function the larger contribution of early-time local errors
to our metric of interest, the global error. An appeal for using a decaying exponential weighting
comes from considering an upper-bound on the global error. Consider a differential equation of the
form dx /dt = f(t, x). The local error Eq. (4) is ε(t) = dx̂ /dt − f(t, x̂), and it can be shown

3



(Appendix A) that the global error ε(t) = x̂(t)− x(t) is bounded by

|ε(t)| ≤ εt′

Lf

(
eLf (t−t0) − 1

)
, (5)

where Lf is the Lipschitz constant of f , and εt′ ≡ maxt0≤t≤t′ |ε(t)|. This bound shows that global
error can grow exponentially as a result of an early local error, so an exponential form for the
weighting function b(t) incorporates this relative importance in the loss.

Note that in the above discussion we assume scarce knowledge about the specifics of an ODE,
showing that an exponential weighting is generally sensible. Specific weighting functions can likely
be tailored to outperform exponential weighting for a given ODE.

3 Propagating a Distribution

A neural network solution bundle provides a mapping from initial states to states at later times. This
can be useful for time-evolving a distribution over initial conditions to obtain a probability distribution
over states at later time t. Given a probability density over initial states p0(x0), we note that the
solution bundle x(t ; x0) at time t describes a coordinate transformation from x0 to xt. In practice
we can simply sample the initial state space and construct a histogram of output xt states using
the solution bundle. The sampling of initial states can be done according to p0(x0) using Markov
chain Monte Carlo (MCMC) methods, or if the dimensionality of the state vector is low enough, by
simply performing a uniform sampling over the initial states and constructing a weighted histogram
of xt, weighting each sample by p0(x0) for the x0 that generated it. Appendix B explains how an
analytic expression for the transformed probability density can also be obtained by making use of the
differentiability of the solution bundle.

3.1 Planar Circular Restricted Three-Body Problem

The planar circular restricted three-body problem describes a special case of the motion of three
masses under Newton’s law of universal gravitation. This special case describes the motion of the
third body, which is assumed to have negligible mass, in the co-rotating frame of the first two bodies
in circular orbits around their barycenter. All three bodies are also assumed to lie in the same plane
(x-y plane), with no velocity in the z direction. For clarity of discussion, let body 1 be the Earth, body
2 be the Moon, and body 3 be an asteroid. The asteroid has position r(t) = (x(t), y(t))

ᵀ and velocity
u(t) = (u(t), v(t))

ᵀ. We will call the full state vector q = (rᵀ,uᵀ)
ᵀ. The nondimensionalized mass

of the Earth is given by m1 = 1− µ, and the mass of the Moon is m2 = µ, where µ is the ratio of
the mass of the the Moon to the total mass of the pair. The nondimensionalized equations of motion
of the asteroid are given by[14]:

dx

dt
= u ,

du

dt
= x− µ+ 2v −

 µ(x− 1)(
(x− 1)

2
+ y2

)3/2 +
(1− µ)x

(x2 + y2)
3/2

, (6)

dy

dt
= v ,

dv

dt
= y − 2u−

 µy(
(x− 1)

2
+ y2

)3/2 +
(1− µ)y

(x2 + y2)
3/2

. (7)

3.1.1 Training the Solution Bundle

We trained a fully-connected MLP with 8 hidden layers of 128 neurons per layer uniformly over the x0,
y0, u0, v0 initial condition space X0 = [1.05, 1.052]× [0.099, 0.101]× [−0.5,−0.4]× [−0.3,−0.2]
and times [−0.01, 5], and used a fixed parameter µ = 0.01. Even though we only intend to evaluate
the solution bundle at times t ∈ [0, 5], we found that including times slightly earlier than t0 in training
helps improve accuracy. This makes the approximating function satisfy the ODE on both sides of t0,
resulting in a more accurate value of the derivative term in Eq. (3) around t = t0. We used batchsize
|B| = 10, 000, the Adam optimizer[15], and learning rate η = 0.001, which we reduced on plateau.
For the weighting function b(t) in the loss, Eq. (3), we chose b(t) = exp (−λt) where λ = 2.

Figure 1 shows the adaptation of the neural network solution bundle during training with increasing
batch number. It also demonstrates the parallelization in time of the method, with the curvature of
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Figure 1: Plots of a few trajectories from the neural network solution bundle at various points in
the training. Red trajectories are calculated with fourth-order Runge-Kutta, and the neural network
solutions are shown in blue.

later parts of the trajectory adjusting even before the earlier states have settled. This is reminiscent
of the dominant approach for parallel-in-time solving of differential equations, Parareal[16], which
also involves computation of approximate later trajectories before earlier path segments are precisely
known.

