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Abstract

Solutions to differential equations are of significant scientific and engineering
relevance. Recently, there has been a growing interest in solving differential
equations with neural networks. This work develops a novel method for solving
differential equations with unsupervised neural networks that applies Generative
Adversarial Networks (GANs) to learn the loss function for optimizing the neural
network. We present empirical results showing that our method, which we call
Differential Equation GAN (DEQGAN), can obtain multiple orders of magnitude
lower mean squared errors than an alternative unsupervised neural network method
based on (squared) L2, L1, and Huber loss functions. Moreover, we show that
DEQGAN achieves solution accuracy that is competitive with traditional numerical
methods. Finally, we analyze the stability of our approach and find it to be sensitive
to the selection of hyperparameters, which we provide in the Appendix.1

1 Introduction

In fields such as physics, chemistry, biology, engineering, and economics, differential equations
are applied to the modeling of important and complex phenomena. While traditional methods for
solving differential equations perform well, and the theory for their stability and convergence are well
established, the recent success of deep learning techniques [19, 38, 2, 39, 30, 5, 8, 34] has inspired
researchers to apply neural networks to solving differential equations [33, 10, 31, 26, 36, 27, 11, 32,
35].

Applying neural networks to solving differential equations can provide a range of benefits over
traditional methods. By removing a reliance on finely crafted grids which suffer from the “curse of
dimensionality", neural networks can be more effective than traditional solvers in high-dimensional
settings [11, 32, 35]. Furthermore, recent work has shown that neural network solutions can be more
accurate in obeying certain physical constraints, such as conservation of energy [27, 33]. Neural
networks can also provide provide a more accurate interpolation scheme [21]. Finally, forward
passes of neural networks are embarrassingly data-parallel, even in difficult-to-parallelize temporal
dimensions, and can readily leverage parallel computing architectures.

Interest in research on solving differential equations with unsupervised neural networks is growing.
However, due to a lack (to the best of our knowledge) of theoretical justification for a particular choice
of loss function, we propose “learning" the loss function with a Generative Adversarial Network
(GAN) [7]. For data following a known noise model, there is clear theoretical justification, based on
the maximum likelihood principle, for fitting models with particular loss functions. For example, in

1Code available at https://github.com/dylanrandle/denn. Please address any electronic correspon-
dence to dylanrandle@alumni.harvard.edu.
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the case of a Gaussian noise model

y = x+ ε, ε ∼ N (0, σ2), (1)

the maximum likelihood estimate of the model parameters minimizes the squared error (L2 norm)
loss function. In the case of deterministic differential equations, however, there is no noise model and
we lack formal justification for a particular choice of loss function among multiple options.

To circumvent this problem, we propose GANs for solving differential equations in a fully unsuper-
vised manner. The discriminator model of a GAN can be thought of as learning the loss function used
for optimizing the generator. Moreover, GANs have been shown to excel in scenarios where classic
loss functions, such as the mean squared error, struggle due to their inability to capture complex
spatio-temporal dependencies [24, 25, 17].

Our main contribution is a novel method, which we call Differential Equation GAN (DEQGAN),
for formulating the task of solving differential equations in a fully unsupervised manner as a GAN
training problem. DEQGAN works by separating the differential equation into left-hand side (LHS)
and right-hand side (RHS), then training the generator to produce a LHS that is indistinguishable
to the discriminator from the RHS. Experimental results show that our method produces solutions
which obtain multiple orders of magnitude lower mean squared errors (computed from known analytic
or numerical solutions) than a comparable unsupervised neural network method with (squared) L2,
L1, and Huber loss functions. Moreover, DEQGAN achieves solution accuracy that is competitive
with traditional fourth-order Runge-Kutta and second-order finite difference methods.

2 Related Work

Dissanayake & Phan-Thien [6] were one of the first to develop a method for solving differential
equations with neural networks. They showed that a neural network-based method could solve
differential equations when transformed to unconstrained optimization problems. Lagaris et al. [21]
extended this work by introducing analytical adjustments to the neural network output that exactly
satisfied initial and boundary conditions. They showed that their method achieved lower interpolation
error than the finite element method, while maintaining equal error on a fixed mesh. The authors
expanded this work to consider arbitrarily-shaped domains in higher dimensions [23], and applied
neural networks to quantum mechanics [22].

Recent work has solved high-dimensional partial differential equations (PDEs) with neural networks
in place of basis functions [35] and by reformulating PDEs as backward stochastic differential
equations [11]. To reduce the need to re-learn known physics, Mattheakis et al. [26] embedded
physical symmetries into the structure of neural networks, and Raissi et al. [33] regularized neural
networks according to physical models described by nonlinear PDEs, leading to improved solution
accuracy and training convergence over physics-agnostic counterparts. Leveraging recent advances
in deep learning, Hagge et al. [10] developed a supervised recurrent neural network method that
uses measurement data to solve ordinary differential equations with unknown functional forms, and
Stevens & Colonius [36] presented a fully convolutional LSTM network that augments traditional
finite difference/finite volume methods used to solve PDEs. Kumar & Yadav [20] presented a survey
of neural network and radial basis function methods for solving differential equations.

In parallel, Goodfellow et al. [7] introduced the idea of learning generative models with neural
networks and an adversarial training algorithm, called Generative Adversarial Networks (GANs). To
solve issues of GAN training instability, Arjovsky et al. [1] introduced a formulation of GANs based
on the Wasserstein distance, and Gulrajani et al. [9] added a gradient penalty to approximately enforce
a Lipschitz constraint on the discriminator. Miyato et al. [29] introduced an alternative method for
enforcing the Lipschitz constraint with a spectral normalization technique that outperforms the former
method on some problems.

