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ABSTRACT
We describe a method to estimate the mass distribution of a gravitational lens and the position

of the sources from combined strong and weak lensing data. The algorithm combines weak

and strong lensing data in a unified way producing a solution which is valid in both the weak

and the strong lensing regimes. The method is non-parametric, allowing the mass to be located

anywhere in the field of view. We study how the solution depends on the choice of basis used to

represent the mass distribution. We find that combining weak and strong lensing information

has two major advantages: it alleviates the need for priors and/or regularization schemes for

the intrinsic size of the background galaxies (this assumption was needed in previous strong

lensing algorithms) and it reduces (although does not remove) biases in the recovered mass

in the outer regions where the strong lensing data are less sensitive. The code is implemented

into a software package called Weak & Strong Lensing Analysis Package (WSLAP) which is

publicly available at http://darwin.cfa.harvard.edu/SLAP/.
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1 I N T RO D U C T I O N

Lensing problems usually distinguish between two regimes, strong

and weak. In the strong lensing (SL) regime, a background source

galaxy appears as multiple images, while in the weak lensing (WL)

regime, its image suffers a small distortion which typically elon-

gates it in a direction orthogonal to the gradient of the potential. The

two problems are normally studied separately and, at best, they are

combined afterwards. Only a few attempts have been made to com-

bine both regimes in the same analysis (e.g. Bradac et al. 2005a,b;

Broadhurst et al. 2005b).

The quality and quantity of strong and WL data are growing

rapidly, motivating the use of algorithms capable of making full use

of the amount of information present in the images. In the early years

of SL data analysis, it was common to have only a few constraints

to work with. The small number of constraints made it impossible

to extract useful information about the mass distribution of the lens

without invoking a simple parametrization of the lens or the gravita-

tional potential (Kneib et al. 1993, 1995, 1996; Broadhurst, Taylor

& Peacock 1995; Natarajan & Kneib 1997; Sand, Treu & Ellis 2002;

Gavazzi et al. 2004; Broadhurst et al. 2005a). The common use of

parametric models requires making educated guesses about the clus-

ter mass distribution, for instance, that the dark matter haloes trace

the luminosity of the cluster or that galaxy profiles possess certain

symmetries.

�E-mail: jdiego@ifca.unican.es

Nowadays, it is possible to obtain SL images around the centre

of galaxy clusters with hundreds of arcs (Broadhurst et al. 2005a),

where each arc contributes with several effective constraints in the

process of solving for the projected mass distribution of the lens. In

addition, WL measurements provide shear constraints over a larger

field of view. When added together, the number of constraints can

be sufficiently high that non-parametric methods can be used in

the reconstruction of the mass. With such a large number of con-

straints, non-parametric methods have a chance to compete with

the parametric ones, complementing their results and raising inter-

esting questions if significant disagreements are found between the

two methodologies.

Non-parametric approaches have been previously explored in sev-

eral papers (Saha & Williams 1997; Abdelsalam, Saha & Williams

1998b,c; Trotter, Winn & Hewitt 2000; Williams & Saha 2001;

Warren & Dye 2003; Saha & Williams 2004; Treu & Koopmans

2004; Bradac et al. 2005a,b) and more recently in Diego et al.

(2005a) (hereafter Paper I). In Paper I, the authors showed that it

is possible to non-parametrically reconstruct a generic mass profile

(with substructure) provided that the number of strongly lensed arcs

with known redshifts is sufficiently large. They developed a pack-

age called SLAP upon which WSLAP is based. Paper I also showed

how working with extended images rather than just their positions

adds enough constraints to solve the regularization problem found

in other non-parametric algorithms [see Kochanek, Schneider &

Wambsganss (2004) for a discussion of this issue]. An application

of the method using SLAP on data from A1689 can be found in Diego

et al. (2005b) (hereafter Paper II).
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Most of the literature on lensing observations is based on ei-

ther WL or SL data. Only a few papers have attempted to combine

both WL and SL data (e.g. Bradac et al. 2005a,b; Broadhurst et al.

2005b). The main advantage of combining both regimes is that they

complement each other, filling the gaps and correcting the deficits

of each other. SL data are particularly sensitive to the central mass

distribution of the lens but are relatively insensitive to the outer re-

gions. On the other hand, WL cannot capture the fine details in the

central regions but can trace the mass distribution further out than

SL data. One of the problems of modelling WL data is the so-called

mass–sheet degeneracy. SL can break this degeneracy if several arcs

are observed, and the sources of these arcs span a wide range of red-

shifts. Some algorithms have been proposed for combining the WL

and SL regimes (Abdelsalam, Saha & Williams 1998a; Bridle et al.

1998; Saha, Williams & AbdelSalam 1999; Kneib et al. 2003; Smith

et al. 2005; Bradac et al. 2005a,b), but usually they need to assume

a prior on the mass (Kneib) or luminosity (Abdelsalam) or regular-

ize the problem (Bradac, Abdelsalam). One of the purposes of this

paper is to show how the above assumptions can be eliminated and

that a well-defined likelihood can be defined for the combined WL

and SL data set.

2 W S L A P A N D S T RO N G L E N S I N G

The fundamental problem in lens modelling is as follows. Given

the Nθ positions of lensed images, θ, what are the corresponding

positions β of the background galaxies and the mass distribution

m(θ) of the lens? Mathematically, this entails inverting the lens

equation

β = θ − α(θ, m(θ)) (1)

whereα (θ) is the deflection angle created by the lens which depends

on the observed positions, θ. Each observed position θ contributes

with two constraints, θ = (θx , θy), so we have 2Nθ SL constraints.

The deflection angle α at the position θ is found by integrating

the contributions from the whole mass distribution:

α(θ) = 4G

c2

Dls

Ds Dl

∫
m(θ′)

θ − θ′

|θ − θ′|2 dθ′, (2)

where Dls , Dl and Ds are the angular distances from the lens to

the source galaxy, the distance from the observer to the lens and

the distance from the observer to the source galaxy, respectively. In

equation (2), we have made the usual thin lens approximation so the

mass m(θ′) is the projected mass along the line of sight θ′. From the

deflection angle, one can easily derive the magnification produced

by the lens at a given position:

μ−1(θ) = 1 − ∂αx

∂x
− ∂αy

∂y
+ ∂αx

∂x

∂αy

∂y
− ∂αx

∂y

∂αy

∂y
. (3)

We find it convenient to expand the projected mass distribution in a

set of basis functions:

m(x, y) =
∑

l

cl fl (x, y), (4)

where fl (x, y) are the basis functions and cl the coefficients of the

decomposition. Here fl (x, y) can be any sort of two-dimensional

function. For instance, one can choose orthogonal polynomials like

the Legendre or Hermite polynomials, or one can use Fourier or

wavelet functions as the basis. We find that the best results are

obtained using compact basis functions defined on a gridded version

of the mass distribution like the ones used in Papers I and II, since

using extended ones tends to overproduce arcs in the final result

[see, however, Sandvik et al. (in preparation) for a novel approach

to this problem]. In Papers I and II, we used for fl Gaussians with

varying widths defined in a multiresolution grid. In this paper, we

will focus on compact bases and will compare the results using three

different compact bases.