3.1.2 Propagation of Uncertainty

With the neural network solution bundle trained, we can use it to propagate distributions in time.
Suppose we have two measurements of the position of an asteroid at two different times, along with
some uncertainty. If the majority of the probability mass of these uncertainty distributions falls
within the solution bundle, it is straightforward to compute a probability distribution for the future
position of the asteroid by constructing a histogram weighted by the uncertainty distribution of the
observations. Details of the calculation can be found in Appendix B.

Figure 2: Probability distribution p(x(t) = (x, y)ᵀ) at various times. A few trajectories in the bundle
are shown in white, and the distribution is shown as a heatmap. The full path is shown in Figure 1
and the full trajectory of the distribution is in Appendix B.1.

4 Bayesian Parameter Inference

Another common task that requires computing many solutions to an ODE is Bayesian parameter
inference in systems described by differential equations. In the physical sciences and other fields
employing mathematical modeling of data, it is often necessary to estimate parameters of a system
based on experimental measurements, as well as to determine their uncertainties. If the system is
described by differential equations, these parameters modify terms in the equations, resulting in
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different families of solutions. The probability density of the initial conditions and parameters x0,θ
given a set of observed data {(ti,xi)} and prior p(x0,θ) can be computed from Bayes’ theorem,

p
(
x0,θ | {(ti,xi)}

)
=
p
(
{(ti,xi)} | x0,θ

)
p(x0,θ)

p({(ti,xi)})
∝ p
(
{(ti,xi)} | x0,θ

)
p(x0,θ). (8)

Determination of the likelihood p
(
{(ti,xi)} | x0,θ

)
is typically the computationally intensive step

as it requires computing
{(
ti,x(ti ; x0,θ)

)}
for parameters x0,θ to compare to the data {(ti,xi)}.

Evaluating x(ti ; x0,θ) with conventional methods would require forward stepping from the initial
conditions all the way to time ti, and this process would have to be repeated for every different set of
initial states and parameters x0,θ. The greater the desired precision of the posterior distribution for
the parameters, the more often the differential equation has to be solved, which could be potentially
millions of times. However, if a neural network solution bundle has been trained over X0 and Θ
containing the expected range of initial conditions and parameters, x̂(ti ; x0,θ) can be calculated in
constant time for any ti ∈ [t0, tf ], and the entire set of points

{(
ti, x̂(ti ; x0,θ)

)}
can be computed

in parallel. This allows for rapid likelihood evaluation and more efficient Bayesian inference. The
training cost of the solution bundle can be further offset if it is used for many different sets of data.
In effect, a trained neural network solution bundle for an often-used ODE could be shared amongst
research groups, cutting back on the number of redundant calculations performed globally.

4.1 Rebound Pendulum
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Figure 3: Left: Diagram of a rebound pendulum. Center and Right: A selection of solutions within
the rebound pendulum solution bundle. The red reference curves are computed with Runge-Kutta
and the trajectories from the solution bundle are overlayed in blue.
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Figure 4: Left: Rebound pendulum fit corresponding to maximum a posteriori estimate. A Runge-
Kutta reference curve using the MAP parameters is also plotted. Right: Unnormalized marginal
posterior distributions of the unknown initial conditions and parameters.

A rebound pendulum consists of a simple pendulum that can collide with a damped spring at the
bottom of its swing. A diagram of the setup is shown in Figure 3. The equations of motion for the
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state vector x = (θ, ω)ᵀ of the pendulum are given by

dθ

dt
= ω,

dω

dt
= −g

`
sin θ +H(−θ)ReLU(−kθ − cω), (9)

where ReLU(x) = max(x, 0),H(x) is the Heaviside step function, g is the gravitational acceleration,
` is the length of the pendulum, k is the spring constant, and c is the damping coefficient. Note that
here θ is the angle of the pendulum and not a parameter. A few example solutions are shown in
Figure 3, where the convergence of the neural network approximation can be compared to reference
solutions computed with Runge-Kutta.

Using the trained solution bundle, we can fit simulated angle measurements which have Gaussian
error. The result of Bayesian inference of the initial conditions and parameters is shown in Figure 4,
presenting both the MAP estimate and the marginal posterior distributions for a uniform prior.

5 Curriculum Learning: FitzHugh-Nagumo Model

The FitzHugh-Nagumo model[17, 18] is a relaxation oscillator which can be used as a simple model
of a biological neuron. Its state is described by a membrane voltage v, and a recovery variable w, and
the ODE has parameters a, b, τ , and I . The differential equation for the FitzHugh-Nagumo model is
given by

dv

dt
= v − v3

3
− w + I,

dw

dt
=

1

τ
(v + a− bw). (10)

The nullclines of Eq. (10), i.e. where dv /dt = 0 and dw /dt = 0, are plotted in black in Figure 5.

