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ABSTRACT

The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually,
lightcurves are represented as a vector of many descriptors designed by astronomers called features. These
descriptors are expensive in terms of computing, require substantial research effort to develop, and do not
guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be
designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean
astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning
algorithm designed for variable objects. Our method works by extracting a large number of lightcurve
subsequences from a given set, which are then clustered to find common local patterns in the time series.
Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new
representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled
and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the
Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our
classification performance is as good as and in some cases better than the performance achieved using traditional
statistical features, while the computational cost is significantly lower. With these promising results, we believe
that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.

Key words: methods: data analysis – stars: statistics

1. INTRODUCTION

Automatic classification of variable stars has received
substantial attention in the research community in recent years
(Debosscher et al. 2007; Kim et al. 2009, 2011, 2014; Wachman
et al. 2009, pp. 489–505; Wang et al. 2010, p. 418; Bloom &
Richards 2012; Richards et al. 2011; Bloom et al. 2012; Pichara
et al. 2012a; Pichara & Protopapas 2013; Masci et al. 2014; Nun
et al. 2014; Babu & Mahabal 2015; Hanif & Protopapas 2015;
Neff et al. 2015). Achieving a good performance with these
methods depends strongly on the way lightcurves are repre-
sented. Lightcurves are commonly represented as a vector of
many statistical descriptors called features, which aim to
measure a particular characteristic of the lightcurve. Feature
calculation is intensive in computing resources, the development
of new features requires a lot of research effort, and new features
do not guarantee better classification performance. The upcom-
ing and ongoing deep-sky surveys such as Pan-STARRS (Kaiser
et al. 2002), LSST (Ivezic & the LSST Science Council 2011),
and SkyMapper (Keller et al. 2007) are creating immense
amounts of data, which makes the development of automatic and
scalable analysis tools an important task for the astronomical
community. Today, lightcurve representation is not entirely
automatic: algorithms that extract lightcurve features are
designed by astronomers and have to be manually tuned up
for every new survey.

Most of the automatic classification tools coming from the
machine learning community are very effective in the sense
that they can produce accurate results and work very fast in the
classification stage (after the training phase). However, results
from classification algorithms are highly dependent on the way
the data are represented, and a lot of effort is put into designing
features to express lightcurves. For example, Kim et al. (2011)

used a support vector machine (SVM) to classify variable stars,
previously defining a set of time series descriptors to be used as
features in the classification model. In a later work, Pichara
et al. (2012a) made an important improvement in accuracy
thanks to the inclusion of new features arising from a
continuous autoregressive model. Huijse et al. (2012) made
an improvement in classification of periodic stars by using an
information theoretic approach to estimate periodicities. Nun
et al. (2014) devised a method to detect anomalies in
astronomical catalogs by using the results of a Random Forest
classification as input for a Bayesian network.
The data representation problem arises in most fields that

deal with data like time series and images since the complexity
and size of the data usually make them unsuitable as direct
input to any classification algorithm. To deal with this issue,
the machine learning community propose a new way of
representing data: unsupervised feature learning. This method
aims to use unlabeled data to train a model that can then be
used to transform data of the same kind to a new representation
suitable for classification tasks. This process of transforming
data from their raw form to another form is known as encoding.
The development of unsupervised feature learning started with
the objective of finding a good representation of images that
could serve as input for learning algorithms. While the goal in
most works is similar, approaches vary in nature. Olshausen &
Field (1996) use sparse coding to represent an image, Bell &
Sejnowski (1997) base their approach on signal analysis,
Hinton & Salakhutdinov (2006) use models based on neural
networks, while Coates & Ng (2012, p. 561) follow a
clustering-based method.
We build on the ideas in Coates & Ng (2012, p. 561) even

though their proposed method is not well established for time
series. We make substantial modifications to their approach to
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get meaningful results while using lightcurve data instead of
images. These modifications have resulted in a new unsuper-
vised learning method for lightcurves and time series in
general. Our method is based on the clustering of hundreds of
thousands of lightcurve subsequences, which allows us to find
the most common and representative patterns in large amounts
of data. The results of the clustering step are then used to
transform lightcurves of a labeled set to a representation
suitable for machine learning algorithms.

The purpose of this work is to introduce unsupervised
feature learning as a strong alternative to expert-designed
features that have traditionally been used for lightcurve
representation in the context of automatic classification. The
performance of classification models trained with data from our
method is as good as and in some cases better than classifiers
trained using the traditional lightcurve representation.

The remainder of this paper is organized as follows:
Section 2 gives an account of the previous work in feature
design for variable stars and the field of unsupervised feature
learning, Section 3 introduces the relevant background theory
for this work, Section 4 gives a detailed account of our
methodology, and Section 5 presents the lightcurve catalogs
and training sets used in this work. Section 6 discusses some
implementation details and we show our results in Section 7.
We give a brief run-time analysis in Section 8 and state the
conclusions of our work in Section 9.