After decomposing the mass as in equation (4), (2) can be rewrit-

ten as

α(θ j ) = λ j

∑
l

cl

∫
fl (θ

′)
θ − θ′

|θ − θ′|2 dθ′ = λ j

∑
l

cl f̃ l (θ j ), (5)

where all the constants and distance factors are absorbed into the

variable λj. Note that there is a different λj for each source since

λj includes the distance factors Dl , Ds and Dls which vary for each

source. The factor f̃ l (θ j ) is the convolution of the basis function fl
with the kernel (θ − θ ′)/|θ − θ ′|2 evaluated at the point θ :

f̃ l (θ j ) ≡
∫

fl (θ
′)

θ − θ ′

|θ − θ ′|2 dθ ′. (6)

If now we define the matrix Υ by

ϒ jl = λ j f̃ l (θ j ), (7)

then all the constraints given by equation (1) can be expressed in

the simple form

Θ = Υc − β. (8)

where Θ is the array (vector) containing all the θ positions (θ x and

θ y). The matrix Υ has a straightforward physical interpretation: the

element ϒ jl is just the deflection angle created by the basis function

fl at sky position θ j. Note that since θ j has two components (the x
and y components), there are two corresponding elements in Υ.

If we group all the unknowns in our problem (both β and c or

the mass in each cell) into a new vector x, then equation (8) can be

rewritten in the more compact form

Θ = Λx, (9)

where Λ is a 2Nθ × (Nc + 2Ns)-dimensional matrix and x is the

(Nc + 2Ns)-dimensional vector containing all the unknowns in our

problem (see Paper I), i.e. the Nc cell masses ml (or coefficients cl ),

and the 2Ns central positions βo (x and y) of the Ns sources.

3 A D D I N G W E A K L E N S I N G

So far, we have focused on solving a system of linear equations

corresponding to SL data. If WL information is available, it can

be easily incorporated into equation (9), allowing us to find the

combined solution of the weak plus strong lensing as we will see

below. Given the gravitational potential ψ , the shear is defined in

terms of the second partial derivatives of the potential ψ (the Hessian

of ψ):

ψi j = ∂2ψ

∂θi∂θ j
, (10)

γ1(θ) = 1

2
(ψ11 − ψ22) = γ (θ) cos[2ϕ], (11)

γ2(θ) = ψ12 = ψ21 = γ (θ) sin[2ϕ], (12)

where γ (θ) is the amplitude of the shear and ϕ its orientation. The

shear can be computed in a way very similar to the magnification μ

yielding

γ1 = 1

2

(
∂αx

∂x
− ∂αy

∂y

)
, (13)
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γ2 = ∂αx

∂y
= ∂αy

∂x
. (14)

The amplitude and orientation of the shear are given by

γ =
√

γ 2
1 + γ 2

2 , (15)

ϕ = 1

2
atan

(
γ2

γ1

)
. (16)

Given a number of shear measurements, an equation similar to

(8) can be written for the shear:(
γ1

γ2

)
=

(
Δ1

Δ2

)
c, (17)

where each element in the matrices Δ1 and Δ2 represents the con-

tribution to the shear (γ1 and γ2, respectively) of each one of the

basis functions. The expression for �ij can be easily derived from

equations (7), (13) and (14). The explicit form of �ij is given in

Diego et al. (2005b).

When measuring shear distortions, the reduced shear g is mea-

sured instead;

g = γ

1 − κ
(18)

where the convergence κ is defined by

κ = 1

2

(
∂αx

∂x
+ ∂αy

∂y

)
. (19)

Thus, the matrices Δ1 and Δ2 have to be modified accordingly to

include this correction.

After combining the strong and WL regimes by regrouping

the observed θ positions of the strongly lensed galaxies and the

measured shear, the new measurement vector φ will have the

structure

φt = (θx , θy, γ1, γ2), (20)

and the corresponding system of linear equations representing the

lens equation reads⎛⎜⎜⎝
θx

θy

γ1

γ2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Υx Ix 0

Υy 0 Iy

Δ1 0 0

Δ2 0 0

⎞⎟⎟⎠
⎛⎝ c

βx

βy

⎞⎠, (21)

where we have explicitly expanded the matrix Λ and the vector of

unknowns x into their components. In the above equation, the matrix

0 contains all zeros while the ij elements in matrix Ix are ones if the

θ i pixel (x-coordinate) is coming from the β j source (y-coordinate)

and zero otherwise. The matrix Iy is defined in an analogous way

for the y-coordinates. The above equation written in compact form

is simply

φ = Γx. (22)

In summary, we have formulated the full weak and strong lensing

problem in a manner where the observables φ depend linearly on

the unknowns x, so all the complicated physics and geometry are

conveniently encoded into the known matrix Γ.

In principle, an exact solution for x exists if the inverse of Γ exists

(i.e. x = Γ−1Φ). However, in most cases,Γ is singular and therefore

does not have an inverse (some of the eigenvalues are basically

zero within rounding errors), so a direct inversion of the problem

is not possible. Furthermore, even when the inverse of Γ exists, we

may not be interested in finding the exact solution, but rather in

an approximate solution of equation (22). The reason is twofold.

The definition of x assumed that the source galaxies responsible

for the SL arcs are point like (i.e., each source is defined only by

its coordinates, βx and βy). This assumption is inaccurate as the

galaxies will have some spatial extent, so we want the solution to

allow for some residual in equation (22). Second, for the mass we

have assumed that it is a superposition of certain basis functions,

say cells. This assumption, although a good approximation, is also

partially inaccurate, so we want to incorporate this in our analysis by

allowing some residual (|r | > 0) in the lens equation. This residual

is defined as

r ≡ φ − Γx. (23)

4 S O LV I N G T H E L E N S P RO B L E M

The fundamental task we are faced with is to obtain the coeffi-

cients c describing the lens surface mass density, and the positions

β of the background galaxies in order for their combination to ex-

plain the observed arcs θ and the shear γ . In the previous section,

we have shown how the unknowns of the problem can be com-

bined into a vector x, the observed data into another vector, Φ, and

the connection between the two is given by the matrix Γ. These

three elements relate to each other through the system of linear

equation (22).

We seek the solution x which maximizes the likelihood

function:

L(x) = e− 1
2
χ2

, (24)

where we have assumed that the residual r is Gaussian distributed.

The χ 2 is defined as

χ 2 = r tC−1r , (25)

where C is the covariance matrix of the residual r. The residuals

are modelled as uncorrelated (C is diagonal) and the elements in

the diagonal are equal to either σ 2
θ (for the SL data) or σ 2

γ (for

the WL data). We note that a Bayesian interpretation is possible

if a prior is given. A discussion on how to choose the prior is be-

yond the scope of this paper. However, when considering Gaus-

sian priors, the quadratic part in the exponential could be eas-

ily integrated with the quadratic part of the likelihood. Then, the

fast algorithms suggested in this paper (see below) could still be

applied to the Bayesian problem. The reader may find interest-

ing papers where this issue has been already discussed. For in-

stance, Bridle et al. (1998) and Marshall et al. (2002) discuss an

entropic prior for the surface mass density. The inclusion of a

proper prior and other related issues will be discussed in a future

paper.