For this system, we found that it could be tricky to train the neural network solution bundle. When
we simply sampled times uniformly from the time interval [t0, tf ], we found that the solution bundle
could get “stuck” to the nullclines (as seen in Figure 5a).

(a) Without curriculum learning (b) With curriculum learning

Figure 5: Reference trajectories for three values of I are shown in red, the corresponding nullclines
for those values are shown in black, and the approximate solution bundle is shown in blue. Notice
that without curriculum learning the neural network gets stuck on the cubic nullcline, while with
curriculum learning this sticking point is safely passed during training.

This seems to happen because while the approximate solution bundle is dragged around phase space
during early training, the tail end can encounter a nullcline by chance, where it is easier to satisfy the
ODE. Even though an error at an earlier time has to be made in the solution bundle for the tail to be
on the nullcline, if the later times have very low error due to the ease of predicting a constant value
whilst on the nullcline, the network weights can become stuck in this local minimum.

This pitfall can be avoided by applying curriculum learning[19] to the training process. When training
starts, we can restrict the time samples to come from [t0, tm], where tm < tf and m is the batch
number. As training progresses and the batch number m is increased, we can make the task a bit
more difficult by increasing tm, requiring the network to learn a greater length of the solution bundle.
The result of curriculum learning is shown in Figure 5b. The entire solution bundle is plotted in each
frame, but in the loss calculation only times up to tm are sampled.
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6 Efficiency

To get a sense of the computational and memory efficiency of neural network solution bundles, we
compare them to Runge-Kutta and lookup tables, respectively. The equations of motion of a harmonic
oscillator are given by

dx

dt
= v,

dv

dt
= − k

m
x, (11)

and we choose m = 1 for simplicity. We trained four dense neural networks with two hidden
layers, with widths 4, 8, 16, and 32, over initial conditions (x0, v0) ∈ [−1, 1]× [−1, 1], parameters
k ∈ [0.5, 2], and times [−0.01, 2π]. To evaluate the performance of these networks, we uniformly
sampled points from (x0, v0, k, t) ∈ [−1, 1]× [−1, 1]× [0.5, 2]× [0, 2π] and computed the absolute
error, which we define as (|x̂− x|+ |v̂ − v|)/2, relative to the exact solution (x, v) for each point.
In Figure 6a, the absolute errors for these same points are determined with Runge-Kutta (RK4) and
the Euler method for increasingly small step sizes, and hence more floating point operations (FLOPs).
The solid lines give the average absolute error and the bands encompass 90% of the computed errors.
While RK4 slightly outperforms the neural network approach, the operations in the evaluation of the
dense neural network can be easily parallelized while RK4’s steps cannot. As such, the simultaneous
FLOPs per processor for the neural network can be kept nearly constant as the network complexity
is increased, which can make the neural network solution bundle substantially faster in practice
than a comparable RK4 approach, especially for an ODE with harder function evaluations than the
multiplication in Eq. (11).

Figure 6b compares the neural network performances to simple uniformly-spaced lookup tables with
the same number of divisions in x0, v0, k, and t. The neural network is a very compact representation
of the solution bundle, achieving comparable performance to lookup tables taking up orders of
magnitude more space. This is promising for the reusability of trained neural network solution
bundles, as the smaller size makes it easier to share with others.
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Figure 6: Computational and memory efficiency comparisons of neural network solution bundles.

7 Conclusion

Backpropagation and the universal approximation theorem grants neural networks a unique ability to
adapt and represent nearly any function. We extend the Lagaris method by introducing the concept
of a neural network solution bundle, a group of approximate solutions to an ODE over a range of
initial conditions and parameters. This allows for greater reuse of the trained network since it learns
a variety of solutions. In addition, the solution bundle is differentiable in initial conditions and
parameters, which can be useful for optimization tasks dependent on the value of the solution at
given times. Other tasks that would require solving the differential equations repeatedly are also
simplified, such as the propagation of uncertainty distributions across initial states, and for Bayesian
inference in dynamical systems. The trained neural networks also have the potential to be used in
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low-power limited-memory settings that require quickly solving differential equations, as in drones
or IoT devices. While the number of calculations involved in the training of neural network solution
bundles is substantially higher than for computing a single solution using conventional methods, the
cost can eventually be recouped if enough individual solutions are required, especially if the trained
network is shared with other users. In addition, future advances in neural network training, evaluation,
and specialized hardware will directly benefit this method.

