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ABSTRACT

We present a new quasi-stellar object (QSO) selection algorithm using a Support Vector Machine, a supervised
classification method, on a set of extracted time series features including period, amplitude, color, and autocorrelation
value. We train a model that separates QSOs from variable stars, non-variable stars, and microlensing events using
58 known QSOs, 1629 variable stars, and 4288 non-variables in the MAssive Compact Halo Object (MACHO)
database as a training set. To estimate the efficiency and the accuracy of the model, we perform a cross-validation
test using the training set. The test shows that the model correctly identifies ∼80% of known QSOs with a 25%
false-positive rate. The majority of the false positives are Be stars. We applied the trained model to the MACHO
Large Magellanic Cloud (LMC) data set, which consists of 40 million light curves, and found 1620 QSO candidates.
During the selection none of the 33,242 known MACHO variables were misclassified as QSO candidates. In order
to estimate the true false-positive rate, we crossmatched the candidates with astronomical catalogs including the
Spitzer Surveying the Agents of a Galaxy’s Evolution LMC catalog and a few X-ray catalogs. The results further
suggest that the majority of the candidates, more than 70%, are QSOs.
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1. INTRODUCTION

A large catalog of quasi-stellar object (QSO) is important
for a variety of fields in modern astrophysics and observational
cosmology. QSOs have been used for studies of (1) large-scale
structures based on the spatial clustering of QSOs (Shen et al.
2007; Ross et al. 2009), (2) growth of central black holes us-
ing the estimated black holes’ masses (Kollmeier et al. 2006),
(3) coevolution of black holes and their host galaxies using
lensed QSO hosts (Peng et al. 2006), (4) the epoch of reioniza-
tion based on high-redshift QSOs (Becker et al. 2001; Fan et al.
2006), (5) dark matter substructure using gravitationally lensed
QSOs (Metcalf & Madau 2001; Miranda & Macciò 2007), and
(6) properties of the intergalactic medium determined by mea-
suring metallicity distribution using QSO spectra (Viel et al.
2002; Simcoe et al. 2004).

One of the most interesting properties of QSOs is the strong
flux variation over a wide range of wavelengths on timescales
from days to years (Hook et al. 1994; Hawkins 2002; and refer-
ences therein). It is believed that QSO variability is associated
with accretion disk instabilities (Rees 1984; Kawaguchi et al.
1998) although there are other possible explanations for the
source of QSO variability, including microlensing (Hawkins
1993; Zackrisson et al. 2003), starbursts, and supernovae
(Terlevich et al. 1992; Aretxaga et al. 1997). It is debatable which
mechanism is the dominant source of variability (see Hook et al.
1994; Giveon et al. 1999; Vanden Berk et al. 2004; de Vries et al.
2005; Bauer et al. 2009). Moreover, due to the lack of long-
time-span, well-sampled, and high-quality QSO light curves,
all these previous studies have investigated ensemble variabili-
ties of QSOs. Thus, it is important to have a large set of well-
sampled QSO light curves in order to study both ensemble and

individual QSO variability characteristics, which will help con-
strain the theoretical models of the variability mechanisms (see
Hook et al. 1994; Cristiani et al. 1996; Vanden Berk et al. 2004,
and references therein).

Many authors have attempted to select QSO candidates
based on the variability characteristics. For instance, Eyer
(2002) selected QSO candidates from 68,000 OGLE-II vari-
able stars (Zebrun et al. 2001) using colors, magnitudes, and
the structure function of the variables. The structure func-
tion determines the timescale of variability in a given light
curve as a function of the time lag between observations
(Eyer 2002). Among the selected 133 QSO candidates, ∼10%
were confirmed to be QSOs (Dobrzycki et al. 2002, 2005). Geha
et al. (2003, hereinafter G03) searched 140,000 MAssive Com-
pact Halo Object (MACHO) sources that have significant flux
variation (Alcock et al. 2000). G03 used colors, magnitudes,
and two statistical parameters that quantify variability to select
QSO candidates. G03 then removed known MACHO variable
stars (Alcock et al. 2001) from the candidate list and finally ex-
amined the remaining candidates manually in order to remove
false positives. Among the final 360 candidates, 259 were spec-
troscopically observed and 47 of them confirmed to be QSOs.
Sumi et al. (2005) searched about 200,000 variable objects of
the OGLE-II data (Woźniak et al. 2002) and then used a few
selection cuts such as magnitudes, structure function, and man-
ual validation. No spectroscopic observation was done for their
final 97 QSO candidates.

Recently, four QSO selection methods have been submitted or
published, which proposed new QSO classification algorithms
using time series variability features. One of them is the work
done by Kozłowski et al. (2010) that used a stochastic model
shown in Kelly et al. (2009) which derives the amplitude and the
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timescale of light curve variations. They also employed periods
of light curves and magnitudes. To develop their selection
method, they used the known QSOs, periodic variables, and
non-periodic variables in the Optical Gravitational Lensing
Experiment (OGLE) databases (Udalski et al. 1997, 2008). They
also used QSO candidates from Kozłowski & Kochanek (2009)
that had OGLE counterparts. To separate the QSOs from other
variables, they defined several cuts and correctly identified 63%
of the QSOs while removing most of the variable stars. The
second study (Schmidt et al. 2010) proposed a power-law model
to fit the structure function and derived the amplitude and the
power index of the model. They used the derived parameters
to isolate known QSOs from RR Lyraes and non-variable stars
extracted from the Sloan Digital Sky Survey (SDSS) stripe 82
database (S82; Sesar et al. 2007). Using simple cuts on the
amplitude versus power index plane, they identified about 90%
of the SDSS QSOs with a 5% false-positive rate. Butler & Bloom
(2011) and MacLeod et al. (2011) used similar approaches (i.e.,
structure function) with the previous two works. Both utilized
the preselected variable sources from the S82 data set where
the majority of the variables are QSOs, RR Lyraes, and stars
from the stellar locus (see Sesar et al. 2007 for details). Butler
& Bloom (2011) parameterized the ensemble QSO structure
function as a function of brightness of the QSOs. They then
used the parameterized ensemble QSO model to evaluate the
quasar likelihood for individual light curves (see Butler &
Bloom 2011 for details). Using this method, they identified
nearly all the known SDSS QSOs (99%) with a 3% false-positive
rate. MacLeod et al. (2011) also used the structure function and
several cuts to identify QSOs and exclude other variable stars
from the S82 database. They correctly selected about 90% of
the QSOs with a 10% ∼ 20% false-positive rate depending on
the cuts imposed. Both works also selected new QSO candidates
from the preselected variable sources (Sesar et al. 2007). These
candidates have not been spectroscopically confirmed. Note that
the efficiencies or false-positive rates of these studies should
not be directly compared because each work used their own
selected set of stars and QSOs to develop their methods. For
a comprehensive comparison of the results of the methods, see
MacLeod et al. (2011).

Even though some of these recent works (Schmidt et al.
2010; Butler & Bloom 2011; MacLeod et al. 2011) showed
high efficiencies and low false-positive rates, they used samples
that are selected in such a way that high efficiency and low false-
positive rate is to be expected. The separation of QSOs from non-
varying stars and a few types of variable stars, especially short-
period variables (i.e., RR Lyraes), are relatively straightforward
since QSOs show non-periodic and long timescale fluctuation.
The majority of the samples they used in these studies are short-
period variables and do not show long timescale fluctuation.