We will discuss C below in Section 7.1. For the main calculations

in this paper, we assume that the rms error σ θ is equal to two pixels

in the source plane (which corresponds to roughly two arcsec), and

model σγ as uniform over the field of view, and equal to 0.046 (or

4.6 per cent). These values will be discussed/derived later. Errors

in the shear measurements can be in the range of a few per cent for

well-calibrated experiments (e.g. Heymans et al. 2005; Hirata et al.

2005). The covariance matrix C can also incorporate a measure of

the noise in the data both in the SL and in the WL. C can also include

a measure of the systematic errors intrinsic to the analysis some of

which will be discussed below. We will now explore two alternative

approaches for finding the solution that maximizes the likelihood

(minimizes the χ 2).
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4.1 Bi-conjugate gradient method

Substituting equation (23) into equation (25),

χ 2 = (φ − �x)tC−1(φ − �x)

= φtC−1φ − 2φtC−1�x + xt�tC−1�x

= b − at x + 1

2
xtAx, (26)

where we have defined the constant b ≡ φtC−1φ, the vector a ≡
2 �tC−1φ and the matrix A ≡ 2�tC−1�. Minimizing this by set-

ting the derivative with respect to x equal to zero gives a formal

solution x = A−1a. This is not useful in practice, however, since

� (and therefore also A) is normally rather singular. In Paper I, we

found a simple regularization technique that gives physically reason-

able results: minimizing χ2 using the iterative bi-conjugate gradient

method (Press et al. 1997), but stopping once an approximate solu-

tion of equation (22) had been found rather than continuing to iterate

toward the formal solution. Specifically, the bi-conjugate gradient

method performs successive minimizations which are carried out in

a series of orthogonal conjugate directions with respect to the metric

A. The algorithm starts with an initial guess for the solution (e.g.

x0 = 0). Then, the algorithm chooses as a first minimization direc-

tion the gradient ∇χ2 at x0. Then, it minimizes in directions which

are conjugate to the previous ones until it reaches the minimum or

the χ 2 is smaller than certain target value ε. We will discuss later

how to choose ε – we will find that combining weak and strong

lensing makes the choice of ε much less relevant than when only

SL data are used in the analysis.

4.2 Non-negative quadratic programming

Although the bi-conjugate gradient method is a fast and effective

way to find an approximate solution, it is not ideal. The regular-

ization procedure was required because certain modes in the mass

distribution corresponded to eigenvalues near zero in the matrix A.

Plotting these unconstrained modes shows that they all oscillate,

trading off positive mass in some places against unphysical neg-

ative mass elsewhere. Without regularization, the solution can in-

clude such modes of significant amplitude, involving negative mass

in certain cells. Both the regularization problem and the negative

mass problem can therefore be eliminated in one fell swoop by us-

ing a constrained minimization algorithm that only minimizes χ 2

in the physically meaningful region of the parameter space c where

all masses are non-negative. Our case is particularly simple: we are

minimizing a quadratic function of x subject to constraints on x that

are linear. This is a well-studied problem in optimization theory,

and several methods have been proposed in the context of quadratic

programming (QADP). In this paper, we will explore the approach

of Sha, Saul & Lee (2002) known as multiplicative updates for non-

negative quadratic programming. Following Sha et al. (2002), we

can minimize the quadratic objective function

f (x) = 1

2
xtAx + at x (27)

subject to a non-negative mass constraint, i.e. the constraint that

mi � 0 for all i, where mi is the mass at position i. Note that when

compared with equation (26), we have changed the sign of vector a
to keep the same notation of Sha et al. (2002). In our vector x, the

mass distribution is represented by expansion coefficients c rather

than cell masses m, and equation (4) shows that these two vectors

are related by

m = Fc, (28)

where the element Fil is the value of the basis function fl at position

i. We can therefore make the substitution x = F−1m in equation (27)

and rewrite it as a function of a transformed vector denoted by x′

which equals x except that the elements defining the mass distribu-

tion are m = Fc rather than c:

f ′(x′) = 1

2
x′tA′x′ + a′t x′, (29)

where a′ is the same as a but with the elements related to masses

multiplied by F−1, and A′ is the same as A but with the submatrix

related to masses multiplied by F−1 both from the left and from

the right. In general, the dimensionality of x′ can be different from

the dimensionality of x. However, to keep the problem simple, we

assume that the masses in equation (28) are evaluated only at the

central position of each cell. That makes the dimensions of x and x′

equal, and mi can be interpreted as simply the total projected mass

in the ith cell. Since the positions β can be also made positive (by

defining the origin of the coordinates in the left bottom corner of the

field of view), all components in the vector x′ (mi and β j) have to be

positive. In conclusion, we wish to minimize equation (29) subject

to the constraints that all elements x′
i � 0. We solve this problem

iteratively using the multiplicative update technique of Sha et al.

(2002). For simplicity of notation, we suppress all primes from

equation (29) below. Let us split the matrix A into its positive and

negative parts A
+

and A
−

such that A = A
+ − A

−
, where A+

ij ≡
Ai j if Ai j > 0 and 0 otherwise and A−

i j ≡ − Ai j if Ai j < 0 and 0

otherwise. The solution is iteratively updated by the rule

xi+1 = xiδi , (30)

where the multiplicative updates δi are defined by

δi = −ai +
√

a2
i + 4(A

+
x)i (A

−
x)i

2(A
+

x)i

. (31)

It is easy to see that generic quadratic programming problems have

a single unique minimum. Let x∗ denote this global minimum of

f(x) (within the non-negative mass part of parameter space). Let us

prove that convergence of the iteration equation (31) corresponds

to this minimum x∗. At this point, one of two conditions must ap-

ply for each component x∗
i : either (i) x∗

i > 0 and @ f
@ xi

(x∗) = 0 or

(ii) x∗
i = 0 and @ f

@ xi
(x∗) � 0. Now since

∂ f

∂xi
(x∗) = (A+x)i − (A−x)i + ai , (32)

the multiplicative updates in both Cases (i) and (ii) take the value

δi = 1, the minimum is a fixed point. Conversely, a fixed point of

the iteration must be the minimum x∗.

5 S I M U L AT I O N S

Testing the algorithm with simulations is essential, not only to prove

its feasibility but also to identify its failures and weaknesses. In this

paper, we will show some results using a simulated cluster with a

particularly rich structure. The motivation for this is twofold. First,

using a highly asymmetric distribution motivates the use of non-

parametric methods where no assumptions about the distribution

of the mass are needed. Secondly, asymmetries may play a role

introducing biases in the result which we may want to study.