Broader Impact

The work presented here has very general applicability since differential equations are widely
employed in the sciences and engineering. As such, many ethical aspects of this research are neutral
and primarily depend on specific applications in the future and their impacts. However, if optimally-
trained networks for common differential equations are shared and made freely available, this method
has the potential to reduce the cost of redundant calculations, helping with efficient energy use. If
this work is used in systems that could affect lives or the environment, critical calculations should be
checked against other numerical approaches for safety.

Acknowledgments and Disclosure of Funding

We would like to thank Marios Mattheakis and Michael Emanuel for helpful discussions which
refined the ideas in this work. The computations in this paper were run on the FASRC Cannon cluster
supported by the FAS Division of Science Research Computing Group at Harvard University.

References

[1] Christine Bernardi and Yvon Maday. Spectral methods. In Handbook of Numerical Analysis,
volume 5, pages 209–485. Elsevier, 1997.

[2] M. W. M. G. Dissanayake and N. Phan-Thien. Neural-network-based approximations for
solving partial differential equations. Communications in Numerical Methods in Engineering,
10(3):195–201, March 1994.

[3] I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary
and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000,
September 1998.

[4] I.E. Lagaris, A.C. Likas, and D.G. Papageorgiou. Neural-network methods for boundary value
problems with irregular boundaries. IEEE Transactions on Neural Networks, 11(5):1041–1049,
September 2000. Conference Name: IEEE Transactions on Neural Networks.

[5] Kevin Stanley McFall and James Robert Mahan. Artificial Neural Network Method for Solution
of Boundary Value Problems With Exact Satisfaction of Arbitrary Boundary Conditions. IEEE
Transactions on Neural Networks, 20(8):1221–1233, August 2009. Conference Name: IEEE
Transactions on Neural Networks.

[6] Modjtaba Baymani, Asghar Kerayechian, and Sohrab Effati. Artificial Neural Networks
Approach for Solving Stokes Problem. Applied Mathematics, 01(04):288–292, 2010.

[7] Lu Lu, Xuhui Meng, Zhiping Mao, and George E. Karniadakis. DeepXDE: A deep learning
library for solving differential equations. arXiv:1907.04502 [physics, stat], February 2020.
arXiv: 1907.04502.

[8] Alexander Koryagin, Roman Khudorozkov, and Sergey Tsimfer. PyDEns: a Python Frame-
work for Solving Differential Equations with Neural Networks. arXiv:1909.11544 [cs, stat],
September 2019. arXiv: 1909.11544.

[9] Feiyu Chen, David Sondak, Pavlos Protopapas, Marios Mattheakis, Shuheng Liu, Devansh
Agarwal, and Marco Di Giovanni. NeuroDiffEq: A Python package for solving differential
equations with neural networks. Journal of Open Source Software, 5(46):1931, February 2020.

[10] Marios Mattheakis, David Sondak, Akshunna S. Dogra, and Pavlos Protopapas. Hamiltonian
Neural Networks for solving differential equations. arXiv:2001.11107 [physics], February 2020.
arXiv: 2001.11107.

9



[11] Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving
partial differential equations. Journal of Computational Physics, 375:1339–1364, December
2018.

[12] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314, December 1989.

[13] Sho Sonoda and Noboru Murata. Neural network with unbounded activation functions is univer-
sal approximator. Applied and Computational Harmonic Analysis, 43(2):233–268, September
2017.

[14] Victor Szebehely. Theory of orbits. Acad. Pr, New York, 1967. OCLC: 164462279.
[15] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs], January 2017. arXiv: 1412.6980.
[16] Jacques-Louis Lions, Yvon Maday, and Gabriel Turinici. Résolution d’EDP par un schéma

en temps «pararéel ». Comptes Rendus de l’Académie des Sciences - Series I - Mathematics,
332(7):661–668, April 2001.

[17] R. Fitzhugh. Impulses and Physiological States in Theoretical Models of Nerve Membrane.
Biophysical Journal, 1(6):445–466, July 1961.

[18] J. Nagumo, S. Arimoto, and S. Yoshizawa. An Active Pulse Transmission Line Simulating
Nerve Axon. Proceedings of the IRE, 50(10):2061–2070, October 1962.

[19] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning - ICML ’09,
pages 1–8, Montreal, Quebec, Canada, 2009. ACM Press.

[20] Endre Süli and D. F. Mayers. An introduction to numerical analysis. Cambridge University
Press, Cambridge ; New York, 2003. OCLC: ocm50525488.