2. RELATED WORK

Automatic classification of lightcurves is currently per-
formed by first transforming each lightcurve to a vector of
many statistical descriptors, commonly called features, and
then by training a learning algorithm. These features try to
capture characteristics related to variability and periodicity,
among others. Debosscher et al. (2007) represented a lightcurve
as a vector of 28 parameters derived mainly from periodicity
analysis. Kim et al. (2009) introduced the Anderson–Darling
test in their method to de-trend lightcurves, which tests whether
a given lightcurve can be said to be drawn from a normal
distribution. This test has been included as a lightcurve feature
in later work. Richards et al. (2011) introduced features that
measure aspects like kurtosis, skewness, amplitude, deviation
from the mean magnitude, linear slope, and many features
extracted from periodicity analysis using the Lomb–Scargle
periodogram. Kim et al. (2011) designed features to measure
variability and dispersion and introduced the use of two
photometric bands for some calculations. Pichara et al. (2012b)
proposed the use of the continuous autoregressive model to
strengthen the analysis of irregularly sampled lightcurves.
Huijse et al. (2012) estimated periodicities with an algorithm
based on information theory. Kim et al. (2014) introduced more
features that relate variability and quartile analysis. Nun et al.
(2015) designed a library that aims to facilitate feature
extraction for astronomical lightcurves, which includes a
compendium of features utilized throughout the recent
literature. The design of all features for lightcurve representa-
tion that exist today has been the result of many years of
research effort.

The tremendous amount of effort required to design new
features has driven the focus of many research communities
tackling other classification problems away from feature design
and toward an unsupervised feature learning approach.
Unsupervised feature learning models first emerged in the

computer vision community as an effort to find a compact
vector representation of images (Olshausen & Field 1996).
Many of the models have since been adapted to work with time
series data like speech, music, stock prices, and sensor
readings. The results are varied, with some unsupervised
learning approaches clearly improving the state-of-the-art
performance on benchmark data sets. Sparse coding (Olshau-
sen & Field 1996; Lee et al. 2006, p. 801), a methodology that
aims to learn a set of overcomplete bases that can be used to
represent data efficiently, was used by Grosse et al. (2007) for
audio classification. Another common model that has been
employed to solve time-series problems is the Restricted
Boltzmann Machine (RBM, Hinton & Salakhutdinov 2006;
Hinton et al. 2006; Larochelle & Bengio 2008). The RBM is a
model that learns a distribution over its input data and is
represented by an undirected bipartite graph. The weight matrix
W, which describes the connections between nodes in the
graph, can be used to transform data to a lower dimensional
representation. This model has been used with success as a
replacement for Gaussian mixtures in the discretization step
required for hidden Markov models for audio classification
(Dahl et al. 2012; Mohamed et al. 2012). Jaitly & Hinton
(2011) used raw speech data as input for an RBM with success.
Some variations of the RBM like the mean-covariance RBM
(Krizhevsky et al. 2010; Ranzato & Hinton 2010) have also
been used to improve on audio classification benchmarks (Dahl
et al. 2010, p. 469).
Other, somewhat less popular unsupervised feature learning

models that have been used with success in time series
problems are the recurrent neural network (RNN, Hüsken &
Stagge 2003), the Autoencoder (AE, Hinton & Salakhutdi-
nov 2006; Poultney et al. 2006, p. 1137; Bengio 2009) and
clustering approaches (Coates & Ng 2012, p. 561). The RNN is
essentially a neural network in which the outputs are connected
back to the inputs. It has been used with success in replacing
both the Gaussian mixture and the hidden Markov model in the
traditional audio classification pipeline (Graves et al. 2013).
The AE is a neural network that tries to model the identity
function of its input data. The weights in the network are
adjusted during training to make the network’s output as close
as possible to its input. Längkvist & Loutfi (2012) use a
modified version of the AE to perform unsupervised feature
learning on sensor data, outperforming the best classification
results obtained with expert-designed features. In clustering-
based unsupervised feature learning, data are transformed into a
new representation as a function of both the data and the most
common data patterns found during clustering. Nam (2012)
employs a clustering-based approach in combination with other
models to perform music classification.
Due to the complexity of time series data, most of the works

listed above still tackle unsupervised feature learning with the
aid of some form of preprocessing, which requires both
computational time and domain expertise. Raw time series data
have been used with success in a limited number of problems,
most notably by Jaitly & Hinton (2011). The previously
mentioned models, on the other hand, are not designed to deal
with the kind of time series that are common in astronomical
surveys. Lightcurves are not sampled uniformly, so they have
different numbers of observations for a fixed time frame. These
characteristics of the data make them unsuitable as input for
neural network-based models like the RBM and the AE, sparse
coding, and most models that assume that the input is a vector
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of a fixed size. Sensor data, digital sound, and stock prices do
not have this problem, since they are sampled uniformly. Given
the massive amounts of astronomical data to be collected in
future surveys, the development of an automated pipeline for
raw data analysis with minimal preprocessing is a priority.

3. BACKGROUND THEORY

Unsupervised feature learning algorithms, like the ones
described in the previous section, work by learning a model
from the usually vast amounts of unlabeled data available; this
model can then be used to transform data to a representation
suitable for machine learning tasks. The way we model the data
in our feature learning approach is through a large set of
representative local patterns that cover common occurrences in
the lightcurves. To find these patterns, we run a clustering
algorithm on a large set of unlabeled lightcurve subsequences,
and then consider the representatives of each cluster found as a
pattern to be included in our model.

When clustering any data, the measure used to evaluate the
similarity between data points is of extreme importance to the
quality of the results. In the domain of time series, the use of
standard similarity measures like Euclidean distance and LP
norms, in general, is not suitable. Astronomical lightcurves are
unevenly sampled, and thus the time series under comparison
are rarely of the same length, so the Euclidean distance is not
even well defined for the comparison of this kind of data. To
solve this problem, “elastic measures” that tolerate uneven
sampling and time series of different lengths have been
proposed (Berndt & Clifford 1994; Chen et al. 2005). Serrà &
Arcos (2014) have found the Time Warp Edit Distance
(TWED, Marteau 2009) to be one of the most powerful and
flexible for the case of unevenly sampled time series. Given
that it allows for a meaningful comparison between any pair of
time series of different lengths with even or uneven sampling,
we use the TWED as the similarity measure for lightcurves in
our experiments. The TWED is based on the Levenshtein
distance (LD, Levenshtein 1966), commonly known as Edit
Distance, which was initially defined as a measure to assess the
similarity between two strings of characters and has been
adapted to work with time series.