QSO selection methods based on variability will be valuable
tools for ongoing and future large-scale survey missions such
as Pan-STARRS (Kaiser 2004) and LSST (Ivezic et al. 2008).
These surveys will keep monitoring wide areas of the sky and
will produce vast amount of time series data in several wave-
length bands (e.g., g, r, i, z for Pan-STARRS). Because spec-
troscopic observations for such wide areas are very expensive,
QSO selections in the absence of spectroscopic data are be-
coming important, and thus developing QSO selection methods
using variability are rapidly attracting notable attention.

The work presented in this paper utilizes the whole MACHO
light curve data set considering all known variable sources in
the MACHO database. Thus, this is the first work that considers

the efficiency and the false-positive rates of QSO selection in
an entire light curve data set. We have developed our method by
training on the richest possible data set including all known
types of sources and testing it also on the whole data set.
The training set includes a variety of variable objects such as
QSOs, RR Lyraes, Cepheids, eclipsing binaries, long period
variables, Be stars, microlensing events, and also non-variable
stars. Only one other selection method, Kozłowski et al. (2010),
has considered Be stars, which are one of the most significant
contaminants during QSO selections in LMC (G03). Our goal
is to select high-confidence QSO candidates in the MACHO
database (Alcock et al. 1996) while minimizing the number
of false positives. Our approach employs multiple time series
features rather than using only the light curve structure function.
These features can characterize various kinds of variability
characteristics. Therefore, our algorithm is practical not only for
identifying QSOs but also for excluding other types of variable
stars and non-variable stars. To fully utilize the features and
identify QSOs, we employed a supervised machine learning
classification method, Support Vector Machine (SVM; Boser
et al. 1992; Cristianini & Shawe-Taylor 2000; Panik 2005).
In the true spirit of machine learning, our method uses a
classification model trained with the training set and thus
eliminates the need for hard linear cuts and human input (e.g.,
manual preselection of variable sets, manual removal of false
positives, and determination of cuts).

We briefly introduce the MACHO database and known
MACHO QSOs in Section 2. The Appendix describes the mul-
tiple time series features that we used to quantify the vari-
ability characteristics of each light curve. Section 4 introduces
SVM, the method used to train the classification model. We
present the MACHO QSO classification model constructed us-
ing the time series features and SVM in Section 5.1. We then
show the MACHO QSO candidates selected using the model in
Section 5.2. Crossmatched results with astronomical catalogs
are presented in Section 6. Ongoing and future work is summa-
rized in Section 7.

2. MACHO DATABASE AND MACHO QSO

2.1. MACHO Database

The MACHO survey monitored a wide area of the sky to
detect microlensing events caused by Milky Way halo objects
and to test the hypothesis that a significant portion of dark matter
in the Milky Way halo consists of compact objects such as brown
dwarfs or planets (Alcock et al. 1996). Because microlensing
events are extremely rare, MACHO monitored several tens of
millions of stars in the Large Magellanic Cloud (LMC), Small
Magellanic Cloud (SMC), and Galactic bulge for 7.4 years.
Observations started in 1992 July and were completed at the
end of 1999 December. More than five Tbytes of image data
and 70,000 exposures were collected during the period (Alcock
et al. 2000). In addition, MACHO used two bands (MACHO B
and R) for the observations.

2.2. MACHO QSOs

There are in total 59 known QSOs in the MACHO database
(50 in the LMC fields and 9 in the SMC fields; hereinafter
MACHO QSOs). Forty-seven were detected by G03 and the
remaining twelve were QSOs previously known from other
studies (Blanco & Heathcote 1986; Schmidtke et al. 1999;
Dobrzycki et al. 2002). G03 detected 38 of them using variability
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characteristics of MACHO light curves and 9 of them by
crossmatching with X-ray and radio catalogs. To select QSO
candidates, G03 applied simple cuts such as color, magnitude,
and amplitude on 140,000 preselected MACHO sources that
show strong flux variation (Alcock et al. 2000). The light curves
of 12 previously known QSOs were used as references for
the variability cuts. After selecting 2500 QSO candidates from
the 140,000 sources, G03 removed known MACHO variable
stars from the candidate list and then manually examined
the remaining candidates to eliminate false positives. They
eventually removed about 2140 candidates and confirmed that
the majority of the removed candidates were objects with quasi-
periodic variability such as blue variable stars. Blue variable
stars typically show strong Balmer emission lines and are
thought to be associated with Be stars (Keller et al. 2002). It
is also known that Be stars show variability similar to QSOs
(Eyer 2002; Geha et al. 2003; Mennickent et al. 2002; Keller
et al. 2002). Using spectroscopic instruments, G03 observed 259
candidates selected from the remaining 360 candidates and also
the candidates selected using the catalog crossmatchings. G03
confirmed 47 new QSOs with magnitudes 16.63 < mV < 20.10
and redshifts between 0.28 and 2.77.

G03 analyzed only 30 of the 82 MACHO LMC fields, and thus
the remaining 52 MACHO LMC fields have not been searched
for QSOs. Moreover, they selected QSO candidates from the
preselected 140,000 variable sources and did not analyze the
remaining several tens of million light curves. Thus, it is very
likely that there are a lot more QSOs that have not been detected
yet. In the following sections, we introduce a new QSO selection
algorithm to detect these non-identified QSOs in the MACHO
LMC database.

3. TIME SERIES FEATURES

In order to separate QSOs from non-variable stars and
variable stars, we quantify the variability characteristics of light
curves using 11 time series features. These 11 features were
independently proposed to quantify certain types of variability
features including amplitudes, periods, colors, and distribution
of data points. They can complement each other because they
pick out different variability features. Thus, by using these
multiple features, we can identify various types of variability
characteristics (e.g., non-varying sources, periodic variables,
and non-periodic variables). Note that we selected these time
series features not only for characterizing QSO time series
but also for characterizing other types of variable sources or
non-variable sources because we want to identify QSOs while
excluding the other types of sources at the same time. We
briefly describe these 11 time series features in Table 1. See
the Appendix for details about the features consisting of four
new features that we have developed for this work and seven
previously used features.

Figure 1 shows scatter plots of all 11 time series features.
Different colors and symbols denote different types of sources.
The red squares are QSOs, the blue crosses are Be stars, the
magenta crosses are microlensing events, the cyan crosses are
LPVs, the green “×” are Cepheids, the yellow “×” are RR
Lyraes, the black “×” are eclipsing binaries, and the gray dots
are non-variables. As each panel shows, not only QSOs but also
other types of variables are clustered in certain areas, which
means each time series feature is good at separating some of the
variable types. Thus, we did not implement a feature selection
algorithm that removes uninformative features. See Section 4 for
a brief explanation of a general feature selection concept. We

selected a subset of MACHO light curves of each variable type
to derive the time series features shown in the figure. We also
used the same subset to train the classification model in selecting
MACHO QSO candidates. For details about the training set, see
Section 5.1.