10



8 Appendix

A Proof of Global Error Bound

One appeal for using a decaying exponential weighting comes from comparison to one-step methods
like Runge-Kutta. Given a differential equation of the form

dx

dt
= f(t, x), (12)

a one-step method will generate a sequence through

xn+1 = xn + hΦ(tn, xn;h), (13)

where the second term is the increment, which for example in the Euler method would be
hΦ(tn, xn;h) = hf(tn, xn). The truncation (local) error is given by

εn =
x(tn+1)− x(tn)

h
− Φ(tn, x(tn);h), h = tn+1 − tn. (14)

The global error in a one-step method, εN = x(tN )−xN , which is due to the accumulated truncation
error, is bounded by[20]

|εN | ≤
ε

LΦ

(
eLΦ(tN−t0) − 1

)
(15)

where ε = max0≤n≤N−1 |εn| and, Φ is Lipschitz continuous with Lipschitz constant Lφ,
|Φ(t, u;h)− Φ(t, v;h)| ≤ LΦ|u− v|.
We can derive an analogue of this bound on global error for the neural network solution bundle. The
local error of Eq. (14) should be compared to

ε(ti ; x0i,θi) ≡ G

(
x̂(ti ; x0i,θi),

∂x̂(ti ; x0i,θi)

∂t
, ti ; θi

)
, (16)

which for a differential equation of the form in Eq. (12) would give

ε(t) =
dx̂(t)

dt
− f(t, x̂). (17)

In our approach, Eq. (17) is effectively a truncation error for an infinitesimal timestep. The global
error ε(t) is given by

ε(t) = x̂(t)− x(t), (18)

which we can substitute into Eq. (17) to obtain
dε

dt
= ε(t)− dx

dt
+ f

(
t, x(t) + ε(t)

)
. (19)

Assuming f is a Lipschitz-continuous function,
∣∣∣f(t, x(t) + ε(t)

)
− f

(
t, x(t)

)∣∣∣ ≤ Lf |ε(t)|, so the
absolute value of the right-hand side can be written∣∣∣∣ε(t)− dx

dt
+ f

(
t, x(t) + ε(t)

)∣∣∣∣ =
∣∣∣ε(t) + f

(
t, x(t) + ε(t)

)
− f

(
t, x(t))

∣∣∣ (20)

≤ |ε(t)|+ Lf |ε(t)| (21)
≤ εt′ + Lf |ε(t)|, (22)

where we have made use of the differential equation dx /dt = f
(
t, x(t)), the triangle inequality, and

εt′ = maxt0≤t≤t′ |ε(t)|. Since ε(t0) = 0, to find a bound on |ε(t)| we can consider the solution to
the ODE for upper bound E(t) ≥ |ε(t)| ≥ 0,

dE

dt
= εt′ + LfE(t) (23)

where E(t0) = 0, which is E(t) = εt′
Lf

(exp [Lf (t− t0)]− 1). Thus,

|ε(t)| ≤ εt′

Lf

(
eLf (t−t0) − 1

)
, (24)

which can be compared to the global error bound of the discrete case, Eq. (15).
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B Propagating a Probability Distribution

A neural network solution bundle provides a mapping from initial conditions to the state at later times.
This can be useful for time-evolving a distribution over initial conditions to obtain a probability
distribution over states at later time t. Given a probability density over initial states p0(x0), we
note that the solution bundle x(t ; x0) at time t describes a coordinate transformation from x0,
transforming the coordinates x0 to xt. If this transformation is invertible and differentiable from the
subset of initial state space X0 to the final state space Xt, we can write out the probability density of
later states,

pt(xt) = p0

(
f−1(xt)

)
|Jf−1 |, (25)

where f−1(xt) is the inverse of f(x0) ≡ x(t ; x0), and Jf−1 = ∂x0

∂xt
is the Jacobian of f−1. The

opposite task, i.e where a probability distribution over later states pt(xt) is known and the distribution
over initial states is desired, takes on an even more convenient form where the neural network solution
bundle does not have to be inverted:

p0(x0) = pt(f(x0))|Jf |, (26)

where Jf = ∂xt

∂x0
is the Jacobian of f , which can be calculated exactly using automatic differentiation

of the solution bundle. This gives a closed analytic form for the desired probability density. Note that
if the ODE is time-reversible, Eq. (25) can be converted to the easier form Eq. (26) by simply treating
the target space as the input space and training the solution bundle on the time-reversed equations of
motion.

In the case of an energy-conserving Hamiltonian dynamical system where all the state variables are
canonical coordinates, Liouville’s theorem guarantees that |Jf | = |Jf−1 |, resulting in particularly
simple relationships for the probability densities at different times.

