Astronomical Data Analysis Software and Systems XVI
ASP Conference Series, Vol. 376, 2007
R. A. Shaw, F. Hill and D. J. Bell, eds.

Virtual Astronomical Pipelines

Rahul Dave!, Pavlos Protopapas, Matthew Lehner
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA

Abstract. The sheer magnitude of databases and data rates in new sur-
veys makes it hard to develop pipelines to enable both the analysis of data and
the federation of these databases for correlation and followup. There is thus a
compelling need to facilitate the creation and management of dynamic work-
flow pipelines that enable correlating data between separate, parallel streams;
changing the workflow in response to an event; using the NVO to obtain addi-
tional needed information from databases; and modifying the observing program
of a primary survey to follow-up a transient or moving object. This paper de-
scribes such a Virtual Astronomical Pipeline (VAP) system which is running in
the TAOS project. The software enables components in the pipeline to react
to events encapsulated in XML messages, modifying and subsequently routing
these messages to multiple other components. This architecture allows for the
bootstrapping of components individually in the development process and for
dynamic reconfiguration of the pipeline as a response to external and internal
events. The software will be extended for future work in combining the results
of surveys and followups into a global virtual pipeline.

1. Motivation

A pipeline is a structured sequence of collections of processes, or stages. Control,
notification and error messages, and science data flow through the pipeline from
one stage to another. Currently, most pipelines are static with flows described
ahead of time and hidden in logic embedded in code; this is especially true of
analysis pipelines. However, stages in many systems, such as those used for
multiple observational purposes, are long-running and dynamic. These stages
undergo change in the state of processes through data or message flow. An
example is a change in observational program of a survey due to a gamma-ray
burst (GRB) notification on the GCN network.

Such dynamic pipelines are crucial in the new astronomy. By providing a
descriptively defined workflow that is quickly changeable, event processing can
be facilitated at high rates and data volumes. On-line analysis for follow-ups and
comparison wth other surveys is likely to be at a remote sites due to the large
size of datasets, and a changeable description enables reuse of code at these sites
through web services. Additional machines and processes can be easily added
and removed, facilitating redundancy. Furthermore, an incremental mode of
software development that takes one from prototype pipelines on laptops to
production pipelines on mountain clusters can be supported.

Most of this work was done while at the University of Pennsylvania, Philadelphia, PA, USA
253

254 Dave, Protopapas, and Lehner

2. TAOS and the VAP Prototype

The Taiwan-America Occultation Survey (TAOS) project uses four 0.5-m tele-
scopes to scan large (3 deg?) fields on the sky looking for Kuiper-belt objects
(KBOs), but is also set up to pre-empt its scheduled search to respond to GCN
GRB alerts. TAOS runs a fully automated, high cadence (5 Hz) observation
pipeline. The pipeline processes about 30 GB of data per night through obser-
vation, photometry, statistics and storage stages. The data is reprocessed in the
day with fake occultation events added in for calculating efficiency. The light
curves produced are also useful for transient and transit searches.

While our immediate concern was to have a flexible and incrementally devel-
oped high performance pipeline for TAOS, we defined an Open Pipeline Archi-
tecture so that our software and specifications will be usable by other projects,
especially our own future ones. Processes in the pipeline communicate through
events, or messages, which determine the next step in the pipeline execution.
These messages are routed by intermediate routers to other processes. Data flow
between processes is peer-to-peer for performance reasons, and uses a standard
10 interface regardless of transport implementation. A simple trust model imple-
ments security for the messaging, especially for the subscription or rule messages
used to dynamically reconfigure the workflow in the system. The architecture
consists of:

Nodes and Stages Pipeline nodes are the processes that make up the pipeline,
with nodegroups that are collections of nodes (such as telescope mount control
daemons with different parameters). A pipeline stage may consist of multiple
nodes and is conceptually a collection of processes that happen at the same time
or place (e.g. the daemons that control the workings of an individual enclosure
such as the camera and mount daemons). A stagegroup is a collection of such
stages, such as the collection of enclosure processes for all of our four telescopes.

Virtual Pipeline Message Format (VPMF): We have defined a simple mes-
sage format for the pipelines with the aim of being able to route messages based
on the value of any part of their payload. A message consists of a header section,
a key-value payload dictionary, and a data section which can carry a binary, such
as a C struct. The header section consists of to and from pipeline components,
an opcode to describe the purpose of the message, an msgmode (one of request,
notification, or subscription), and a domain (either workflow, system, or ap-
plication). A priority can be used to preempt other messages in situations
requiring urgency (see Figure [I]).

The XML-RPC data format is used for messages; this makes it simple
to write pipeline components in almost any programming language. We have
written a C library 1ibpmsg to integrate messaging into the TAOS daemons,
providing both synchronous and asynchronous interfaces. We have also written
Ruby and Python libraries for other components of our system.