Also, with simulations we can test how different choices for fl
and C affect the result. This last step is important since fl and C
are basically the only assumptions made in the process of fitting the

data.

The simulated data are made of a combination of the following

three basic ingredients:
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Figure 1. Original mass used to test the algorithm (at z = 0.2). The mass is built out of a superposition of several NFW profiles with added ellipticities. The

total mass in the field of view (8.4 arcmin) is 1.05 × 1015 h−1 M�. The left-hand panel shows the central region (4.2 arcmin, 0.59 × 1015 h−1 M�) and the

strongly lensed galaxies. These arcs are lensed images of seven galaxies between redshifts 0.7 and 4. The right-hand panel (8.4 arcmin) shows the shear field

and the outer regions of the cluster. The shear is assumed to be measured outside the brightest areas of the cluster.

(i) the lens mass distribution that we will try to recover,

(ii) the arcs observed in the central region of our field of view

that will constitute the SL part of the data and

(iii) the shear measured over the entire field of view which will

constitute the WL part of the data.

5.1 Mass distribution

In order to test the algorithm, we will use a simulated cluster with

abundant internal structure. The cluster is placed at redshift z = 0.2.

It has a highly elliptical extended large-scale component at large

scale, and the central region has several clumps surrounding the cen-

tral peak. These clumps are generated from Navarro–Frenk–White

(NFW) profiles with added ellipticities. There is also a filamentary

component crossing the field of view. The simulated cluster has a

total projected mass of 1.05 × 1015 h−1 M� over the field of view

(8.4 arcmin) and is shown in Fig. 1. This field of view corresponds

to a scale of 1.7 Mpc which corresponds to approximately 80 per

cent of the virial radius for clusters with this mass.

5.2 Strong lensing data

To generate the arcs, we place several sources behind the cluster. The

sources have redshifts between z = 1.0 and 6.5. We consider seven

sources in this redshift range. The arcs produced by the combination

lens sources are shown in Fig. 1 (left-hand panel). These arcs will

constitute the SL part of our data set. We use all the pixels containing

part of one arc in the previous image. There are 673 of these pixels.

All the sources have at least two lensed images in the previous plot.

Some sources appear as many as five times. Although we search for

multiple images only in the central part of the field of view (4.2 ×
4.2 arcmin2), we use the mass over the entire field of view (8.4 ×
8.4 arcmin2) to calculate the deflection angle.

Another ingredient of the SL simulated data is the noise level,

σ θ , which appears in the diagonal of the covariance matrix C . For

our purposes, we will consider that this noise, σ θ , will be equal to

two pixels (which corresponds to a scale of 2 arcsec). This choice

for σ θ will be discussed in detail later. We will see how, in the case

of the SL data, the noise will be dominated by the systematic errors

which are intrinsic to the methodology presented in this paper.

5.3 Weak lensing data

We computed the reduced shear over the entire field of view [8.4

× 8.4 arcmin2 or 1.7 × 1.7 (h−1 Mpc)2] while excluding the cen-

tral region. The reduced shear was simulated assuming the sources

had a median redshift of z = 2. We assumed galaxy ellipticities

have been averaged over areas of 0.65 × 0.65 arcmin2 and that

there was a density of 100 galaxies/arcmin−2. Our WL data set con-

sisted of 155 reduced shear measurements over the field of view

(155 reduced γ 1 and 155 reduced γ 2). The reduced shear field is

shown in the right-hand panel of Fig. 1. Using the reduced shear has

an important consequence in our algorithm. In real observations,

the galaxy ellipticities provide estimates of the reduced shear g =
γ /(1 − κ) where κ is the convergence. Since the reduced shear de-

pends on the convergence, the elements of the WL matrix Δ will

have to be computed iteratively. Once a solution has been obtained,

we use that solution to recalculate Δ (and thereof the main matrix

Γ) using the convergence corresponding to that solution. The algo-

rithm converges after a few iterations. In the first iteration, we took

the convergence to be zero everywhere.

To estimate the noise of the WL data, or σγ , we have assumed that

there are 100 background observed galaxies per square arcminute

(i.e. 42 galaxies in our cells of 0.65 × 0.65 arcmin2). This type of

observations can be obtained with current telescopes like the Hub-
ble Space Telescope (HST). Averaging this density of background

galaxies in the areas considered above, we obtain for σγ

σγ = 0.3√
42

= 0.046. (33)
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This noise is only considered in the covariance matrix C and is not

included in the actual simulated data. We believe that including the

noise in the data instead of just taking the expected average will

not change our conclusions (our data are in this sense noiseless).

The important point is that our simulated data are one realization

among all possible ones (within the noise level) and that the noise

is properly included in the covariance matrix.

Summarizing, the SL data consist of Nθ = 673 pixels distributed

in about 17 strongly lensed images (or arcs) coming from seven

sources. Each pixel contributes as two data points (θx and θy). The

shear is computed on a Nγ = 13 × 13 grid over a field of view

expanding 8.4 arcmin. Each shear measurement contributes also

with two data points (γ1 and γ2). The data vector, φ, is then an

N-dimensional vector with N = 2Nθ + 2Nγ = 2 × 673 + 2 × 155 =
1656. The covariance matrixC is diagonal with the first 2Nθ diagonal

elements equal to σ 2
θ and the next 2Nγ diagonal elements equal to

σ 2
γ . For σ θ , we take 2 arcsec and for σγ we take σγ = 0.046. The

number of unknowns, Nx , is the number of cells (or basis) Nc plus

two times the number of sources Ns (the factor of 2 coming from

the x and y component), Nx = Nc + 2Ns = 500 + 2 × 7 = 514

where we have assumed that the lens plane has been divided in 500

cells (although this number can vary). The matrix A (= ΓtC−1 Γ)

is a Nx × Nx matrix, and the vectors x and a = ΓtC−1φ have

dimension Nx (A and a are as defined in equation 26).

6 R E S U LT S

As in Papers I and II, we start the minimization process assuming

we know nothing about the mass distribution and use a regular grid

to divide the lens plane. Also, as explained in Paper I, a regular

grid has the inconvenience that the small details of the mass distri-

bution cannot be described with enough accuracy. That means, the

lens is less adaptable and will have problems reproducing the data.

To avoid getting a very biased solution, the minimization process

has to be stopped earlier than in the case where the grid reproduces

finer details (bigger ε). Otherwise, we will end up with an unphys-

Figure 2. Recovered mass (in 8.4 arcmin field of view) using a multiresolution grid (450 cells). The solution obtained with the QADP algorithm is shown in

the left-hand panel and the one obtained with the bi-conjugate gradient in the right-hand panel. The grid is the same in both the cases. In this and in the other

figures, a Gaussian smoothing filter has been applied to the images for representation purposes. The images have been saturated beyond 4.0 × 10−5 in order to

maintain the same scale in both plots. The units are 1015 h−1 M� per pixel and there are 512 × 512 pixels in the image.

ical solution which tries to fit the data superposing big ‘chunks’ of

dark matter in the lens plane. On the other hand, the irregular (mul-

tiresolution) grid is able to reproduce better the smaller details of

the surface mass density and also helps to better predict the sources.