B.1 Planar Circular Restricted Three-Body Problem

If we have two measurements of the position of an asteroid at two different times, along with some
uncertainty,

(t0, x0, y0) = (0.00, 1.0510± 0.0003, 0.1000± 0.0003) (27a)
(t1, x1, y1) = (0.05, 1.0276± 0.0003, 0.0878± 0.0003) (27b)

we can compute the probability distribution of future positions with the neural network solution
bundle. Let p

(
r(t) = (x, y)ᵀ | {r1, r0}

)
be the probability density of the position being (x, y)ᵀ at

time t, given the position measurements r0 and r1. By marginalizing over the final velocities, we
obtain

p
(
r(t) = (x, y)ᵀ | {r1, r0}

)
=

∫∫
p
(
q(t) = (x, y, u, v)ᵀ | {r1, r0}

)
dudv . (28)

To compute the integrand, we can use Bayes’ theorem,

p
(
q(t) = (x, y, u, v)ᵀ | {r1, r0}

)
=
p
(
{r1, r0} | q(t) = (x, y, u, v)ᵀ

)
p
(
q(t) = (x, y, u, v)ᵀ

)
p
(
{r1, r0}

)
∝ p
(
r1 | q(t) = (x, y, u, v)ᵀ

)
p
(
r0 | q(t) = (x, y, u, v)ᵀ

)
,
(29)

where in the last step we have assumed a uniform prior, and that the errors in the two position
measurements r0 and r1 are independent.

Iterating over a uniform grid of initial positions and velocities, evaluating the solution at time t1 and
t, weighting the samples with the probability densities given by Eq. (29), and forming a weighted
histogram of positions, we have the approximate distribution of the asteroid’s location at time t.
Figure 7 shows the position distribution at various final times t. When uniform sampling becomes
infeasible due to high dimensionality of the inputs, it is straightforward to use MCMC instead.
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Figure 7: Probability distribution p(x(t) = (x, y)ᵀ) at various times. A few trajectories in the bundle
are shown in white, and the distribution is shown as a heatmap.

C Computational Details

All calculations were performed with PyTorch 1.3.1 on a single node equipped with a GPU:

• Model name: Intel Xeon Gold 6126 CPU @ 2.60GHz

• CPUs: 24

• RAM: 191898 MB
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• GPU: Nvidia Tesla V100-PCIE-16GB

C.1 Planar Circular Restricted Three-Body Problem

ODE:

dx

dt
= u ,

du

dt
= x− µ+ 2v −

 µ(x− 1)(
(x− 1)

2
+ y2

)3/2 +
(1− µ)x

(x2 + y2)
3/2

, (30)

dy

dt
= v ,

dv

dt
= y − 2u−

 µy(
(x− 1)

2
+ y2

)3/2 +
(1− µ)y

(x2 + y2)
3/2

. (31)

The above equation is in the co-rotating frame in the plane of the two heavy bodies (Earth and Moon)
about their barycenter. The position of the third body of negligible mass is given by (x, y), with
velocity (u, v). The parameter µ is the ratio of the Moon mass to the Earth plus Moon combined
mass.

Network Architecture

Input layer 5 neurons tanh
Hidden layers 8 dense layers of 128 neurons each tanh
Output layer 4 neurons linear

Table 1: Planar circular restricted three-body problem network architecture.

Quantity Value

Weighting function b(t) = exp(−2t)
Initial condition ranges (x0, y0, u0, v0) ∈ [1.05, 1.052]× [0.099, 0.101]× [−0.5,−0.4]× [−0.3,−0.2]
ODE parameter µ = 0.01
Time range [−0.01, 5]
Optimizer Adam
Batch size 10,000
Learning rate batch 0 to 3,999,999 η = 0.001, ReduceLROnPlateau

factor=0.5, patience=200000, threshold = 0.5,
threshold_mode = ’rel’, cooldown = 0,
min_lr = 1e-6, eps = 1e-8

batch 4,000,000 to 7,999,999 η = 0.000001
batch 8,000,000 to 35,999,999 η = 0.00001

Training rate 56 batches/sec
Training time 178.6 hours
Table 2: Planar circular restricted three-body problem training hyperparameters and other details.