The use of the TWED as the similarity measure for
lightcurve comparison poses an additional challenge for our
lightcurve clustering; most clustering algorithms do not allow
for the use of an arbitrary function to compare the input data.
K-Means, for example, which has been used in previous
unsupervised feature learning work, is designed to work with
the Euclidean distance and no other measure. Modified
versions of K-Means have been used to cluster lightcurves
using measures like cross-correlation (Rebbapragada
et al. 2009), but these modifications make the algorithm at
least an order of magnitude slower. An additional disadvantage
is that the number of clusters, K, has to be specified as input.
Affinity Propagation (Frey & Dueck 2007) is a clustering
algorithm that works with any input data as long as there is a
similarity function defined for their comparison, which is
exactly our case with the TWED. This algorithm has the
additional advantage that it does not need an a priori
specification of the number of clusters to find, and it defines
a representative exemplar of each cluster. We use this set of
exemplars as our lightcurve model.

What follows in this section is a detailed explanation of the
Edit Distance for Time Series, followed by a definition of the

TWED, and lastly a detailed description of the Affinity
Propagation clustering algorithm.

3.1. Edit Distance for Time Series

The LD (Levenshtein 1966), commonly known as Edit
Distance, is a distance metric used in many applications in
computer science to assess the similarity between two strings of
characters. The LD is defined as the smallest number of
insertions, deletions, and substitutions required to change one
string into another. The ideas behind LD have been extended
for time series matching. What follows is a brief definition of
the matching problem applied to time series.
Let U be the set of finite time series U X p ,p

1{ ∣ }= Î and
X1
p is a time series with discrete time index between 1 and p. Let

xi be the ith sample of time series X. We consider that
x S Ti Î ´ where S Ì embeds the time series values and
T Ì embeds the time variable. We say that x m t,i x xi i( )=
where m Sxi Î and t Txi Î , with t tx xi j> whenever i j> (time
stamp strictly increases in the sequence of samples). Xi

j with
i j< is the sub-time series consisting of the ith through the jth
sample (inclusive) of X. X∣ ∣ denotes the length (the number of
samples) of X. Λ denotes the null sample.
An edit operation is a pair x y, ,( ) ( )¹ L L of time series

samples, written x y . Time series Y results from the
application of the edit operation x y to time series X,
written X Y via x y , if X xs t= and Y ys t= for some
time series (both time series are the same except for subsets x
and y). We call x y a match operation if x ¹ L and y ¹ L,
a delete operation if y = L, and an insert operation if x = L.
Similarly to the edit distance defined for strings, we can define

X Y,( )d as the similarity between any two time series X and Y
of finite lengths p and q as

X Y

X Y x

X Y x y

X Y y

, min

, delete

, match

, insert

p q

p q
p

p q
p q

p q
q

1 1

1
1

1

1
1

1
1

1 1
1

( )

( ) ( )
( ) ( )

( ) ( )

⎧
⎨
⎪⎪

⎩
⎪⎪

d

d

d

d

=

+ G  L

+ G 

+ G L 

-

- -

-

where p q1, 1  , and Γ is an arbitrary cost function that
assigns a non-negative real number x y( )G  to each edit
operation x y .
It is worth pointing out that in the context of astronomical

lightcurves, the notation X1
p corresponds to a lightcurve with p

observations, x m t,i x xi i( )= is the ith observation with mxi

being its photometric magnitude and txi the observation time.

3.2. Time Warp Edit Distance

TWED is a similarity measure for time series based on the
Edit Distance for time series but aims to provide an elastic
metric for time series matching by taking the time differences
into account when penalizing edit operations. TWED’s edit
operations are best understood as tools for superimposing two
time series on a 2D graphical editor. Instead of match, delete,
and insert operations, TWED defines the match, delete-X, and
delete-Y operations:

1. match: the match operation (Figure 1(a)) consists of
matching a segment x x,i i1( )- of X with a segment
y y,j j1( )- of Y. In the graphical editor paradigm, the
operation consists of clicking on the line that represents
segment x x,i i1( )- and dragging and dropping it onto the
line that represents segment y y,j j1( )- . The cost of this
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operation is proportional to the sum of the distances
between corresponding samples of the segments: y xj i∣ ∣-
and y xj i1 1∣ ∣-- - .

2. delete-X: the delete-X operation (Figure 1(b)) consists of
deleting a sample xi. In the graphical editor paradigm, the
operation consists of clicking on the point that represents
sample xi and dragging and dropping it onto the point that
represents sample xi 1- . The cost associated with this
delete operation is proportional to the length of the vector
x xi i 1( )- - , to which a constant penalty λ is added.

3. delete-Y: just like the previous operation, the delete-Y
operation (Figure 1(c)) consists of deleting a sample yi. In
the graphical editor paradigm, the operation consists of
clicking on the point that represents sample yi and
dragging and dropping it onto the point that represents
sample yi 1- . The cost associated with this delete
operation is proportional to the length of the vector
y yi i 1( )- - , to which a constant penalty λ is added.

The three edit operations are illustrated in Figure 1, following
the idea of edit operations in a graphical editor paradigm.