However, the multiresolution grid has the disadvantage that it suffers

more of the memory effects discussed in Paper II. Regions which

are less sensitive to the data (especially in the border of the image)

tend to retain information about the initial condition. In this paper,

we will combine results combining both regular and multiresolution

grid.

The first iteration (using a regular grid with 16 × 16 = 256 cells)

finds an elliptical distribution of mass in the correct location but is

unable to unveil any of the finer details of the mass distribution. The

total mass in this first iteration is smaller than the original mass by

20 per cent. Once we have a guess for the mass distribution, the

adaptive grid can be constructed by splitting the cells with higher

densities into smaller cells. Cells are split in an iterative process

which subdivides the cells having higher densities into four smaller

subcells. The splitting procedure stops when the goal number of

cells, Nc, is achieved. Each time a new grid is built, the Γ matrix has

to be recomputed again. Each minimization step (new grid + new

Γ+ new solution) usually takes about 10 s on a 1 GHz processor

using the bi-conjugate gradient algorithm. With the QADP algo-

rithm, the convergence process may take as long as several hours

depending on the number of cells. In Fig. 2, we show the result ob-

tained using the QADP and bi-conjugate gradient algorithms. The

number of cells used in this case was Nc = 450. Note how the re-

covered mass reproduces well most of the original structure up to

the limits of the field of view (compare with Fig. 1). Minimizing

χ 2 using QADP or the bi-conjugate gradient algorithm described

above renders very similar results. The bi-conjugate gradient al-

gorithm finds a solution much faster but it may produce solutions

with negative masses. This is particularly true if the χ2 is mini-

mized beyond a minimum threshold (ε). This problem was already

identified in earlier works, and we refer to it as the point source
solution.
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Figure 3. Point source solution in the 8.4 arcmin field of view obtained

with the bi-conjugate gradient algorithm and a regular grid (32 × 32 = 1024

cells) (absolute minimum of χ2 ≈ 10−14). The total mass is 30 per cent

larger than the true one.

6.1 Point source solution

In Papers I and II, we show that, when using SL data alone, if the

χ 2 of the solution is too small (lowest minimum possible) the mass

distribution can be far from the true underlying mass. This solu-

tion was known as the point source solution and focuses the arcs

into regions which are much smaller than the physical size of the

galaxies. This solution is unphysical and should be avoided. Adding

WL acts as a stabilizing factor in the sense that the equivalent of

the point source solution (lowest minimum possible) is in this case

still a good estimate of the real solution (see Fig. 3). When only

SL data are used, the bi-conjugate gradient is capable of finding the

point source solution by creating a complicated structure of positive

and negative masses. When WL is added, the negative masses can

no longer reproduce the strong and WL constraints simultaneously.

The dependency of the solution with the stopping point of the bi-

conjugate gradient algorithm, ε, is much weaker when weak and

strong lensing are combined together. Also, in the point source so-

lution of the combined WL and SL data, the predicted physical size

of the sources is closer to their real size than when only SL is used.

On the other hand, QADP does not suffer as much of regularization

problems as the bi-conjugate gradient algorithm. The algorithm can

be left running until convergence is achieved (by convergence we

mean that the solution changes less than 0.1 with both algorithms

agree).

Finally, we have not explored the case where the number of cells

is very large. In this situation, it is possible that unphysical solutions

(like the point source in the case of SL data alone) appear again.

6.2 Strong lensing versus weak lensing

It is interesting to see how the method performs when only one of the

data sets is used. In Fig. 4, we show the results using the bi-conjugate

gradient algorithm in the different scenarios, using SL data alone,

Figure 4. Results obtained with the QADP algorithm and using a uniform

grid of 32 × 32 = 1024 cells. The field of view is 8.4 arcmin in all cases.

Original mass (top left), reconstructed mass with SL data only (top right),

reconstructed mass with WL only (bottom left) and reconstructed mass with

combined WL and SL data (bottom right). The grey-scale is the same for all

panels (images have been saturated beyond 4.0 × 10−5 as in Fig. 2). Compare

the reconstructed solution (bottom right) with the one using a multiresolution

grid (Fig. 2).

using WL data alone and combining both. The combination gives a

better reconstructed mass than the other two. Using SL data alone

produces a solution which is insensitive to the outer regions of the

field of view. Using WL data alone produces a solution which is

sensitive to the entire field of view. The solution obtained after

combining both regimes reproduces the mass distribution better than

any of the two cases separately. This is emphasized in Fig. 5 where

Figure 5. Original profile (thick solid line) versus reconstructed ones (see

Fig. 4) obtained with the QADP algorithm and 1024 cells. The thin solid

line is the reconstructed profile after combining weak and strong lensing

data. The dashed line is the reconstructed profile using SL data only while

the dotted line is the result obtained when only the WL data are considered.

Note how the SL-dominated analysis reproduces better the central peak but

fails in the tails and how the situation reverses when we use only the WL in

the analysis.
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the one-dimensional profiles are compared in the different cases.

Note how the combination reproduces the profile better. When only

SL is used in the minimization (see Papers I and II), the bi-conjugate

gradient naturally tends to increase the mass in the centre of the

lens so the sources get more compressed in the centre of the image

(smaller χ 2). Adding WL prevents the mass from growing too much

in the centre since that would not reproduce properly the observed

shear field. On the other hand, using weak lensing alone has the

potential problem of the mass–sheet degeneracy. Adding SL acts

as a regularizing component since a very specific amount of mass

is needed in the central region to focus the big arcs into compact

sources at different redshifts while the WL part imposes constraints

on the (radial) continuity of the solution.

Another important difference with Papers I and II is that they used

no covariance matrix (or more specifically, they assumed that C =
I). The main reason to introduce a covariance matrix in the present

paper is to properly weight the SL and WL data. The covariance

matrix can also be viewed as a way to allow for the instrumental

noise and systematic error to play a role in the SL and WL data.

Therefore, making one data set more relevant than the other if their

measurements are more accurate.

In the previous result, where only the SL part of the data was used,

we computed the mass in the entire field of view. This is a waste of

variables since the SL data are not sensitive to the outer regions of

the field of view. In Fig. 6, we show the reconstructed mass (SL data

only), but computed only in an area of only 4.2 arcmin (see left-hand

panel in Fig. 1). In this case, we made the analysis in this smaller

region which allowed the algorithm to highlight more structure.

A central ingredient of WSLAP is the covariance matrix C. Its main

role is to properly weight the SL and WL data sets so that one does

not dominate over the other. From our numerical experiments, we

have observed that choosing different weights can affect the result.