We found that reducing the learning rate during training greatly helped in decreasing the loss for
this system. In Figure 8 every time the learning rate was halved, the loss immediately decreased,
forming downward steps. However, the learning rate was made too small through this process, and the
network approached a suboptimal minimum by batch 8×106. Curiously, after increasing the learning
rate, despite temporarily increasing the loss, the solution bundle immediately started converging
better to the true trajectories determined with Runge-Kutta. This is due to the loss assessing the
solution bundle’s satisfaction of the ODE instead of its accuracy compared to the true solution. As
seen in Figure 8, if small errors are made at early times in the solution bundle such that the neural
network has an easier task at later times, the earlier errors might not be corrected. This is seen by the
trajectories at later times not fanning out.
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Figure 8: Left: Loss during training for the planar circular restricted three-body problem, smoothed
with a moving average of window size 10,000. Right: Solution bundle after select batches during
training. These are presented to demonstrate why we increased the learning rate starting at batch
8×106, causing the temporary increase in the loss. At batch 8×106 notice that the tail of the solution
bundle is not fanning out, and it appears that the neural network is trapped in a local minimum.
Increasing the learning rate helped the network get out, and the solution bundle once again began
approaching the reference trajectories in red.

C.2 Rebound Pendulum

ODE:
dθ

dt
= ω,

dω

dt
= −g

`
sin θ +H(−θ)ReLU

(
−k`
m
θ − cω

)
, (32)

where H(x) is the Heaviside step function, and ReLU(x) is the rectifier function. The position of the
pendulum is described by its angle θ, and its angular velocity is ω. The parameters in the equation are:
gravitational acceleration g, pendulum length `, spring constant k, damping coefficient c, and mass
m. For simplicity we set g, `, and m to unity. The second term in the second differential equation
describes the interaction of the spring with the pendulum, capturing the fact that the spring only
interacts with the pendulum for negative angles and that it can only push the pendulum away.

Network Architecture

Input layer 5 neurons tanh
Hidden layers 8 dense layers of 128 neurons each tanh
Output layer 2 neurons linear

Table 3: Rebound pendulum network architecture.
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Quantity Value

Weighting function b(t) = exp(−0.5t)
Initial condition ranges (θ0, ω0) ∈ [0.0, 1.0]× [−0.2, 0.2]
ODE parameter ranges (k, c) ∈ [2.0, 5.0]× [0.0, 2.0]
Time range [−0.01, 10]
Optimizer Adam
Batch size 10,000
Learning rate batch 0 to 1,999,999 η = 0.001, ReduceLROnPlateau

factor=0.5, patience=1500000, threshold = 0.5,
threshold_mode = ’rel’, cooldown = 0,
min_lr = 0, eps = 1e-8

batch 0 to 1,999,999 η = 0.00001, ReduceLROnPlateau
factor=0.5, patience=2000000, threshold = 0.5,
threshold_mode = ’rel’, cooldown = 0,
min_lr = 0, eps = 1e-8

Training rate 98 batches/sec
Training time 11.37 hours

Table 4: Rebound pendulum training hyperparameters and other details.
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Figure 9: Rebound pendulum loss during training, smoothed with a moving average of window size
10,000.
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C.3 FitzHugh-Nagumo Model

ODE:
dv

dt
= v − v3

3
− w + I,

dw

dt
=

1

τ
(v + a− bw). (33)

The two state variables are v and w which are membrane voltage and recovery, respectively. The
parameters of the system are a, b, which control the shape of the trajectory, τ , which sets the timescale,
and I , the external stimulus. The nullclines of the ODE are

w = v − v3

3
+ I, ⇒ dv

dt
= 0 (34)

w =
v + a

b
, ⇒ dw

dt
= 0 (35)

which are helpful for understanding the direction reversals in each state variable of the trajectory in
phase space.

Network Architecture

Input layer 7 neurons tanh
Hidden layers 4 dense layers of 128 neurons each tanh
Output layer 2 neurons linear

Table 5: FitzHugh-Nagumo (without curriculum learning) network architecture.

Quantity Value

Weighting function b(t) = exp [−λmt]
λm = exp

[
− ln (100)mM

]
where m is the batch number, M is total batches

Initial condition ranges (v, w) ∈ [−0.2, 0.2]× [−0.2, 0.2]
ODE parameter ranges (a, b, τ, I) ∈ [0.6, 0.9]× [0.6, 0.9]× [10., 14.]× [0.6, 1.0]
Time range [−0.10, 100]
Optimizer Adam
Batch size 10,000
Learning rate batch 0 to 499,999 η = 0.001
Training rate 151 batches/sec
Training time 55 minutes

Table 6: FitzHugh-Nagumo (without curriculum learning) training hyperparameters and other details.