The previous operations together with the definitions of
Section 3.1 provide the basis for the definition of TWED:

X Y

X Y X

X Y

X Y Y

, min

, del

, match

, del

x
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p q

p q

p q
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where
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It is important to note that parameter γ controls the
“elasticity” of TWED: the higher it is, the higher the penalties
related to time stamp differences. Like many proposed
measures of time series similarity, TWED is calculated with
a simple dynamic programming algorithm with running time O
(pq). The recursion is initialized to X Y i, , 1;i

, 1 1
1( )d = ¥ " >l g

X Y j, , 1j
, 1

1
1( )d = ¥ " >l g , and X Y, 1, 1

1
1
1( )d =l g .

To better understand TWED, consider the following
example where two match operations are performed in total.
Let X1

3 and Y1
3 be two time series with three samples each,

X 1, 3 , 3, 6 , 8, 8{( ) ( ) ( )}= and Y 2, 1 , 5, 8 , 9, 7{( ) ( ) ( )}= .
Let 1l g= = . We have
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Figure 1. Edit operations in a graphical editor. Time series X and Y are depicted
in light blue and dark blue, respectively.
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and finally

X Y, min
13 8
7 6
15 6

13.

, 1
3

1
3( )

⎧
⎨⎪
⎩⎪

d =
+
+
+

=

l g

The distance between X1
3 and Y1

3 is 13. If we were to
calculate the TWED between two identical time series, the
matching cost xyG would be zero at each step. Is it easy to see
then that the TWED between two identical time series is zero
since at each step the match operation of zero cost would be
chosen.

Figure 2. Illustration of an overview of the method: in the first step, we draw random subsequences from lightcurves to form a large set of lightcurve fragments. The
second step consists of clustering these fragments with the Affinity Propagation algorithm. The third step consists of using the representative exemplars found during
clustering to encode a training set of labeled lightcurves to a new representation more suitable for automatic classification tasks.
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3.3. Affinity Propagation

Affinity Propagation (Frey & Dueck 2007) is a clustering
algorithm that aims to find representative exemplars from its
input data. This algorithm views each data point as a node in a
network, and recursively transmits real-valued messages along
the edges of the network until a satisfactory set of exemplar
points emerges. The magnitude of the transmitted messages
reflects the “affinity” that one data point has for choosing
another point as its exemplar.

The algorithm input is a matrix of real-valued similarities
between data points, where s i k,( ) is the similarity between the
data points with indices i and k. A higher value of s i k,( )
reflects a higher similarity. This measure is usually set to the
negative Euclidean distance (distant points get low simila-
rities), but the method can be applied to any arbitrary similarity
measure. The values along the diagonal of the similarity matrix,
s k k,( ), are called “preferences,” and a larger value reflects a
higher likelihood of being chosen as an exemplar during
clustering. When no data point should be favored during
clustering, like in our experiments, s k k,( ) should be set to a
common value for all k. Another significant advantage of this
algorithm besides the aforementioned flexibility is that in
contrast to other common clustering algorithms like K-Means,
Affinity Propagation does not require the number of clusters to
be specified in advance. The number of clusters (number of
exemplars) found is affected by both the values set for
preferences and the message-passing procedure. In our
experiments, we set the preferences to the median similarity
between all points, which produces a moderate number of
clusters (Frey & Dueck 2007). Another value used for the
preferences is the minimum similarity, which produces a small
number of clusters.

Data points exchange two different kinds of messages during
clustering: “responsibility” r i k,( ) and “availability” a i k,( ).
The first reflects the accumulated evidence for how good point
k is to serve as an exemplar to point i, while the second reflects
how appropriate it would be for point i to choose point k as its
exemplar. The availabilities are initialized to zero: a i k, 0( ) = .
The responsibilities are then computed using the following
update rule:

r i k s i k a i k s i k, , max , , .
k s t k k. .

( ) ( ) { ( ) ( )}¬ - ¢ + ¢
¢ ¢¹

This update rule should be seen as a competition between all
candidate exemplars for ownership of a data point. The
availability update rule, on the other hand, gathers evidence
from data points as to whether a candidate exemplar would be a
good exemplar:

a i k r k k r i k, min 0, , max 0, , .
i s t i i k. . ,

( ) { ( ) { ( )}
{ }

å¬ + ¢
¢ ¢¹

The availability a i k,( ) is set to the self-responsibility r k k,( )
plus the sum of the positive responsibilities that candidate
exemplar k receives from other points. Only the positive
portions of incoming responsibilities are added, because it is
only necessary for a good exemplar to explain some data points
well (positive responsibilities), regardless of how how poorly it
explains other data points (negative responsibilities). The “self-
availability” a k k,( ) is updated with the following rule:

a k k r i k, max 0, , .
i s t i k. .

( ) { ( )}å¬
¢ ¢¹

This message reflects accumulated evidence that point k is an
exemplar based on the positive responsibilities sent to
candidate exemplar k from other points.

Figure 3. Lightcurve subsequence sampling. We sample a subsequence of the lightcurve by extracting all the observations in a given time window (translucent
red), tw.
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At any moment during Affinity Propagation, availabilities
and responsibilities can be combined to identify exemplars. For
point i, the value of k that maximizes a i k r i k, ,( ) ( )+ either
identifies point i as an exemplar if k=i, or identifies the data
point that is the exemplar for point i. The message-passing
procedure may be terminated after a fixed number of iterations,
after changes in the messages fall below a threshold, or after
the local decisions stay constant for some number of iterations.

4. DESCRIPTION OF THE METHOD

Our method draws from what was proposed in Coates & Ng
(2012, p. 561) for the domain of images, with substantial
modifications to make our new algorithm work well with
lightcurves. As Keogh & Lin (2005) demonstrated, time-series
subsequence clustering with K-Means and Euclidean distance
will very seldom produce meaningful results. Furthermore, the
Euclidean distance is not well defined for the comparison of
two lightcurves since the two time series will rarely have the
same length because they are not evenly sampled. To overcome
this problem, we employ the TWED (Section 3.2) together with
an appropriate clustering algorithm that works well with any
similarity measure for its data, Affinity Propagation
(Section 3.3).