An extreme example was shown in Figs 4 and 5 where one of the

weights was chosen much larger than the other one. As a general

Figure 6. Mass obtained using SL data only and the smaller field of view

(4.2 arcmin). This result is derived with a regular grid of 32 × 32 = 1024

cells and bi-conjugate gradient. Note how the increase in resolution allows

to recover more substructure than in the previous case.

rule, the weights must represent the uncertainties (systematic errors

and noisy measurements) of the data sets. That is, σγ must be the

shear noise which is well determined and σ θ an estimate of the

systematics in the SL part of the data. The problem appears when

one has to estimate σ θ . In this case, it is difficult to evaluate the

noise of the SL data. It is important to remark at this point that

by noise of the SL data we mean the residual or systematic noise

(see Papers I and II). As seen in those papers, this systematic noise

comes basically from the wrong assumption that the source galaxies

are point sources and the fact that we are using a gridded version

of the mass (i.e. with less resolution). Evaluating the level of this

residual is not straightforward although it is possible to do it with

simulations mimicking the data. Through them, we found that this

systematic error is typically of the order of a few arcseconds (ex-

pressed in radians) which corresponds to sizes a bit larger than the

typical size of the source galaxies. Our numerical experiments show

that small variations (a factor of 2 or less) around these values of

σ θ do not affect the final result significantly. The issue of how to

better combine two different data sets is an old one and it has not

a straightforward solution. An interesting approach can be found

in Lahav et al. (2000) where the authors introduced the so-called

hyper-parameters. Applied to our problem, these hyper-parameters

would change the relative weights of the SL and WL introducing

a prior in the diagonal elements of the matrix C. We can assume

that the prior is, in principle, narrower for the WL data than for the

SL data (the systematics in the SL case are normally more impre-

cise than in the WL case). Then, if a likelihood for the problem is

given, the hyper-parameters can be marginalized over. The problem

appears when one has to decide the best solution since one should

avoid the maximum likelihood solution (a.k.a. as point source so-

lution in the context of this paper). Instead, the ‘best’ solution must

be in a Nx -sphere (Nx the number of unknowns of the problem)

with radius ε around the maximum likelihood solution. That is, we

must stop the minimization (or maximization) process when the so-

lution is at a distance ε (this can also be also seen as a regularization

process).

As a hint, one expects this radius, ε, to be a bit larger than the

physical size of the sources (see Papers I and II) since it has to

account for the wrong assumption that the sources are delta functions

and the shear measurement. How much larger will depend on the

other systematics (WL noise and number of cells mostly). In Paper I,

we gave a recipe on how to quantify ε. We explained how, when

using the bi-conjugate gradient algorithm, the residual of the lens

equation, r, can be related to the estimator rk of the bi-conjugate

gradient through the relation rk = Γtr (see equation 23 in Paper I).

In that paper, the residual r is referred as R). When weak and strong

lensing are combined in the manner explained in this paper, that

relation needs to be substituted by

rk = ΓtC−1r . (34)

Following Paper I, we can give an estimate of ε = rt
krk by substituting

r with a guess of what the residual should be at the stopping point.

As such a guess we can assume that the WL data should leave a

residual of the order of few arcseconds (i.e. σ θ in radians) around

the source galaxies and that the WL data leave a residual of the

order of σγ . Proceeding this way, we can create a vector r where its

first 2Nθ components are Gaussian random variables with zero mean

and dispersion σ θ and the last 2Nγ are Gaussian random variables

with zero mean and dispersion σγ . Then, from equation (34), we

can obtain an estimate of ε which will tell us where to stop the

minimization process so that we do not overfit the data. For instance,

in one of the cases presented above with the regular grid (1024 cells),
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Figure 7. Contribution to the residual rk from the SL part of the data (dotted)

and from the WL part of the data (dashed) for the case σ θ = 2 arcsec and

σγ = 0.046. The k index in the x-axis runs from 1 to the number of unknowns

(Nx ).

Figure 8. Integrated r t
krk (cumulative function from Fig. 7). The contri-

bution from the WL Gaussian residual is shown as a dashed line while the

contribution from the SL Gaussian residual is shown as a dotted line.

σ θ = 2 pixels and σγ = 0.046, we obtain a value for ε1 ≈ 1.3 × 109.

If we take a closer look at the contributions to this value of ε coming

from the SL and WL, we observe that this value of ε is dominated

by the SL contribution assuming that the SL and WL residuals are

Gaussian variables with dispersions σ θ and σγ , respectively (see

Figs 7 and 8). The ratio between the contributions to ε from SL and

WL (see Fig. 8) is more or less equal to the ratio between the number

of data points (there are about four times more SL data points than

WL data points). Also, from Fig. 7 we can see that the SL data

show larger fluctuations associated to the central cells. This is an

indication that the SL data are particularly sensitive to these central

cells and points in the direction that an improvement to the method

could be made by selecting the σ θ weights more carefully so that

the systematics can be accounted for in a better way. This point is,

1 The users of WSLAP will note that typical values of ε are about 20 orders

of magnitude smaller than this one (i.e. ε ∼ 10−11). This is due to the factor

f f 0 = 105 in the routine which computes ΓtΓ and that was introduced to

add stability in the QADP algorithm

however, beyond the scope of this paper and will be investigated

further in subsequent papers.

7 S Y S T E M AT I C E F F E C T S

In this section, we will discuss some of the possible sources of

systematic errors. This list is neither complete nor exhaustive and

other possible sources of systematic errors remain to be investigated

(see for instance the last paragraph of the previous section).

Gaussian hypothesis: when we defined the likelihood, we as-

sumed that the residual was well described by a Gaussian probabil-

ity distribution and with a diagonal covariance matrix. We test this

hypothesis by calculating the residual left after one minimization.

We find that the Gaussian hypothesis is a good approximation. The

residual has a probability distribution which resembles a Gaussian

and with a dispersion similar (although a bit smaller) to the one we

assumed originally (see Fig. 9). The fact that the dispersion in the

SL residual is smaller than in the WL case could be connected with

the fact that the contribution to the χ2 is larger in the case of the SL

data when a Gaussian residual is assumed (see Fig. 7).

Diagonal covariance matrix: regarding the covariance matrix C,

we found that the elements in the residual are correlated with each

other and that many of the off-diagonal elements of C compete with

the diagonal ones specially in the SL–SL case (correlation of the SL

residuals). This is not surprising as many of the SL data points come

from the same source. This observed correlation emerges naturally

as a combination of the minimization process and the fact that the

reconstructed sources retain some memory of the original shape

of the arcs. Future papers will study how to exploit this property

and include spatial information about the sources in the covariance

matrix.

Multiplicity of the solution: when finding the solution with the

bi-conjugate gradient or QADP algorithms, the minimization has to

start at some guess for the solution. This starting point is arbitrary

and the final solution may be different depending on where the

minimization starts. By minimizing many times and changing this

initial condition, we can find the range of possible solutions which

are compatible with the data. Figs 10 and 11 show an example of

this where we minimize 1000 times using the faster bi-conjugate

Figure 9. Histogram of the residuals, r, for the SL case (dotted line) and the

WL case (dashed line). The residuals are calculated at the position x of the

minimum and have been re-scaled by the assumed σ θ = 2 pixels (SL) and

σγ = 0.046 (WL). The residual follows more or less a normal distribution.
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Figure 10. Mean recovered mass. The figure shows the average of 1000

reconstructed masses using a multiresolution grid of ≈500 cells and the bi-

conjugate gradient algorithm. The image has not been smoothed like in the

previous cases in order to show the multiresolution grid. A smoothed version

of this image looks very similar to the one in the right-hand panel of Fig. 2.