Virtual Pipeline Routers (VPR): The VPR is the the main software product
of the VAP system, and handles routing to nodes, nodegroups, stages, and stage-
groups. It receives messages from nodes (there is one VPR per node and stage)
and forwards them using the subscriptions. It is implemented in the TAOS
system by a daemon called PlatformD, developed in Python using the Twisted
library (http://twistedmatrix.com). The daemon implements message persis-
tence, process handling, and multi-protocol communications with other routers

http://twistedmatrix.com

Virtual Astronomical Pipelines 255

Pipeline TAOS H Pipeline Logging

BBoard
D

Camera
D

LogGatherer
o Stage

Obsv Stage 5 piatformD

Header
pipeline_id
from
to

| auth cookie |
msgmode —]
opcode \>< Workflow, System, Application

domain —| TAOS_DOME_CLOSE : A
Eriorim —] &
" Urgent, Normal
Body i

Payload Dict | R . A—— i
Datasize TAIPEI i
Data @

T

Figure 1. The left image in the panel shows the structure of a VPMF mes-
sage. The right image shows two pipelines in the TAOS system which work
together. The stages in the system, the nodes belonging to the stages, and
the PlatformD daemons which are the VPRs are illustrated. Thick black
lines represent peer-peer 10, while thin dashed orange lines illustrate message
flow from nodes to their routers and then between routers. The Sched stage
PlatformD acts as the VPP.

PlatformD |

d Stage

1 — Request, Notification, Subscription
PlatformD

4 % LogArchiver

Archive tage

Stag’~ Archiver
D

and nodes. The routing engine provides simple value matching and template
substitution for the message header and payload dictionary based on the rules,
but can delegate to a custom Python script if desired, the idea being to make
simple pipelines simple to code and complex pipelines possible.

Virtual Pipeline Portal (VPP): There is one portal per pipeline, for au-
thentication, authorization, control and status. The portal is implemented in a
VPR, with custom routing rules enabling this behavior. It is possible to route
messages between multiple pipelines through this special VPR. We use this fa-
cility to compose the larger TAOS pipeline from smaller, individually developed
control, logging, and analysis pipelines. A Python based user shell, bush, has
been implemented that speaks http to the portal and provides a simple shell
language to control the pipeline.

VPIOI: Virtual Pipeline 10 Bus: The 10 bus is implemented in a C library,
libpio, currently providing file, mmap and socket IO implementations for data
transport, with reference counted data buffers, and the concept of sink and
source pads which may be connected to multiple other pads to move data. This
infrastructure creates a set of pipeline components connected directly to each
other for high performance 10; with 10 scheduling optionally controllable with
VPMF messages.

3. Combining Pipelines: Constructing a Global Virtual Pipeline

The Virtual in VAP refers to our desire to compose pipelines at surveys together
to form larger, virtual pipelines, or super surveys that take observations, com-
pare them against existing databases, and schedule followup observations. We
currently have support in the VPR code to enable message communication be-

256 Dave, Protopapas, and Lehner

tween pipelines, but no mechanisms to enable the advertisement of capabilities
of pipelines, to move data between pipelines over VPIOI, or provide a security
model for these communications.

As an example of the kind of application that will be enabled by a global,
virtual pipeline, consider a new generation solar system survey project that
seeks to replicate the Quaoar discovery model. This new survey (possibly Pan-
STARRS) will detect moving objects at least 100 times more frequently than
present surveys. Once a candidate is identified, it would be useful to constrain
its orbit by going back to surveys taken at different times in the past. On
projecting the orbit error circle back to those past times, we would see if we can
find the object in the corresponding RA and Dec range. This would be done by
comparing the past image against a known template for that part of the sky in
which the orbit error circle lies. If one does find the object, a stronger constraint
on the orbit is achieved and the process can be repeated against older surveys
with a far more tightly constrained error circle. Follow-ups to nail down the
orbit even further may now be scheduled at another telescope.

In this example complex, interacting steps must be performed by three
interacting pipelines. These are the pipelines at (a) the detecting survey, (b)
the data center or VO portal with archival data, and (c) the followup survey.
An iterative virtual pipeline may be composed which permits ever tighter orbit
constraints.

4. Conclusion and Future Work

Virtual pipelines provide a model for interaction between surveys, data centers,
and the VO; and a way for long running workflows to be saved and repeatedly
executed. We expect to release our implementation of VAP as open source
software in 2007.

We will add functionality providing message routing and data transfer be-
tween pipelines, a kerberos like interpipeline security model, and a web server
based pipeline portal. We will be supporting VO events and VO sinks and
sources on the IO bus. Finally, we will provide the ability to add policies for
handling errors descriptively. We hope that once the software is released, devel-
opers will be able to add functionality to make an already flexible system even
better. Please email rahuldave@gmail.com with opinions and suggestions.

Acknowledgments. We are grateful to the Keck Foundation for their sup-
port under the aegis of the CUSP project.