Our algorithm consists of three main steps. In the first step,
we randomly sample subsequences from lightcurves to form a
large set of lightcurve fragments. The second step consists of
clustering these fragments with the Affinity Propagation
algorithm and the TWED similarity measure, both described
in detail in Sections 3.3 and 3.2 respectively. The third step
consists of using the representative exemplars, found during
clustering, to encode a training set of labeled lightcurves to a
new representation for the classification tasks. Figure 2
provides an illustrated overview of the process.

4.1. Lightcurve Subsequence Sampling

To get the data that we want to cluster, we randomly sample
N subsequences of lightcurves from a given data set by

extracting all the observations in a given time window, tw. The
idea behind sampling small time windows and not using the
whole lightcurve is to force our model to capture local patterns
in the data. This procedure is illustrated in Figure 3.

4.2. Affinity Propagation Clustering

After collecting N lightcurve fragments from our data, we
run the Affinity Propagation clustering algorithm with the set of
fragments extracted in the first step as input data to find a set of
representative lightcurve subsequences. This process is illu-
strated in Figure 4. The affinity measure used during clustering
is the negative TWED: X Y,p q

, 1 1( )d- l g , where X1
p and Y1

q are two
lightcurve fragments. We use the negative TWED since in that
way a greater distance means a lesser degree of similarity. After
the clustering is completed, we have a set of K representative
exemplars from the data, which capture common local patterns
occurring in the time series.

4.3. New Representation

With the K exemplars found during the clustering step, we
use a feature mapping function f to map any lightcurve
fragment to a new feature space. The idea is to encode any
lightcurve fragment as a K-dimensional vector where each
index of the vector will represent a degree of similarity between
the lightcurve fragment and each of the K exemplars. Our
choice of f is

f X cmax 0, ,k
p k

, , 1{ ( ) ( )}( )m d d= -l g l g

where X1
p is a lightcurve fragment with p observations, c k( ) is

the kth exemplar, and ,( )m dl g is the average TWED between
the fragment and all the other exemplars. This means that the
value of any given index of the vector will be 0 if the distance
to that exemplar is above average, and a positive value when
the distance is below average. This value is larger when the

Figure 4. Lightcurve clustering. The lightcurve subsequences (represented by
the colored dots) are grouped into clusters according to their affinity measure,
which in this case is the negative TWED.

Table 1
Composition of the MACHO Training Set

Class
Number of
Objects

1 Non-nariable 3613
2 Quasar 17
3 Be Star 55
4 Cepheid 103
5 RR Lyrae 551
6 Eclipsing binary 42
7 Microlensing 173
8 Long-period

variable
281

Table 2
Composition of the OGLE-III Training Set

Class Number of Objects

1 Cepheid 992
2 Type 2 Cepheid 476
3 RR Lyrae 971
4 Eclipsing binary 982
5 Delta Scuti 980
6 Long-period variable 957
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fragment is more similar to the exemplar. It is expected that
roughly half the values in any given vector will be zero, which
is a favorable condition for our classification procedure,
detailed in Section 4.4.

Given this feature mapping function, we can now encode a
complete lightcurve in our new representation by applying f to
sequential fragments of the lightcurve. Specifically, given time
step ts and the time window tw, the adjacent fragments are
obtained by getting all the time series data in one window and
then moving the time window by ts, sliding the window across
the whole lightcurve. It is worth noting that ts is usually much
smaller than tw, so the extracted fragments overlap signifi-
cantly. We extract adjacent fragments from each lightcurve
until the sliding window reaches the end of the observations;
this means that the number of fragments extracted is variable
and depends on the length of the lightcurve. If M is the number
of fragments extracted from a lightcurve, the final representa-
tion is of dimensions M K ´ . This process is illustrated in
Figure 5.

This intermediate representation of a lightcurve is too large
for use as direct input to any classification algorithm. To reduce
the dimensionality of data while maintaining the maximum
amount of information, it is a common practice to perform a
procedure called feature pooling (Boureau et al. 2010). Pooling
works by aggregating features extracted from a group of
adjacent lightcurve fragments. Encoded fragments from
windows that are adjacent or relatively close are also very
similar, so finding a way to aggregate those features makes
sense to reduce the dimensionality of data. In our experiments,
we divide the final representation into four regions of equal size
and aggregate the features inside each one. For each of the K
features, we take the maximum value in each region, a
procedure that is called max-pooling.

The final pooled representation of a complete lightcurve is a
vector of size K4 ´ , significantly smaller than the representa-
tion of size M×K that is obtained after the sliding window
step. The number of regions over which to pool the data

represents a trade-off between information preservation and
dimensionality of the final representation. We chose four as the
number of pools that would allow our representation to
preserve the maximum amount of information while still
maintaining a manageable dimensionality for the classification
stage. Empirically, we found four to work better in the
classification task.

4.4. Classification

The final training set is composed of all of the lightcurves
encoded in our new representation together with their original
labels. We use this data set to train a linear SVM classifier
(Boser et al. 1992; Cortes & Vapnik 1995). The SVM is a
classifier that tries to fit hyperplanes to data to separate classes.
For an overview and discussion see Kim et al. (2012) and
references therein.

5. DATA

The photometric data used in our experiments belong to two
different catalogs, the Massive Compact Halo Object
(MACHO) catalog and the Optical Gravitational Lensing
Experiment (OGLE).