A simple and conventional method for selecting QSOs using
these features is to define cuts in the two-dimensional space
shown in Figure 1 motivated by empirical observations of
known classes. However, each panel exhibits a unique and
complex structure of the features, which suggests that defining
simple cuts is difficult. Moreover, note that each panel in the
figure is a two-dimensional projection of the original eleven-
dimensional time series feature space. This implies that even
if there exist proper cuts in the hyperspace that can separate
the classes, these cuts could be obscured or invisible in any
of the projections. Therefore, using simple cuts empirically
derived from the projection could be inappropriate for the
classification. In order to alleviate the problem of introducing
empirical cuts and thus to fully utilize the 11 derived time series
features, a classification algorithm should be capable of defining
boundaries (e.g., cuts) in the hyperspace. For this purpose, we
employed SVM which produces hyperplanes between classes
in any multi-dimensional space. SVM also can define non-
linear boundaries using kernel functions while cuts are generally
linear. In the following section, we briefly explain SVM.

4. SUPPORT VECTOR MACHINES

SVM (Boser et al. 1992) is a family of supervised machine
learning algorithms that can train a two-class classification
model using samples of two known classes (i.e., training data).
An SVM classifier can be seen as a single node neural network
with an implicitly defined high-dimensional feature space. It
is currently one of the best classification methods in machine
learning. Compared to neural networks, SVM provide a flexible
classification model, avoid the problems of local minima,
and reduce the need for parameter tuning. Several efficient
optimization methods have been developed for SVM training in
recent years. For an overview, discussion, and practical details,
the reader is referred to Cristianini & Shawe-Taylor (2000),
Bennett & Campbell (2000), and Hsu et al. (2003).

SVM have been applied extensively in many application
areas, and in particular to various astronomical applications
such as the classification of variable stars (Woźniak et al.
2004a), the selection of active galactic nuclei (AGNs) candidates
(Zhang & Zhao 2004), the determination of photometric redshift
(Wadadekar 2005), the classification of galaxies using synthetic
galaxy spectra (Tsalmantza et al. 2007), and the morphological
classification of galaxies using image data (Huertas-Company
et al. 2008).

The classifier of an SVM defines a linear hyperplane that
separates two classes in a training set. To select a unique
hyperplane among the set of possible hyperplanes that separate
the data, an SVM chooses the hyperplane which maximizes
the margin between the two classes and is therefore often
called the maximum margin separator. However, in many cases,
it is not possible to find any hyperplane that can perfectly
separate two classes. In other words, a training set of two
classes cannot be separated without errors. In order to solve
this problem, soft margin SVM, which allows errors in a
training set (i.e., mislabeled samples), was proposed (Cortes
& Vapnik 1995). The soft margin SVM uses a modified
optimization criterion where a constant, C > 0, controls a
tradeoff between maximizing the margin and minimizing the
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Figure 1. Scatter plots of the 11 time series features. The axis of each panel is a different time series feature. As the panels show, each type of variables is clustered
in certain areas. (1) The top left panel: each type of the periodic variables are clustered at each different area. It also shows 1 day or multiple days period aliases
caused by MACHO’s nightly observational pattern. (2) The top right panel: η is relatively small for QSOs, Be stars, and LPVs which have positive autocorrelation.
Color (i.e., difference between average magnitude of MACHO B and R bands) is useful in separating QSOs from some other types of variables as several other studies
suggested (Giveon et al. 1999; Eyer 2002; Geha et al. 2003). (3) The middle left panel: Nabove vs. Nbelow. The panel shows almost none of the non-variables and
periodic variables except LPVs because they do not have data points above (below) the boundary lines by construction. (4) The middle right panel: Rcs is relatively
larger for QSOs. σ/m̄ also separates some variable types. For instance, Be stars have relatively smaller values of σ/m̄ than QSOs. (5) The bottom left panel: Stetson L
is effective in separating any type of variables from non-variables except microlensing events while Stetson KAC is practical for separating QSOs, Be stars, and LPVs
from others. (6) The bottom right panel: Con can be used to separate non-variables from others because non-variables have relatively smaller Con than the others. For
details about each feature, see the text and the Appendix.

(A color version of this figure is available in the online journal.)
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Table 1
Eleven Time Series Features

Four New Features Brief Description; for Details See the Appendix

Nabove and Nbelow Nabove: the number of points above the upper boundary line of the autocorrelation plot.
Nbelow: the number of points below the lower boundary line of the autocorrelation plot.
Figure 11 shows the constructed boundary lines based on the autocorrelation functions (see Figure 10)
of the training set light curves.

Stetson KAC Stetson K (Equation (A5)) variability index derived based on the autocorrelation function
of each light curve.

Rcs The range of a cumulative sum (Ellaway 1978).
Seven Other Features Brief Description; for Details See the Appendix
σ/m̄ The ratio of the standard deviation, σ , to the mean magnitude, m̄.

Period and period S/N Period and period signal-to-noise ratio of each light curve.
Derived using Lomb-Scargle algorithm and Lomb periodogram (Lomb 1976; Scargle 1982).

Stetson L The variability index (Stetson 1996) describes the synchronous variability of different bands.

η The ratio of the mean of the square of successive differences to the variance of data points
in each light curve.

B − R The average color for each light curve.

Con The number of consecutive data points that are brighter or fainter than 2σ of each light curve.

errors of a classification model. The parameter C needs to be
selected appropriately in every application to balance the margin
with the errors. A small C allows a large margin between
two classes and thus tends to ignore mislabeled samples. On
the other hand, a large C allows a small margin and tries to
separate even mislabeled samples. Another approach to address
non-separability is to map the examples into a (typically high
dimensional) feature space where the data might be better
separated. Such mappings are captured implicitly by SVM as
well as several other learning methods. To achieve this, SVM
employ non-linear kernel functions that capture inner products
in the implicit feature space. Intuitively, the kernel can also be
seen to be a similarity function acting in the expanded space.
When this is done the hypothesis of SVM has the form

Class(z) = sign

(∑
i

αiyiK(z, xi)

)
, (1)

where z is the example we are predicting the label for, xi are
the training data (i.e., the vectors of time series features), yi
are the labels for the ith training data, and i are indices for
training examples. The αi are the parameters learned by the
training procedure. The construction of SVM shows that this
form captures a linear separator in the feature space for which
K(z, xi) is an inner product, and the training procedure chooses
the αi that maximize the criterion of soft margin. Despite the
mapping to a potentially high-dimensional space, the maximum
margin criterion leads to automatic capacity control and thus
avoids overfitting.

Many forms of kernels exist in the literature, and the most
commonly used are the polynomial and the radial basis function
(RBF) kernels. In this work, we followed standard practice
(Hsu et al. 2003) and used the RBF defined as

K(xi, xj ) = exp(−γ ||xi − xj ||2), γ > 0, (2)

where xi, xj are two examples and the kernel parameter
γ determines the width of the kernel function. The implicit
feature space in this case is known to be of infinite dimension.
As in the case of the parameter C, the value of γ needs to be
selected appropriately for the application. One can readily ob-
serve that this kernel measures similarity between examples and

that γ controls how fast the similarity decays with respect to the
distance between the examples. Seen in this light, the classifier
(Equation (1)) can also be seen to be a weighted form of nearest
neighbor classification where the αi weight the importance of
training examples.

It is well known that the choice of γ and C can affect the
results dramatically. In order to determine the best values for
our application we used grid search with the 10-fold cross-
validation and technique (Hsu et al. 2003).