Figure 11. The histogram shows the recovered masses after 1000 minimiza-

tions. The mean of these reconstructed masses is shown in Fig. 10. The bias

in the total recovered mass depends on the initial condition. To obtain this

result, we used three sets of initial conditions. Each set is marked with a

dashed vertical line (see text).

gradient algorithm and a multiresolution grid of about 500 cells

(at each new minimization, a new grid is computed based on the

previous solution). The mean recovered mass reproduces the main

details of the original mass distribution although with some biases.

The bias is concentrated more on a ring area about 1 arcmin from

the centre. This bias is a combination of two factors: (i) the SL

data are not sensitive to the mass distribution beyond 1 arcmin so

any symmetric mass distribution for instance a ring will have no

effect on the SL data; (ii) the WL data do not cover the central

1 arcmin and therefore are insensitive to the internal distribution

of matter in this region. Also, we have observed that this bias is

diminished when we use a regular grid instead the multiresolution

Figure 12. Reconstructed profiles after minimizing 1000 times. At each

minimization, a different initial condition is chosen. These initial condi-

tions are uniform random masses between 0 and 1.7 × 10−3 (in units of

1015 h−1 M�).

one indicating that part of the bias in this region may be due to

the use of a multiresolution grid combined with the memory effects

discussed is Paper II. The issue about the memory effects is more

evident if we observe Fig. 11. The histogram represents the total

recovered mass of the 1000 solutions (true mass at 1.05) obtained

after using three different sets of random initial conditions. The three

sets are marked with dashed vertical lines in Fig. 11. Each vertical

line marks the total mass of the initial condition, Xo. The first set

(left-hand dashed line) corresponds to random masses between (all

masses in units of h−1 1015 M�) 0 and 3 × 10−3 and has a total mass

of 0.75 in Xo. The second set (middle dashed line) corresponds to

random masses between 0 and 4 × 10−3 and has a total mass of 1.

The third set (right-hand dashed line) corresponds to random masses

between 0 and 5 × 10−3 and has a total mass of 1.25. The first set

produces solutions which systematically underpredict the masses in

the outer regions while the third set overpredicts the same masses.

The second set seems to predict the right profile in this region (see

Fig. 12). The final solution is then sensitive to the initial condition,

Xo, in certain areas especially in the outer regions. The final solution

retains some memory of the initial condition in the border of the

image. Thus, solutions obtained after using initial conditions with

high fluctuations will normally overpredict the mass in the border

of the field of view. On the other hand, if the initial condition has

small masses (or 0 mass) the solution tends to underestimate the

mass in the borders. Note how in Fig. 12 the tail of the distribution

fluctuates the most. A similar effect was studied in Paper II using

simulated SL data only. The QADP algorithm reduces a little bit

the dispersion of all the possible solutions. However, QADP is too

slow to be applied hundreds of times each with a different initial

condition. The bump observed at 1 arcmin from the centre (Fig. 12)

appears independently of the values taken by the initial condition.

We can conclude that the bias depends on the number of cells, type

of grid and the initial condition.

7.1 Alternative choices for C

So far, we have considered only the case where σ θ and σγ are

constants. Since C can be seen as the matrix containing the covari-

ances of the data points, one may feel tempted to play with different

weights for the data set. For instance, one may consider giving more
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Figure 13. Recovered mass (in 8.4 arcmin field of view) using a regular grid (1024 cells). The left-hand panel shows the case where σ θ was taken an order of

magnitude larger than in Fig. 2 while the right-hand panel is the case when σ θ is an order of magnitude smaller. The corresponding one-dimensional profiles

can be seen in Fig. 14. The images have been smoothed (Gaussian filter) and saturated beyond 4.0 × 10−5. The units are 1015 h−1 M� per pixel and there are

512 × 512 pixels in the image.

relative importance to the smaller radial arcs than to the bigger tan-

gential arcs. This is motivated by the fact the residual of the SL part

is more clearly dominated by the big tangential arcs than by the

small radial ones. We have tried different weighting factors in the

matrix C and found that reasonable results are obtained when the

weight of the SL data, σ θ , is homogeneous over the field of view,

that is, all data points are given the same importance independently

or whether they are forming part of a giant arc or a tiny radial arc.

Weighting the radial arcs more than the tangential ones produces bi-

ased results in the recovered mass distribution, included the position

of the central peak. A good result is also obtained when the weight

is proportional to the fraction of pixels in the system compared with

the total number of pixels in all systems. In this case, the results are

very similar to the ones obtained with a homogeneous weight in C.

Regarding the WL data, the uncertainties may depend on where

in the field of view the shear estimates are made. This can be in-

cluded in C by using a spatial distribution for σγ . For instance,

Seitz & Schneider (1996, 1997) and Marshall et al. (2002) use

a spatial variation in regions where the reduced shear (g) ap-

proaches unity; the uncertainty on the reduced shear estimate is

reduced by a factor of (1 − g2). This point will be considered in a

future paper.

In previous sections, we argued that the exact value of σ θ in the

matrix C cannot be determined with the same precision as σγ . The

reason is because σ θ is dominated by the systematic effects (point

source assumption and gridded version of the mass distribution)

while σγ is not (WL is not affected by the point source assumption

and the reduction in resolution due to the grid affects much less the

WL data than the SL data). So far, we have presented the results with

a particular choice for σ θ , 2 pixels or ∼2 arcsec which corresponds

to the typical size of a galaxy at intermediate redshift (see Papers I

and II). We also presented the two extreme cases (Figs 4 and 5) where

the effective σ θ was taken as 0 and ∞. When σ θ deviates from ∼2

pixels, the result changes depending on whether σ θ increases or

decreases. Small deviations (<30 per cent) from ∼2 pixels do not

produce significant changes when the results are compared with

those presented in previous sections. Larger deviations make the

solution move in the direction of the two extreme cases shown in

Figs 4 and 5. For example, in Figs 13 and 14 we show two ex-

amples obtained when σ θ varies 1 order of magnitude above and

below the assumed 2 pixels. Any reasonable value of σ θ will be well

within these two cases or even within a factor of 2 from the assumed

2 pixels (or 2 arcsec). Variations of about 50 per cent in σ θ should

not affect the result significantly. Although we cannot give a precise

formulae on how to better choose σ θ [but see our discussion above

on the use of hyper-parameters (Lahav et al. 2000) and also on the

different contribution to ε from weak and strong lensing data], one

Figure 14. Reconstructed profiles from Fig. 13. The solid line represents the

original profile, dashed line the profile obtained when σ θ is taken 1 order of

magnitude larger (WL dominates) and dotted line when σ θ is taken 1 order

of magnitude smaller (SL dominates).
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should expect values of σ θ ∼ a few arcseconds to give satisfac-

tory results for sources at redshifts z = 0.3 and beyond. For sources

which are very close to this value it should be probably higher since

in this case the point source assumption introduces an even larger

systematic effect.