5.1. MACHO Catalog

The MACHO is a survey that observed the sky starting in 1992
July and ending in 1999 to detect microlensing events produced
by Milky Way halo objects. Several tens of millions of stars were
observed in the Large Magellanic Cloud (LMC), Small
Magellanic Cloud (SMC), and Galactic bulge (Alcock et al. 1997).

5.2. OGLE-III Catalog of Variable Stars

The OGLE is a wide-field sky survey originally designed to
search for microlensing events (Paczynski 1986). The bright-
ness of more than 200 million stars in the Magellanic Clouds
and the Galactic bulge is regularly monitored on a timescale of
years. A by-product of these observations is an enormous

Table 3
Relevant Parameter Values

Name Symbol Value Comments

Time window tw 250 days We used 250 days to capture local patterns in the time series while allowing patterns from lightcurves with
longer periodicities to also be captured (see Figure 6). We also considered using the autocorrelation function
length (Kim et al. 2011) but the values of this feature for each class were too different for us to choose a good
common value for all the data

Time step ts 10 days Encoding will work best with as much overlap as possible between the adjacent lightcurve subsequences during
the sliding window process (Section 4.3). Any redundant data will be eliminated through pooling, while no
relevant patterns will be missed

Number of samples N 20,000 The number of samples affects the performance of the clustering step significantly. We minimized the number
of samples subject to still maintaining good classification performance. We consider 20,000 to be a suffi-
ciently large number of samples while still keeping the computational time within reasonable bounds and
allowing us to maintain our classification performance

TWED elasticity cost γ 10–5 We chose a relatively low penalty for this parameter to allow for higher “elasticity” when comparing lightcurve
subsequences, in comparison to the values used in Marteau (2009)

TWED deletion cost λ 0.5 We chose a mid-point penalty for this parameter so as not to bias the TWED toward matching operations when
comparing lightcurve subsequences, in comparison to the values used in Marteau (2009)

Number of pooling
regions

L 4 The number of regions over which to pool the data represents a trade-off between information preservation and
dimensionality of the final representation. We chose four as the number of pools that would allow our
representation to preserve the maximum amount of information while still maintaining a manageable
dimensionality for the classification stage; this is the most common number used throughout the literature
(Boureau et al. 2010; Coates & Ng 2012, p. 561). Empirically, we found four to work better in the
classification stage
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database of photometric measurements. The OGLE-III Catalog
of Variable Stars (Udalski et al. 2008) corresponds to the
photometric data collected during the third phase of this survey,
which began in 2001.

5.3. Training Sets

For our encoding and classification experiments we used
subsets of both MACHO and OGLE surveys, corresponding to
sets of labeled photometric data. The MACHO training set is
composed of 4835 labeled observations (Kim et al. 2011); the
OGLE training is composed of 5358 labeled variable objects
from the OGLE-III Catalog of Variable Stars (Udalski
et al. 2008). The per-class composition of both training sets
is detailed in Tables 1 and 2. The OGLE training set was
chosen as a subset of the most represented variable star classes
in the catalog with the objective of creating a training set of
comparable size to the MACHO data set.

6. IMPLEMENTATION

Our implementation uses minimal preprocessing: all light-
curves are adjusted to have zero mean and unit variance. To
make our method robust to noise in the data, we discard the
observations with high noise. More specifically, we remove all

observations with errors bigger than three times the mean error
of the lightcurve. Moreover, in the MACHO and OGLE data
sets, the photometric errors are almost uniform across all
measurements with the exception of a few outliers that we
remove. This means that errors should not affect our result. For
our lightcurve subsequence sampling step (Section 4.1) we
sampled from thousands of unlabeled lightcurves. The para-
meters we used in our experiments are detailed in Table 3. The
code for our experiments is available at https://github.com/
cmackenziek/tsfl.
We used the Affinity Propagation and SVM implementations

available in the machine learning library scikitlearn (Pedregosa
et al. 2011). We also used the libraries numpy, scipy and
pandas for data manipulation and efficient numerical computa-
tion (McKinney 2010; van der Walt et al. 2011).

7. EXPERIMENTAL RESULTS

In this section, we present the results obtained in our
experiments. First, we present the results of the clustering step
of our method, which we hope will help the reader gain qualitative
insight into the inner workings of our algorithm. Then, we present
the classification results on all the training sets described in
Section 5 using two different classifiers and two methods of
lightcurve representation: the classical expert-designed time series

Figure 5. Sliding window process. The sliding window (translucent red) extracts a subsequence of the lightcurve at each step, which is encoded as a K-dimensional
vector by our encoding function f. The window moves sequentially along the time axis, extracting and encoding one subsequence at each step.
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Figure 6. Cluster exemplars with members. Exemplars are lightcurve subsequences chosen by the clustering algorithm as the best representatives of their clusters.
Each of the six plots shows an exemplar (plotted in blue) together with three other cluster members (plotted in red). We can appreciate how the clustering algorithm
successfully groups similar lightcurve subsequences together.
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features and our learned features. Finally, we present an analysis
of the classification relevance in terms of both types of features.