1. Cross-validation. We divide each class into 10 subsets (i.e.,
10-fold cross-validation) and select 9 subsets to train a
classification model. We then apply the trained model to
the remaining subset and count the number of true positives
(i.e., number of QSOs that the model identifies as QSOs),
the number of false positives (i.e., number of non-QSOs
that the model identifies as QSOs), and the number of false
negatives (i.e., number of QSOs that the model identifies
as non-QSOs). We repeat this process 10 times with all
different combinations. Finally, we sum the true positives,
false positives, and false negatives from each iteration, and
calculate the recall and precision defined as

recall = NTP

NTP + NFN
, precision = NTP

NTP + NFP
, (3)

where NTP is the sum of the true positives, NFP is the
sum of the false positives, and NFN is the sum of the false
negatives.6

2. Grid search. To select the best C and γ , we search in a
log-scale evenly spaced 10 × 10 grid with values from
10−1 to 104. We then perform a 10-fold cross-validation
and select C and γ that gave the best recall and the best
precision. We then define a finer 10 × 10 grid and repeat the
10-fold cross-validation test with the new set of parameters.
We repeat this procedure until recall and precision are no
longer improving.

Standard SVM does not provide probability output. Thus, we
employed Platt’s probability estimation (Platt 1999) to derive

6 False-positive rate is 1 − precision = NFP/(NTP + NFP).
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Table 2
Number of Known MACHO Variables

Variable Types Number References

RR Lyraes 9722 Alcock et al. (2001)
Cepheids 1868 Alcock et al. (2001)
Eclipsing binaries 6835 Alcock et al. (2001)
LPVs 3049 Wood (2000)
Blue variables 1262 Keller et al. (2002)
Microlensings 626 Alcock et al. (1997c, 1997a, 1997b)

Thomas et al. (2005)
Be stars 136 M. Geha (2008, private communication)
RR Lyraes 8292 From a separate work done

by our group
Cepheids 1452 See the text for details (see footnote 8)
Total 33,242

class probabilities. The Platt posterior probability is calculated
using a sigmoid function as

Pr(y = 1|x) = 1

1 + eAf +B
, (4)

where f is a decision function such that sgn(f (x)) decides the
class of sample x. y is the label for sample x (i.e., a value for
the class) and takes the values of +1 or −1. As Platt notes, this
amounts to assuming that f corresponds to the log-odds of the
positive label; this assumption is not fully justified but has been
shown to work well in many applications. The parameters A and
B are calculated by minimizing the negative log-likelihood of a
training data:

min

{
−

l∑
i=1

(ti log(pi) + (1 − ti) log(1 − pi))

}
,

ti = yi + 1

2
, pi = 1

1 + eAfi+B
, (5)

where i are indices of training data, l is the total number of the
training data, and yi is a label for ith example. The derived Platt
class probabilities can be used to check the confidences of the
predicted classes.

Many authors have studied feature selection methods to
remove irrelevant features (e.g., see Blum & Langley 1997;
Bradley & Mangasarian 1998; Weston et al. 2001; Li et al.
2003; Chen & Lin 2006; and references therein). Such feature
selections could be useful when there are too many features (e.g.,
more than a few hundred) including both relevant and irrelevant
features. However, Nilsson et al. (2006) found that most known
feature selection methods occasionally discard even relevant
features. This work also noted that SVM is robust against
uninformative features as long as there are a sufficient number
of informative features. Another reason for feature selection
is to reduce CPU time for extracting features and for training
models when there exist a great number of features. Note that we
employed only 11 time series features (see the previous section
and the Appendix) and all of them are informative for separating
some of the classes as shown in Figure 1. Thus, it is not necessary
to implement feature selection methods in this work.

5. MACHO QSO CANDIDATE SELECTIONS USING SVM
CLASSIFICATION MODELS

5.1. Training Classification Models

Using the 11 time series features and SVM, we trained a
classification model for selecting MACHO QSO candidates. To

Table 3
Recall and Precision During the Cross-validation

Band Recall Precision False Positivesa

B 82.8% 75.0% 25.0%
R 72.4% 75.0% 25.0%

Note. a 1 − Precison.

train the model, we first selected a training set which consists
of 58 MACHO QSOs,7 1629 variable sources of known types
(128 Be stars, 582 microlensing events, 193 eclipsing binaries,
288 RR Lyraes, 73 Cepheids, and 365 LPVs), and 4288 non-
variable sources. We selected these variables from the list of
known MACHO variable sources. Table 2 shows the number
of known MACHO variables we collected from SIMBAD’s
MACHO variable catalog8 (Alcock et al. 2001) and also from
several literature sources (Alcock et al. 1997a, 1997b, 1997c;
Wood 2000; Keller et al. 2002; Thomas et al. 2005).9 To select
non-variable stars, we randomly chose a subset of MACHO
light curves from a few MACHO LMC fields and removed all
the known MACHO variables from the subset.

We then derived the 11 time series features for individual
MACHO light curves in the training set. Before deriving
the features, we removed all data points in each light curve
with photometric errors greater than three times the average
photometric errors.10 The photometric errors are given by the
MACHO photometric pipeline (Alcock et al. 1999).

We then employed a two-class classification SVM11 using the
RBF. We empirically found that two-class SVM with the RBF
achieves better recall and precision than two- or multiple-class
SVM with other kernels including linear kernel. We applied a
10-fold cross-validation and grid search to all the combinations
of two- or multiple-class SVM and different kernels. We found
that two-class SVM with the RBF showed the best recall and
precision. To use a two-class SVM, we defined the MACHO
QSOs as members of one class and all others as members of the
other class. In order to derive the best C and γ , we performed
a 10-fold cross-validation and grid search using the training
set as described in the previous section. We performed the test
on each MACHO band: one for the B band and one for the R
band. Table 3 shows the derived best recall and precision of
each band. As can be seen from the table, the B(R) model shows
82.8 (72.4)% recall and 75% precision, which means the B(R)
model misses 17.2 (27.6)% of the MACHO QSOs and has a
25 (25)% false-positive rate. For the B model, the false positives
consist of 12 Be stars, 3 microlensing events, and 1 LPV; for
the R model, 11 Be stars and 3 microlensing events. Although
the majority of the false positives were Be stars as expected, the
models excluded more than 90% of the 128 Be stars in the
training set. It is worth mentioning that recall and precision could
vary depending on which set of variables and non-variables we
choose to use as a training set. For instance, if we exclude the

7 We removed one MACHO QSO from the dataset because it has only 50
data points, while the rest of the MACHO QSOs have at least several hundred
data points.
8 http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=II/247
9 We added more than several thousands of new variable candidates selected
in the MACHO LMC database to the table. These were identified by another
group at the Time Series Center, Initiative in Innovative Computing at Harvard
(http://timemachine.iic.harvard.edu). The statistical characteristics of the
candidates will be separately published soon. For details about the selection
algorithm, see Wachman et al. (2009).
10 SVM cannot consider errors of features while training a model.
11 We used the LIBSVM package (Chang & Lin 2001).
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Figure 2. Platt probabilities for the known MACHO QSOs. The top (bottom)
panel shows the Platt probabilities of the B (R) band light curves.