7.2 Dependence on the basis fl

In this section, we will discuss the role of the basis functions fl used

to decompose the mass (equation 4).

We found that in general compact basis gives better results than

extended ones. As an example, in Fig. 16 we show the reconstructed

profiles using a grid of 32 × 32 cells and three different sets of basis

functions: (i) a Gaussian basis centred in each cell with a width, σ ,

equal to two times the size of the cell,

G(r ) ∝ exp(−r 2/2σ 2). (35)

(ii) An isothermal sphere with a core of the same scale σ ,

I (r ) ∝ 1

r + σ
. (36)

(iii) A power law also with a core of the same scale σ ,

P(r ) ∝ 1

r 2 + σ
. (37)

We checked the three basis running the code over the same simu-

lation and using the same grid in the three cases. While the results

obtained with the first two bases are reasonable, the results obtained

with the isothermal sphere show a constant sheet excess in the sur-

face mass density which is probably due to the extended tails of

the basis. This behaviour may be a manifestation of the mass–sheet

degeneracy. This is shown in Fig. 15 where the original mass dis-

tribution is compared with three solutions obtained with the three

bases above. In general, the Gaussian case renders good results.

The power-law basis also produces satisfactory results and seems

Figure 15. Recovered masses using three different bases. Gaussian (top

right), power law (bottom left) and isothermal (bottom right). The colour

scale is the same in all the plots. Images are saturated beyond 3 × 10−5 (in

units of 1015 h−1 M� per pixel). Note that the filtering is different in this

plot than in previous ones (see text).

Figure 16. Original profile (thick solid line) versus reconstructed ones. Us-

ing as basis fl isothermal spheres (dashed), power laws (r−2) (dotted) and

Gaussians (thin solid line). The inner plot shows the three bases for the same

scale σ = 1. Gaussian (solid), power law (r2 + σ )−1 (dotted) and isothermal

(r + σ )−1 (dashed). Basis with extended tails acts adding a constant surface

mass density to the overall mass. Compact functions like the Gaussian can

concentrate the mass closer to the cell where they are positioned. These re-

sults were obtained with the bi-conjugate gradient algorithm and a regular

grid of 32 × 32 cells.

to be able to emphasize the substructure better while keeping the

right normalization. The isothermal basis performs the worst, espe-

cially in the normalization. The explanation could be, in fact, that

the isothermal sphere profile falls much more slowly than the other

two, and is unable to predict the central density without overpredict-

ing the mass in the outer regions. The same reconstructed masses

are compared in Fig. 16 but looking at the one-dimensional profiles.

When comparing these results with the ones in previous sections

(in particular the Gaussian case), it is important to note that the

smoothing kernel is different. While in previous sections we ap-

plied a constant Gaussian filter of 15 arcsec to present the results

in this section, we have substituted each cell by its basis (Gaussian,

isothermal sphere or power law) with its corresponding scale.

More work is needed in order to identify an optimal basis. We

expect a relation between the number of cells used and the opti-

mal basis. For instance, we can consider the extreme case when the

galaxy cluster is at the centre of the field of view and it can be well

described by an isothermal sphere with scale σ . In this case, an opti-

mal basis would be just one cell at the centre (one isothermal sphere)

with the same scale as the cluster (with the normalization being the

only free parameter to be determined). We made tests using con-

tinuous functions such as Legendre or Hermite polonium, instead

of a grid. The results obtained with these bases were significantly

poorer than when a combination of a grid plus compact basis was

used. Even using the constrained QADP algorithm did not prevent

having bad results (in this case, negative and positive coefficients

lose their correspondence with negative and positive masses). The

general advice is to use compact-like basis, such us Gaussians or

power laws, which do not introduce correlations among distant areas

in the field of view.

8 C O N C L U S I O N S

In this paper, we have presented a way of consistently combining

SL and WL using a non-parametric method (WSLAP) which does

not rely on any prior on the luminosity and reduces regularization

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 375, 958–970
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problems. Finding the solution through the bi-conjugate gradient

is still affected by some regularization problems as the minimiza-

tion has to be stopped at a point ε before the absolute minimum is

reached. This is needed to avoid the point source solution. However,

we have seen how even the point source solution can be a good es-

timation of the mass when weak and strong lensing are combined.

Also, the regularization has a physical meaning since ε can be con-

nected with the known systematics of the method. These systematics

are dominated by the wrong assumption that the galaxies are point

sources and we use a grid with finite resolution. In previous papers

using only SL, we found that the point source solution obtained with

the bi-conjugate gradient was a bad estimate of the mass. On the

other hand, the solution obtained with QADP is much less affected

by regularization problems. Imposing the constraint that the masses

have to be positive (together with the combination of SL and WL

data) is a natural way to regularize the solution.

Adding WL has two major effects on the solution: (i) when mini-

mizing the quadratic function with standard algorithms (for instance

the bi-conjugate gradient) the result is much less sensitive to the

threshold ε where the minimization is stopped since the negative

masses which appear when ε is too small cannot reproduce the

shear field properly; (ii) the profile can be better reproduced inside

and beyond the position of the big arcs. The WL data allow us to

reduce the use of any prior on the physical size of the sources and to

better constrain the range of solutions, thus adding more robustness

to the final result.

The method depends on two free parameters (or choices): the

values of the data uncertainties (including systematics) in the co-

variance matrix C (i.e. σ θ and σγ ) and the basis functions fl . The

covariance matrix includes the estimates of noise for the shear and

our lack of knowledge about the shape and extension of the sources

(which introduces a systematic error in the SL part of the data).

The same matrix could also be used to introduce different weights

or uncertainties in the data. Giving more relative importance to the

radial than to the tangential arcs produces a biased solution for the

mass. On the other hand, weighting the arc systems proportional

to their area in the sky produces satisfactory results. Regarding the

basis functions, we found that functions fl which are compact pro-

duce better results than extended functions, especially in describing

the WL part of the data. This fact may be a manifestation of the

mass–sheet degeneracy in the WL data.

This paper is more of an illustration of how to extend the method-

ology of SLAP (papers I and II) to include WL than a detailed de-

scription of the capabilities and failures of our approach. However,

although an illustration, this paper demonstrates the usefulness of

non-parametric methods when combining weak and strong lensing.

Much work needs still to be done to address possible systematic

issues, but as described in Paper II, most of this work will have to

be done when WSLAP is applied to real data. The systematics may

depend on the specific nature of the problem (number of sources,

geometry and redshift of the lens, quality of the data). Future im-

provements will include adding photometric information and a bet-

ter modelling of the sources (Sandvik et al., in preparation).

WSLAP is now available to the community at http://darwin.

cfa.harvard.edu/SLAP/.
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