Network Architecture

Input layer 7 neurons tanh
Hidden layers 8 dense layers of 121 neurons each tanh

skip connections from input concatenated to output of every hidden layer linear
Output layer 2 neurons linear

Table 7: FitzHugh-Nagumo (curriculum learning) network architecture.
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Figure 10: Training FitzHugh-Nagumo solution bundles without curriculum learning. The trajectories
bind to the nullclines early on and the solution bundle does not converge properly.

Quantity Value

Dynamic end time tm = 100
ln(11) ln

(
10mM + 1

)
where m is the batch number, M is total batches

Weighting function b(t) = exp [−λmt]
λm = 4

tm+5
Initial condition ranges (v, w) ∈ [−0.1, 0.1]× [−0.1, 0.1]
ODE parameter ranges (a, b, τ, I) ∈ [0.6, 0.8]× [0.5, 0.7]× [11., 14.]× [0.7, 0.9]
Time range [−0.10, 100]
Optimizer Adam
Batch size 10,000
Learning rate batch 0 to 9,999,999 η = 0.0001
Training rate 80 batches/sec
Training time 34.8 hours

Table 8: FitzHugh-Nagumo (curriculum learning) training hyperparameters and other details.
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Figure 11: Training FitzHugh-Nagumo solution bundles with curriculum learning. Unlike Figure 10,
the nullclines are safely passed.
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C.4 Efficiency Tests: Simple Harmonic Oscillator

ODE:
dx

dt
= v,

dv

dt
= − k

m
x, (36)

where the position of the harmonic oscillator is given by x, its velocity is v. The parameters of the
system, spring constant k and mass m, are both fixed at unity.

Network Architecture

1 Input layer 3 neurons tanh
Hidden layers 2 dense layers of 4 neurons each tanh
Output layer 2 neurons linear

2 Input layer 3 neurons tanh
Hidden layers 2 dense layers of 8 neurons each tanh
Output layer 2 neurons linear

3 Input layer 3 neurons tanh
Hidden layers 2 dense layers of 16 neurons each tanh
Output layer 2 neurons linear

4 Input layer 3 neurons tanh
Hidden layers 2 dense layers of 32 neurons each tanh
Output layer 2 neurons linear

Table 9: Simple harmonic oscillator network architectures.
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Harmonic Oscillator Training Losses

Network 1, width 4
Network 2, width 8
Network 3, width 16
Network 4, width 32

Figure 12: Training losses of the four harmonic oscillator solution bundles, smoothed with a moving
average with window size 10,000.
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Network Quantity Value

1 Weighting function b(t) = 1
Initial condition ranges (x, v) ∈ [−1.0, 1.0]× [−1.0, 1.0]
ODE parameter ranges k ∈ [0.5, 2.0]
Time range [−0.01, 2π]
Optimizer Adam
Batch size 100,000
Learning rate batch 0 to 4,999,999 η = 0.0001
Learning rate batch 5,000,000 to 9,999,999 η = 0.00002
Training rate 179 batches/sec
Training time 15.5 hours

2 Weighting function b(t) = 1
Initial condition ranges (x, v) ∈ [−1.0, 1.0]× [−1.0, 1.0]
ODE parameter ranges k ∈ [0.5, 2.0]
Time range [−0.01, 2π]
Optimizer Adam
Batch size 100,000
Learning rate batch 0 to 10,999,999 η = 0.0001
Learning rate batch 11,000,000 to 15,999,999 η = 0.00002
Training rate 168 batches/sec
Training time 26.5 hours

3 Weighting function b(t) = 1
Initial condition ranges (x, v) ∈ [−1.0, 1.0]× [−1.0, 1.0]
ODE parameter ranges k ∈ [0.5, 2.0]
Time range [−0.01, 2π]
Optimizer Adam
Batch size 100,000
Learning rate batch 0 to 16,999,999 η = 0.00005
Learning rate batch 17,000,000 to 20,999,999 η = 0.00002
Learning rate batch 21,000,000 to 24,999,999 η = 0.00001
Training rate 152 batches/sec
Training time 45.7 hours

4 Weighting function b(t) = 1
Initial condition ranges (x, v) ∈ [−1.0, 1.0]× [−1.0, 1.0]
ODE parameter ranges k ∈ [0.5, 2.0]
Time range [−0.01, 2π]
Optimizer Adam
Batch size 100,000
Learning rate batch 0 to 19,999,999 η = 0.0001
Learning rate batch 20,000,000 to 24,999,999 η = 0.00002
Learning rate batch 25,000,000 to 29,999,999 η = 0.00001
Learning rate batch 30,000,000 to 44,999,999 η = 0.000002
Training rate 126 batches/sec
Training time 99.2 hours

Table 10: Simple harmonic oscillator networks’ training hyperparameters and other details.
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