128 Be stars from the training set, we can increase recall to 95%
with a 7% false-positive rate. We can further increase recall and
precision if we also remove microlensing events and LPVs from
the training set. However, note also that the higher recall and
precision does not guarantee a better model because the model
would not be able to distinguish QSOs from the false positives
such as Be stars, microlensing events, and LPVs when applied
to the whole dataset.

Finally, we trained two models, one each for the MACHO
B and R bands, using the derived best C, γ on the whole training
set.12 We used the trained models to select QSO candidates from
the MACHO database (see Section 5.2). Although the rate of
derived false positives mentioned in the previous paragraph is
25%, it should not be expected that the selected MACHO QSO
candidates using the models would have 25% false positives.
This is because the training set is not complete; also, it is nearly
impossible to take into account every known type of variability
existing in the MACHO database, which includes not only
astronomical variables but also non-astronomical photometric
defects or systematic errors. In addition, the fraction of QSO
in the whole dataset is likely to be different than the training
set. Thus, the true false-positive rate for the MACHO QSO
candidates could be higher than 25%. We will come back to this
point when we discuss crossmatching the candidate list with
known catalogs in Section 6.

In addition, Figure 2 shows the Platt probabilities of the
known MACHO QSOs for B (the top panel) and R (the bottom
panel) band light curves. As the figure shows, the majority of
the QSOs have higher probabilities than 80%. We used the Platt
probability of each MACHO light curve to select MACHO QSO
candidates (see Section 5.2).

5.2. MACHO QSO Candidate Selections

To select the MACHO QSO candidates, we first derived
the 11 time series features for all of the 40 million MACHO
LMC light curves.13 We removed the data points in each

12 This model is slightly different from the one used for the cross-validation
because it was trained on the whole training set as opposed to 9/10 of the
training set.
13 If an object does not have a light curve of any particular band, we ignore that
object. Nevertheless, almost all of the 20 million MACHO objects have both B
and R band light curves, so the overall selection efficiency is not affected.

Figure 3. Example light curves of the QSO candidates. The x-axis is the modified
Julian Date (MJD), and the y-axis is the V magnitude, mV . Each light curve
manifests non-periodic and strong flux variation.

Figure 4. Recall and false-positive rate of the models based on the training set.
Using a 25% cut, we can identify more than 80% of the known MACHO QSOs
while removing all other variables and non-variables.

light curve which have photometric errors greater than three
times the average photometric errors as we did during model
training (see Section 5.1). We then applied the trained models
to each light curve and derived the QSO Platt probability
estimation. Finally, we selected only the light curves which
had the probability product of B and R bands higher than 25%
(e.g., 50% probabilities in both B and R bands). Using the
25% cut, we selected 1620 QSO candidates from the entire
MACHO LMC database. We show example light curves of the
QSO candidates in Figure 3. As the figure shows, all the light
curves have strong and non-periodic flux variation, which is the
variability characteristic of QSOs.

Figure 4 shows recall and false-positive rates corresponding
to the probability product cuts on the training set. Using the
25% cut, we correctly identified 82.8% of the known MACHO

7
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Figure 5. Mid-IR color–color and color–magnitude diagrams of the Spitzer SAGE counterparts crossmatched with the QSO candidates. Each axis of the figure is either
Spitzer magnitude or color. All sources inside the regions A, B, QSO, and YSO are potential QSOs (Kozłowski & Kochanek 2009). The majority of the candidates are
inside the regions A and QSO, which is the most promising QSO regions.

QSOs (48 out of 58) with a 0% false-positive rate. Although a
probability cut lower than 25% yields better recall and also a 0%
false-positive rate, we choose the 25% cut because our training
set is not complete, as mentioned in the previous section.

6. CROSSMATCHING RESULTS WITH INFRARED
AND X-RAY CATALOGS

In order to estimate the true false-positive rate without
spectroscopic confirmation, we crossmatched the candidates
with other astronomical catalogs. In the following subsections,
we present the crossmatching results and the false-positive rate
estimated on the basis of the crossmatched counterparts.

6.1. Crossmatching with the Spitzer SAGE LMC Catalog

It is known that mid-IR color selection is efficient at sepa-
rating AGNs from other galaxies or stars because the spectral
energy distributions of these types are substantially different
from each other (Laurent et al. 2000; Lacy et al. 2004; Trichas
et al. 2010; Kalfountzou et al. 2011). Based on these charac-
teristics, Lacy et al. (2004) and Stern et al. (2005) introduced
a mid-IR color cut to separate AGNs using the Spitzer Sur-
veying the Agents of a Galaxy’s Evolution (SAGE; Meixner
et al. 2006) catalog. Kozłowski & Kochanek (2009, hereinafter
KK09) employed the mid-IR color cut and selected about 5000
AGN candidates from the Spitzer SAGE catalog. KK09 also
confirmed that the mid-IR color cut successfully identified most
of the known QSOs in the SAGE footprints.

To check whether our candidates are inside the mid-IR
selection cut that KK09 used, we crossmatched them with
the Spitzer SAGE LMC catalog containing six million mid-IR
objects and found 1239 counterparts. We first searched the
nearest SAGE source from each of the candidates within a
1′′ search radius. In order to minimize false crossmatchings,
we defined the source as a counterpart only if no other Spitzer
sources exist within a 3′′ radius from the candidate.

Of the crossmatched counterparts, about 500 had been
observed with at least three Spitzer IRAC (InfraRed Array
Camera) bands. Note that we need a minimum of three Spitzer
IRAC magnitudes to apply the mid-IR color cut. Figure 5
shows the color–color and color–magnitude diagrams of these
counterparts (529 in the color–color diagram and 544 in the

color–magnitude diagram). The solid line in the figure shows the
mid-IR color selection cut. KK09 suggested that the sources in-
side region B could either be AGNs or black bodies such as stars,
while the sources inside region A are likely AGNs (left panel).
In the color–magnitude diagram (right panel), there are two re-
gions as well. The region labeled as young stellar object (YSO)
is thought to be dominated by YSOs, while the region labeled
QSO is thought to be dominated by QSOs. Nevertheless, all the
sources inside these four regions (AGN region) are potential
QSOs. According to Stern et al. (2005), the candidates inside
the AGN region are most likely broad emission line QSOs (i.e.,
Type 1 AGNs). Among them, the sources inside the QSO and A
regions are the most promising QSO candidates. As the figure
clearly shows, most of the crossmatched QSO candidates are in-
side the QSO (88.2%; 480 out of 544) and the A regions (76.9%;
407 out of 529), which implies that most of the candidates are
likely true QSOs. The number of QSO candidates that are in
both the QSO and the A regions are 391 out of 52914 (73.9%).
Under the assumption that all the 391 candidates are QSOs, the
false-positive rate is 26.1%, which is the upper bound of the
false-positive rate. There are only about 9% of the candidates
outside the AGN region (9.3% outside A and B regions, 9.0%
outside YSO and QSO regions), giving us the lower bound of the
false-positive rate. Nevertheless, we confirmed that most of the
candidates outside the AGN region also show strong variability.
We show example light curves of these candidates in Figure 6.
As the figure shows, they have strong and non-periodic flux vari-
ation. Note that our method used the variability characteristics
of light curves in order to select QSO candidates which could
be missed by the mid-IR color selection. Moreover, the mid-
IR color cut is not very efficient at selecting narrow emission
line QSOs (Stern et al. 2005). Therefore, some of the candi-
dates could be either broad or narrow emission line QSOs even
though they are not inside the AGN region, which would further
decrease the lower bound of the false-positive rate.