7.1. Clustering Results

Given that clustering aims to find groups of similar data, one
would expect that clustering lightcurve subsequences would
group similar patterns in the photometric data. Our results show
that this is indeed the case. To show the results of the lightcurve
subsequence clustering step described in Section 4.2, we
provide plots of some of the learned exemplars together with
some other lightcurve subsequences that are members of the
same clusters. We can see some of the results in Figure 6:
cluster exemplars are plotted in red together with some
members of their respective clusters plotted in blue. We can
see that the algorithm captures groups of similar subsequences

together. Lightcurve subsequences are grouped by important
traits like variability and periodicity. This information is
usually estimated with traditional features; our model can
automatically group the lightcurve fragments without pre-
viously defining what the important criteria are. This fact

Table 4
Classification F-Score on the MACHO Training Set

Class
SVM Trained

with LF
RF Trained
with TSF

SVM Trained
with TSF

1 Non-variable 0.991 0.991 0.875
2 Quasar 0.296 0.533 0.217
3 Be star 0.717 0.788 0.625
4 Cepheid 0.871 0.917 0.936
5 RR Lyrae 0.953 0.969 0.797
6 Eclipsing binary 0.780 0.763 0.725
7 Microlensing 0.980 0.974 0.468
8 Long-period

variable
0.975 0.947 0.802

Weighted average 0.975 0.978 0.807

Table 5
Classification F-Score on the OGLE-III Training Set

Class
SVM Trained

with LF
RF Trained
with TSF

SVM Trained
with TSF

1 Cepheid 0.835 0.737 0.555
2 Type 2 Cepheid 0.651 0.567 0.467
3 RR Lyrae 0.749 0.868 0.649
4 Eclipsing binary 0.862 0.602 0.458
5 Delta Scuti 0.817 0.656 0.656
6 Long-period

variable
0.821 0.648 0.407

Weighted
average

0.821 0.696 0.696

Table 6
Number of Candidates per Class on MACHO Field 77

Class Number of Candidates

Non-variable 382,306
Quasar 176
Be star 975
Cepheid 1,459
RR Lyrae 13,544
Eclipsing binary 85,099
Microlensing 26,231
Long-period variable 1,486

Figure 7. Examples of new variable star candidates. The lightcurves in the
plots have been folded since they correspond to periodic stars. The first two
lightcurves were classified as Cepheid while the third was classified as an
eclipsing binary.
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explains how the final encoding step will output relevant data
that allow classifiers to distinguish correctly between light-
curves of different classes: subsequences that exhibit different
local photometric patterns will be encoded differently since
they will be similar to a different subset of exemplars.

7.2. Classification Results from the Training Set

To evaluate the classification performance of a classifier trained
on our learned features, we must obtain a benchmark with which
to compare it. The logical benchmark for this task is the
classification performance of a classifier using traditional time
series features as input on the same training sets. Classifier
performance is measured with a 10-fold stratified cross-validation
F-score on each of the lightcurve classes of a given training set (or
test set). Since the data produced by our feature learning method
are high-dimensional and relatively sparse (each vector will have
many zeroes by design, because of our encoding function f), we
use a SVM (Cortes & Vapnik 1995) with a linear kernel as the
classifier. To build the training sets for time series features, we
applied the FATS Library (Nun et al. 2015), which has an
exhaustive collection of time series features used throughout the
literature. Traditionally, the classifier of choice for lightcurve data
sets with time series features has been the Random Forest
classifier (Breiman 2001); hence, we decided to compare our
SVM with learned features against a Random Forest (RF) with the
time series features. We also compared our SVM trained on
learned features against an SVM trained on time series features.
Tables 4 and 5 show the results for each training set. The acronym
TSF refers to time series features, which are expert-designed
features available in the FATS Library, and LF refers to learned
features, which are the features we learn with our method. The
SVM classifier performs as well as the Random Forest on the
MACHO training set on many classes. Quasars are the only class
where the SVM does not achieve comparable performance. We
believe this to be due to the relatively low frequency of quasars in
the whole training set, which is known to affect SVM
classification performance. On the OGLE-III training set the
SVM trained on learned features achieved superior results, only
performing worse in one class. The first column details the
variability class; the second column shows the result of an SVM
classifier on 10-fold cross-validation with a linear SVM of both
training sets. The learned features achieve a better overall
classification performance than the time series features. All
weighted averages are calculated using the relative frequency of
each class of variable stars in the whole training set.

7.3. Classification Results from MACHO Field 77

In order to discover new variable star candidates, we
classified 511,276 lightcurves from field 77 of the MACHO
catalog. We found 128,970 variable star candidates; the per-
class classification details are shown in Table 6. We cross-
matched our variable star candidates with the SIMBAD
Astronomical Database (Wenger et al. 2000) to filter out
known candidates and found that 15,907 were already known
and thus 113,873 are new. Figure 7 shows examples of our
new candidates: the first two lightcurves were classified as
Cepheid while the third was classified as an eclipsing binary.
Our table of candidates is available for download at https://
www.dropbox.com/s/fpsktd8aflelp7q/field77results_filtered.
csv?dl=0. We will upload the catalog of our candidates to
SIMBAD.

7.4. Feature Importance

A very important aspect of a successful classification model
is representing the data with relevant features that help the
model distinguish between the different labeled data. With this
in mind, it would be interesting to analyze how each of the
features in a data set contributes to the final classification task.
We performed a feature importance analysis on our learned
features and time series features, using the hyperplane
coefficients of an SVM with a linear kernel. The general idea
behind using the hyperplane coefficients of an SVM is that the
importance of a feature in separating between classes is
proportional to the magnitude of its corresponding coefficient.
A feature that completely separates the classes will have a
coefficient of −1 or 1, while a completely irrelevant feature
will have a coefficient of 0. A more detailed explanation of the
theory behind this analysis is given by Guyon et al. (2002),
who used SVM coefficients for selection of gene subsets.
Since our classification problems are multi-class, we get one

separating hyperplane for each class. We defined the relative
feature importance, i, as the sum of the absolute values of each