In addition, we also crossmatched the known MACHO
QSOs and the 33,242 MACHO variables shown in Table 2
with the SAGE catalog to check how many known MACHO
QSOs and known variables are inside the AGN region. Such

14 529 is the total number of the Spitzer counterparts inside both color–color
diagram and color–magnitude diagram.
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Figure 6. Examples light curves of the QSO candidates outside the AGN region.
The x-axis is MJD, and the y-axis is the V magnitude. All of them show strong
and non-periodic flux variation. These QSO candidates could be either broad or
narrow emission line QSOs although they are outside the AGN region.

variables inside the AGN region could be contaminants (i.e.,
false positives) for any mid-IR color selection method. We found
about 50 counterparts with the known MACHO QSOs and about
3900 counterparts with the variables. We also crossmatched
about 200,000 MACHO field sources from one randomly
selected MACHO field with the SAGE catalog and found
∼10,000 counterparts. These field source counterparts might
consist of all types of objects including non-variable stars,
unclassified variable stars, and galaxies. Figure 7 shows all the
crossmatched counterparts. The black squares are the MACHO
QSO counterparts (48 in the color–color diagram and 49
in the color–magnitude diagram). The black crosses are the
counterparts with the variables including RR Lyraes, Cepheids,

eclipsing binaries, LPVs, and blue variable stars (3,871 in
the color-color diagram and 3880 in the color–magnitude
diagram). We separately depict eight Be stars as gray diamonds
in the figure. The gray dots are the MACHO field source
counterparts (10,238 in the color–color diagram and 10,292 in
the color–magnitude diagram). As the figure shows, almost all
of the MACHO QSOs are inside the AGN region as expected.
However, a few tens of the variables and the MACHO field
sources are also inside the AGN region. We checked these
variables in the AGN region and found that they consist
of all types of known MACHO variable stars such as RR
Lyraes, Cepheids, eclipsing binaries, blue variables, and LPVs.
Moreover, nearly all Be stars that have Spitzer counterparts
are inside the region as well. It is known that Be stars are
characterized by their IR emission due to dusty circumstellar
environments (Malfait et al. 1998; Leinert et al. 2004). Also
note that we crossmatched only 200,000 MACHO field sources
with the Spitzer catalog. If we scaled our selection to the
total MACHO LMC database covering 20 million stars, more
than several thousand field sources would be in the AGN
region, providing significant contamination for QSO selection.
According to the results, it seems that the mid-IR cut is not
efficient for separating QSO candidates from various types of
stars although it is practical for confirming QSO candidates,
especially when applied to massive databases. In other words,
the mid-IR selection cut shows relatively low precision, although
it shows high recall. Thus, it is clear that algorithms based on
the variability of light curves, including ours, are important for
QSO candidate selections.

6.2. Crossmatching with X-ray Catalogs

We crossmatched our QSO candidates with the Chandra
X-ray source catalog (Evans et al. 2010) and XMM-Newton 2nd
Incremental Source catalog (Watson et al. 2009). We searched
for the nearest Chandra (XMM) source within a 5′′ search radius
from the candidate. We only selected the source as a counterpart
if there existed no other Chandra (XMM) sources within the
search radius. Nevertheless, most of the X-ray counterparts were
placed within a 3′′ distance from the candidates.

Figure 7. Mid-IR colors of the Spitzer SAGE counterparts with the known MACHO variable stars and the MACHO field sources. Each axis of the figure is either the
Spitzer magnitude or color. The black squares are MACHO QSOs, the gray diamonds are Be stars, the black crosses are variable stars including RR Ryraes, Cepheids,
eclipsing binaries, LPVs, and blue variable stars. The gray dots are MACHO field sources. Almost all MACHO QSOs are inside the regions A, B, QSO, and YSO,
which indicates that the mid-IR selection criteria is efficient at confirming QSOs. However, there are a lot of other variable stars including Be stars inside the regions
as well. Thus, the mid-IR selection might not be practical for selecting QSO candidates.
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As a result, we found 60 X-ray counterparts. It is known
that QSOs show higher X-ray to optical flux ratios than typical
galaxies or stars, fX/fr , owing to the accretion on the central
black holes (Reeves & Turner 2000; Hornschemeier et al. 2001).
To calculate fX/fr , we first derived the mV and mR (i.e., standard
Johnson’s V and Kron−Cousins R) using the MACHO B and
R magnitudes (Alcock et al. 1999; Kunder & Chaboyer 2008).
We then converted the mV and mR to SDSS r magnitude using
the formula from the SDSS website15 (Lupton et al. 2005).
Note that this formula was derived based not on QSOs but on
photometric standard stars (Stetson 2000). Thus, the converted
SDSS r magnitudes of QSOs could have larger errors (i.e.,
standard deviation) than the estimated errors for the standard
stars, σ � 0.01. Nevertheless, we finally used the following
equation from Green et al. (2004) to derive log(fX/fr ):

log
fX

fr

= log fX + 0.4 r + 5.67, (6)

where fX is the X-ray flux in units of ergs cm−2 s−1 in the range
of 0.5–2.0 keV, which is extracted from the Chandra and XMM
catalogs.16 fr is the optical flux and r is the converted SDSS r
magnitude.

The top panel of Figure 8 shows the fX/fr of 60 counterparts
with the Chandra and XMM catalogs. The x-axis is log(fX/fr ),
and the y-axis is the converted r magnitude. In the panel, we also
show 16 known MACHO QSOs that have X-ray counterparts.
The black marks are the MACHO QSO counterparts, and the
gray marks are the QSO candidate counterparts. The squares are
XMM counterparts, and the triangles are Chandra counterparts.
The dashed line corresponds to fX/fr = 0.1, which is the
criterion separating AGNs and typical galaxies or stars (Green
et al. 2004). The two dash-dotted lines are boundaries of the
confusion area shown as the dashed area in the bottom panel
(see the following paragraph). As the figure shows, most of the
MACHO QSOs (75.0%; 12 out of 16) and our QSO candidates
(73.3%; 44 out of 60) show higher fX/fr than 0.1. If all the
candidates with higher fX/fr than 0.1 are QSOs, the false-
positive rate is 27.3%.

In addition, to estimate how a large portion of non-AGNs
could have fX/fr � 0.1, we crossmatched all the objects from
one MACHO field with the Chandra X-ray catalog. We selected
the field so that it overlapped with the Chandra footprints.
In the top panel of Figure 8, we show the fX/fr of the 21
crossmatched MACHO objects (black dots). These counterparts
could be either stars or AGNs, although they are most likely
X-ray emitting stars such as X-ray binaries, W-UMa binaries
(Chen et al. 2006), Algol type binaries (Singh et al. 1995), and
cataclysmic variable stars (e.g., see Wonnacott et al. 1994) since
the number density of such stars surpasses the number density
of AGNs. Of the 21 MACHO objects, 16 have fX/fr smaller
than 0.1, which implies that non-AGN objects generally have
smaller fX/fr than 0.1. The remaining five objects have fX/fr

larger than 0.1 and could be AGN candidates. We show the light
curves of these five objects in Figure 9. As the figure shows,
they do not manifest any strong flux variation and thus were not
selected as QSO candidates by our selection method.

Based on the crossmatching results mentioned in the previous
paragraphs, we further improved the region of confidence using
the histogram of log(fX/fr ) shown in the bottom panel of

15 http://www.sdss.org/dr4/algorithms/sdssUBVRITransform.html
16 erg cm−2 s−1, which is the unit for the Chandra sources, is identical with
10−3 Watt m−2, which is the unit for the XMM sources.

Figure 8. fX/fr of the X-ray counterparts with the MACHO QSOs, the
QSO candidates, and the MACHO field objects. The top panel: the x-axis is
log(fX/fr ), and the y-axis is the converted SDSS r magnitude. The squares
are the XMM counterparts and the triangles are the Chandra counterparts. The
black marks are the MACHO QSOs and the gray marks are the candidates. The
gray dots are the MACHO field objects. The dashed line is the criterion between
AGNs and others such as galaxies and stars. Most of the MACHO QSOs and the
candidates have higher fX/fr than the criterion while most of the MACHO field
objects have smaller fX/fr than the criterion, which implies most of the candi-
dates are promising QSO candidates. The bottom panel: the histogram of fX/fr .
The x-axis is log(fX/fr ), and the y-axis is the normalized count. Based on the
histogram, we refined the region of confidence. See the text for details.

Figure 8. The x-axis is log(fX/fr ), and the y-axis is normalized
count. The solid line with light gray is the histogram of the QSO
candidate counterparts, the dashed line with medium gray is the
histogram of the MACHO QSO counterparts, and the dotted
line with dark gray is the histogram of the 21 MACHO object
counterparts. The dashed area shows the confusion area where
stars and QSOs could be mixed together. Considering all the
histograms, we modified the confidence regions as follows.

1. log(fX/fr ) < −1.5: the non-QSO area. In this region,
log(fX/fr ) is much smaller than the AGN criterion of
log(fX/fr ) = −1. Thus the candidates in this region are
not likely QSOs. There is only 1 out of 16 (6.2%) MACHO
QSOs, 4 out of 21 (19%) MACHO objects, and 7 out of the
60 (11%) candidates inside this region.

2. −1.5 � fX/fr < −0.5: the confusion area that is a mixture
of stars and QSOs. Most of the MACHO objects (76.2%; 16
out of 21) are in this region. More than half of the MACHO
QSOs (55.3%; 9 out of 16) and 32 out of the 60 QSO
candidates (53.3%) are also in this region.
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Figure 9. Light curves of five MACHO field objects which have higher fX/fr

than the AGN criterion. The x-axis is MJD, and the y-axis is the V magnitude,
mV . Although they have higher fX/fr than the criterion, they do not have strong
flux variation and thus were not selected as QSO candidates by our selection
algorithm.

3. fX/fr � −0.5: the QSO area. Most of the candidates in
this region would be QSOs because of their high fX/fr .
As the histogram shows, only 1 out of 21 (5%) MACHO
objects is in this region while 6 out of 16 (37.5%) MACHO
QSOs and 21 out of 60 (35%) candidates are inside the
region.

As we mentioned above, 21 out of the 60 candidates are inside
the QSO area and are likely true QSOs, which gives the upper
bound of the false-positive rate, 65.0% (39/60). In addition,
some of the 32 candidates inside the confusion area could also
be QSOs because more than half of the known MACHO QSOs
are inside the confusion area. Thus, the lower bound of the
false-positive rate is 11.7% (7/60).

7. ONGOING AND FUTURE WORKS

We will observe the QSO candidates with spectroscopic
instruments to check whether they are QSOs. Based on the
projection of the models and the crossmatching results, we
expect at least several hundred candidates to turn out to be
QSOs.

Using the confirmed QSOs and the false positives, we will
improve our model. The current model is constructed based on
the relatively small number of known QSOs (i.e., 58 known
MACHO QSOs), which may be too small a sample to represent
the true variability characteristics of all QSOs in the MACHO
database. Thus, using a large number of QSOs (i.e., more than
a few hundreds) would help improve the models.

In addition, our model is effective at selecting not only QSOs
but also other types of variable sources. Preliminary tests showed
that recall and precision for periodic variables such as RR
Lyraes, Cepheids, and eclipsing binaries were almost 100%; for
LPVs, microlensing events, and Be stars, recall and precision
were 80%.

8. SUMMARY

In this paper, we presented a new QSO selection algorithm
based on 11 time series features and a supervised classification.
We first introduced 11 time series features to quantify variability
characteristics of light curves. We then used SVM to train a
classification model which separates QSOs from other types of
variable stars and non-variable stars. Using the training set of
the MACHO variables (128 Be stars, 582 microlensing events,
193 eclipsing binaries, 288 RR Lyraes, 73 Cepheids, and 365
LPVs), 4288 non-variables, and the 58 known MACHO QSOs,
we trained the models for each MACHO B and R band. The
trained model correctly identified about 80% of the MACHO
QSOs with 25% false-positive rates on a cross-validation test.
The majority of false positives during the training were Be stars
known to show variability similar to QSOs.

We applied the model to the entire MACHO LMC database
consisting of 40 million light curves (i.e., 20 million from each
MACHO band) in order to select QSO candidates. As a result,
we found 1620 candidates from the MACHO LMC database.
During the selection, none of the known MACHO variables
were misselected as QSO candidates. To estimate the true false-
positive rate of the QSO candidates, we crossmatched the can-
didates with astronomical catalogs, including the Spitzer SAGE
LMC catalog and some X-ray catalogs. The crossmatching re-
sults confirmed that most of our candidates are promising QSO
candidates. For instance, the majority of candidates with Spitzer
counterparts are inside the AGN region that is defined by a
mid-IR color cut and is known to be effective in confirming
QSO candidates. The crossmatching with X-ray catalogs shows
that most of the X-ray counterparts have fX/fr � 0.1 and there-
fore are likely QSOs.

In addition, during the crossmatching with the SAGE LMC
catalog, we found that using only the mid-IR color cut is not
a very efficient method for selecting QSO candidates, although
it is an effective method for confirming QSOs. This suggests
that selection methods using variability characteristics of light
curves, including ours, are important to further remove false
positives, both variables and non-variables.
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APPENDIX

In this appendix, we introduce the 11 time series features
including four new features that we have developed for this
work and the remaining seven features.

Four new time series features are as follows.

1. Three autocorrelation indices. These three indices are
based on the autocorrelation function. The autocorrelation
function is defined as

AC(τ ) = 1

(N − τ ) σ 2

N−τ∑
i=1

(mi − m̄)(mi+τ − m̄), (A1)
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Figure 10. Set of autocorrelation functions of variable and non-variable stars. The x-axis is the time lag, τ , in days, and the y-axis is the autocorrelation function value.
Non-variable stars, Cepheids, eclipsing binaries, and RR Lyraes show different patterns from QSOs, Be stars, LPVs, and microlensing events.

where N is the total number of data points, τ =
1, 2, . . . , N − 1 is the time lag, σ is the standard devia-
tion, m is the magnitude, i is the index for each data point
and m̄ is the mean magnitude. Figure 10 shows the AC(τ )
for various types of variables and non-variables extracted
from the MACHO database. Note that, in each panel, we
show the AC(τ ) of multiple objects of that type to demon-
strate the overall AC(τ ) patterns. We used more than 50
objects of non-variables, RR lyraes, Cepheids, eclipsing
binaries, and microlensing events. The overall AC(τ ) pat-
terns were preserved even if we used more objects (i.e.,
several hundreds). For LPVs, Be, stars and QSOs, we used
about 10 objects of each type to show individual AC(τ )
pattern. The x-axis is the time lag, τ is in days, and the
y-axis is the autocorrelation value. As the figure shows,
non-variables and all periodic variables but LPVs show
different AC(τ ) patterns from QSOs, Be stars, LPVs, and
microlensing events. Schild et al. (2009) also noted that
the AC(τ ) could be useful for discovering QSOs. Thus, by
quantifying the AC(τ ), we can separate certain types of

variables. In the following paragraphs, we introduce three
time series features that we are using to quantify AC(τ ).