Figure 8. Cumulative sum of relative importance. A feature set that has lots of
features that do not contribute much to classification (i.e., rarely get used by the
SVM to separate between classes) would result in a plot where the cumulative
sum reaches 1 with a lower percentage of features than a feature set where most
of the features are relevant to the classification task for at least some of the
classes.
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of the feature’s coefficients in each hyperplane, divided by the
sum of the importance of all features:
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j is the coefficient with index k of hyperplane j, N is the

number of classes, and F the number of features. We can
visualize at a high level how the two types of features
contribute to classification by looking at Figure 8, which plots
the cumulative sum of the relative feature importances versus
the percentage of features being added. A feature set that has
lots of features that do not contribute much to classification
(i.e., rarely get used by the SVM to separate between classes)
would result in a plot where the cumulative sum reaches 1 with

Figure 9. Relative importance per class. The two heatmaps show the relative importance of each feature of both training sets constructed with the MACHO and OGLE
data. We can see in the figure that the contribution of each learned feature to classification is complex while the contribution of designed features is in many cases
minimal, and classification with these features is largely based on the contribution of a few of the best features.

Table 7
Computational Run-time Details

Step Run Time

Sampling (Section 4.1) 5 minutes
Clustering (Section 4.2) 10 minutes
Encoding (Section 4.3) 1.5–3 hr

Total 1.75–3.25 hr

Table 8
Average Encoding Time

Training Set LF TSF

MACHO 1.95 s 12.94 s
OGLE-III 0.86 s 7.70 s
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a low percentage of the features. On the other hand, a feature
set where most of the features are relevant to the classification
task for at least some of the classes would result in a plot where
the cumulative sum reaches 1 with a high percentage of the
features. This is the case for Figure 8, where it is evident that a
great percentage of the time series features do not contribute
much to classification.

Another way of analyzing the contribution of learned
features to classification is by looking at the relative importance
of each of the features in each of the hyperplanes that are
learned in each class during the SVM training (a multi-class
SVM learns one hyperplane to separate each class from all of
the rest). We can see in Figure 9 that the contribution of learned
features to classification is complex and that their contribution
is different for each class: most of the features have very
different relative importance values for each class. Time series
features, on the other hand, rely heavily on a few features for
classification: a clear example of this is the red color of one
feature for classes 5 and 6 in the top right heatmap, while the
other features look mostly dark blue (the lowest relative
importance value).

8. COMPUTATIONAL RUN-TIME ANALYSIS

To address the scalability requirements of future astronom-
ical surveys, it is important that analysis algorithms run within
manageable time frames and scale well with an increase in the
volume of input data. Table 7 shows the approximate run times
for each step of our method described in Section 4. The two
main algorithms on which we rely are Affinity Propagation and
the TWED. The algorithmic complexity for Affinity Propaga-
tion is O N 2( ) where N is the number of points (lightcurve
subsequences) being clustered, and the complexity of TWED is
O(pq) where p and q are the numbers of samples in each of the
time series under comparison.

Our method is also significantly faster in transforming a
lightcurve from its time series to its encoded vector
representation. If we compare against calculating the time
series features that we used for comparison in our experiments,
we find that the speed gain is almost an order of magnitude, as
shown in Table 8. One might argue that this is not a fair
comparison since our method depends on the execution of
previous steps, namely sampling and clustering, but that
overhead is a constant cost that does not increase with the
number of lightcurves to be transformed.

9. CONCLUSIONS

In this work, we have introduced a new way of modeling and
representing lightcurve data as input for automatic classifiers.
The method does not assume previous knowledge about the
lightcurves or use any expert knowledge, unlike previous
traditional methods that use a set of time series features
specially designed by astronomers for the task of classification.
The previous fact together with the possibility of leveraging the
vast amount of information available in unlabeled data
constitutes a big step toward a more automatic, flexible, and
powerful classification pipeline. Our method works by
extracting a large number of lightcurve subsequences from a
given set of photometric data, which are then clustered to find
common local patterns in the time series. Representatives of
these common patterns, called exemplars, are then used to

transform lightcurves of a labeled set into a new representation
that can then be used to train an automatic classifier.
Our results show that this representation is as suitable for

classification purposes as the traditional time series feature-
based representation. Classifiers trained with our features
perform as well as ones trained with expert-designed features,
while the computational cost of our method is significantly
lower. With our method we were able to find 113,873 new
variable star candidates. Our hope is that the research
community will hold feature learning methods as a valid
alternative to lightcurve representation in future work since we
have shown them to be a strong competitor to the expert-
designed time series features. Our implementation code is
readily available for others to download and build upon: users
should try to adjust the parameters mentioned in Table 3 to suit
their particular application.
While our method does not deal directly with errors in the

photometric observations, the use of clustering makes our
method robust regarding noise without specifically having to
model errors. The intuition behind this is that the clustering
stage finds common occurring patterns in the whole data set of
fragments. Lightcurve subsequences significantly affected by
random noise are not likely to be similar to many other
subsequences, and thus will not be chosen as exemplars. The
use of our method with highly noisy data would probably
require the utilization of a similarity measure, which considers
errors in its measurements. This could be done by comparing
the distributions of the two subsequences, such as by χ2

measure, the mutual information criteria, or simply by adding a
penalty term that depends on the errors. The first two methods
are computationally very expensive and not appropriate for the
type of applications we are considering. The last is an ad-hoc
measure and not statistically motivated, and it requires an extra
optimization procedure (extra coefficient in TWED’s opera-
tions) that will also impact the computational cost. Significant
further research would be needed to develop a fast approxi-
mated optimization process, which is outside the scope of
this work.
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