(a) Nabove, Nbelow. We constructed empirical boundary
lines on the AC versus τ diagram to separate non-
variables and periodic variables from others. To do
so, we calculated the average and standard deviation
of the autocorrelation functions for non-variables and
periodic variables (except LPVs) for each time lag τ .
We then constructed upper and lower boundary lines
to be ±4σ from the average line. Figure 11 shows the
calculated upper and lower boundary lines.17 To derive
Nabove and Nbelow for each light curve, we counted the
number of points above, Nabove, and number of points
below, Nbelow, these lines.

(b) Stetson K. Stetson K (Equation (A5)) was defined to
observe the distribution of measurements between the
maximum and minimum values of the measurements
(Stetson 1996). For details including the definition of

17 We removed fluctuated data points using moving average.
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Figure 11. Two boundary lines constructed using autocorrelation functions of
non-variable stars, eclipsing binaries, RR Lyraes, and Cepheids. The x-axis is
the time lag, τ , in days, and the y-axis is the autocorrelation value. Based on the
lines, we derived Nabove and Nbelow. See the text for details.

Stetson K, see their appendix. We used Stetson K to
characterize the different AC(τ ) patterns, Stetson KAC.

2. Rcs. Rcs is the range of a cumulative sum (Ellaway 1978)
of each light curve and is defined as

Rcs = max(S) − min(S),

Sl = 1

N σ

l∑
i=1

(mi − m̄) , (A2)

where max (min) is the maximum (minimum) value of
S and l = 1, 2, . . . , N . Rcs is typically large for LPVs, mi-
crolensing events, Be stars, and QSOs while it is relatively
small for non-variables and other periodic variables such as
RR Lyraes, Cepheids, and eclipsing binaries.

Other seven time series features as follows.

1.
σ

m̄
. This is a simple variability index and is defined as the

ratio of the standard deviation, σ , to the mean magnitude,
m̄. If a light curve has strong variability, σ/m̄ of the light
curve is generally large.

2. Period and period signal-to-noise ratio (S/N). To derive
periods and their S/N, we employed the Lomb–Scargle
algorithm (Lomb 1976; Scargle 1982; Press & Rybicki
1989; Press et al. 1992). We search for periods between
0.1 and 1000 days,18 which covers not only short-period
variable stars such as RR Lyraes, Cepheids, and eclipsing
binaries but also LPVs. Among the detected periods, we
selected the period with the highest S/N. The S/N of
each period is calculated based on the Lomb periodogram
(Scargle 1982; Press et al. 1992).

3. Stetson L. Stetson L variability index (Stetson 1996) de-
scribes the synchronous variability of different bands and
is defined as

L = JK

0.798
, (A3)

18 We used VARTOOLS (Hartman et al. 2008) for deriving periods and
period S/Ns.

where J and K are different Stetson indices. Stetson J is
calculated based on two simultaneous light curves of a
same star (e.g., MACHO B and R bands) and is defined as

J = 1

N

N∑
i=1

sgn(Pi)
√

|Pi |,

Pi = δp(i) δq(i),

δp(i) =
√

N

N − 1

mp,i − m̄

σp,i

, (A4)

where i is the index for each data point, N is the total
number of data points, sgn(Pi) is the sign of Pi, and m is
the magnitude. p and q indicate two different bands. σp,i is
the standard error of ith magnitude of band p. In the case
of the MACHO database, p and q indicate the MACHO B
and R bands. To derive J from each MACHO time series,
we used only the data points which have observations from
both MACHO B and R bands at the same epoch.

Steston K is calculated using a single band light curve
and is defined as

K = 1√
N

∑N
i=1 |δ(i)|√∑N

i=1 δ(i)2
. (A5)

It is known that K = 0.900 for a pure sinusoid and 0.798
for a Gaussian distribution. For details, see Stetson (1996).

In brief, Stetson L is generally large for achromatic
variable sources and small for non-variables or chromatic
variables.

4. η. Variability index η is the ratio of the mean of the square
of successive differences to the variance of data points.
The index was originally proposed to check whether the
successive data points are independent or not. In other
words, the index was developed to check if any trends exist
in the data (von Neumann 1941). It is defined as

η = 1

(N − 1) σ 2

N−1∑
i=1

(mi+1 − mi)
2. (A6)

The index has been substantially investigated by several
authors (see von Neumann 1941; Press 1969; and references
therein). In brief, if a positive serial correlation exists, η is
relatively small. On the other hand, if a negative serial
correlation exists, η is large. Shin et al. (2009) used η to
select variable candidates from the Northern Sky Variability
Survey database (Woźniak et al. 2004b).

As the top right panel of Figure 1 shows, η is relatively
small for the variables which have positive autocorrelation
such as QSOs, Be stars, and LPVs. Non-variables or
microlensing events show large η since they do not have
strong positive correlation. In the cases of other periodic
variables such as RR Lyraes, Cepheids, and eclipsing
binaries, η is also relatively large even though they are
periodic variables and therefore have positive correlation.
This is because (1) we derive η not from the folded MACHO
light curves but from the original light curves and (2)
MACHO observed a field a few times per week, which is not
enough to reveal positive correlation for small timescales. In
other words, most raw MACHO light curves of the periodic
variables do not have strong positive correlation and thus
have large η.
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5. B − R. We used an average color for each MACHO light
curve as

B − R = m̄BM
− m̄RM

, (A7)

where m̄BM
, m̄RM

are the mean magnitudes of MACHO
B,R bands.

Color information, B − R, is useful in separating QSOs
from some other types of variables as several other studies
suggested (Giveon et al. 1999; Eyer 2002; Geha et al. 2003).
Nevertheless, it is known that color19 is not a very efficient
discriminator for selecting intermediate redshift QSOs (i.e.,
2.5 < z < 3.0) although it is efficient for selecting high-
and low-redshift QSOs (Richards et al. 2006; Schmidt et al.
2010). Note that we used not only color information but also
other multiple time series features derived solely based on
the variability characteristics of light curves, which helps
to identify intermediate redshift QSOs as well as high- and
low-redshift QSOs.

6. Con. The index was introduced for the selection of variable
stars from the OGLE database (Woźniak 2000). To calculate
Con, we counted the number of three consecutive data
points that are brighter or fainter than 2σ and normalized the
number by N−2. Con is close to zero for non-variable stars
while it is relatively large for variables. In addition, Con
is relatively large for the long timescale varying sources
such as LPVs because such variables tend to have plenty of
consecutive data points bigger than 2σ .
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