Further work has applied GANs to differential equations with solution data used for supervision.
Yang et al. [42] apply GANs to stochastic differential equations by using “snapshots" of ground-truth
data for semi-supervised training. A project by students at Stanford [37] employed GANs to perform
“turbulence enrichment" of solution data in a manner akin to that of super-resolution for images
proposed by Ledig et al. [25]. Our work distinguishes itself from other GAN-based approaches for
solving differential equations by being fully unsupervised, and removing the dependence on using
supervised training data (i.e. solutions of the equation).
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3 Background

3.1 Unsupervised Neural Networks for Differential Equations

Early work by Dissanayake & Phan-Thien [6] proposed solving differential equations in an unsu-
pervised manner with neural networks. Their paper considers general differential equations of the
form

F (t,Ψ(t),∆Ψ(t),∆2Ψ(t), . . .) = 0 (2)

where Ψ(t) is the desired solution, ∆ and ∆2 represent the first and second derivatives, and the
system is subject to certain boundary or initial conditions. The learning problem is then formulated
as minimizing the sum of squared errors of the above equation

min
θ

∑
t∈D

F (t,Ψθ(t),∆Ψθ(t),∆
2Ψθ(t), . . .)

2 (3)

where Ψθ is a neural network parameterized by θ, D is the domain of the problem, and we compute
derivatives with automatic differentiation. This allows us to use backpropagation [13] to train the
parameters of the neural network to satisfy the differential equation. Note that this formalism can
be trivially extended to handle spatial domains and multidimensional problems, which we do in our
experiments and describe in the Appendix.

3.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [7] are a type generative model that use two neural
networks to induce a generative distribution p(x) of the data by formulating the inference problem as
a two-player, zero-sum game.

The generative model first samples a latent variable z ∼ N (0, 1), which is used as input into the
generator G (e.g. a neural network). A discriminator D is trained to classify whether its input was
sampled from the generator (i.e. “fake") or from a reference data set (i.e. “real").

Informally, the process of training GANs proceeds by optimizing a minimax objective over the
generator and discriminator such that the generator attempts to trick the discriminator to classify
“fake" samples as “real". Formally, one optimizes

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (4)

where x ∼ pdata(x) denotes samples from the empirical data distribution, and pz ∼ N (0, 1) samples
in latent space. In practice, the optimization alternates between gradient ascent and descent steps for
D and G respectively.

3.2.1 Two Time-Scale Update Rule

Heusel et al. [14] proposed the two time-scale update rule (TTUR) for training GANs, a method in
which the discriminator and generator are trained with separate learning rates. They showed that their
method led to improved performance and proved that, in some cases, TTUR ensures convergence
to a stable local Nash equilibrium. One intuition for TTUR comes from the potentially different
loss surface curvatures of the discriminator and generator. Allowing learning rates to be tuned to a
particular loss surface can enable more efficient gradient-based optimization. We make use of TTUR
throughout this paper as an instrumental lever when tuning GANs to reach desired performance.

3.2.2 Spectral Normalization

Proposed by Miyato et al. [29], Spectrally Normalized GAN (SN-GAN) is a method for control-
ling exploding discriminator gradients when optimizing Equation 4 that leverages a novel weight
normalization technique.
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The key idea is to control the Lipschitz constant of the discriminator by constraining the spectral
norm of each layer in the discriminator. Specifically, the authors propose dividing the weight matrices
Wi of each layer i by their spectral norm σ(Wi)

WSN,i =
Wi

σ(Wi)
, (5)

where

σ(Wi) = max
‖hi‖2≤1

‖Wihi‖2 (6)

and hi denotes the input to layer i. The authors prove that this normalization technique bounds the
Lipschitz constant of the discriminator above by 1, thus strictly enforcing the 1-Lipshcitz constraint
on the discriminator. In our experiments, adopting the SN-GAN formulation leads to even better
performance than WGAN-GP [1, 9].

3.3 Guaranteeing Initial & Boundary Conditions

Lagaris et al. [21] showed that it is possible to exactly satisfy initial and boundary conditions by
adjusting the output of the neural network. For example, consider adjusting the neural network
solution Ψ(t) to satisfy the initial condition Ψ(0) = x0. We can apply the transformation

Ψ(t)′ = x0 + tΨ(t) (7)

which exactly satisfies the condition. Mattheakis et al. [26] proposed an augmented transformation

Ψ(t)′ = Φ (Ψ(t)) = x0 +
(

1− e−(t−t0)
)

Ψ(t) (8)

that further improved training convergence. Intuitively, Equation 8 adjusts the output of the neural
network Ψ(t) to be exactly x0 when t = t0, and decays this constraint exponentially in t.

3.4 Residual Connections

He et al. [12] showed that adding residual connections improved training of deep neural networks.
We employ residual connections to our deep networks as they allow gradients to more easily flow
through the models and thereby reduce numerical instability. Residual connections augment a typical
activation with the identity operation

y = F(x,Wi) + x (9)

where F is the activation function, x is the input to the unit, Wi are the weights, and y is the output
of the unit. This acts as a “skip connection", allowing inputs and gradients to forego the nonlinear
component.

4 Differential Equation GAN

Here we present our method, Differential Equation GAN (DEQGAN), which trains a GAN to solve
differential equations in a fully unsupervised manner. To do this, we rearrange the differential equation
such that the left-hand side (LHS) contains all of the terms which depend on the generator (e.g. Ψ̂,
∆Ψ̂, ∆2Ψ̂, etc.), and the right-hand side (RHS) contains only constants (e.g. zero).

From here we sample points from the domain t ∼ D and use them as input to a generator G(t),
which produces candidate solutions Ψ̂. We adjust Ψ̂ for initial or boundary conditions according
to Equation 8. Then we construct the LHS from the differential equation F using automatic
differentiation

LHS = F
(
t, Ψ̂(t),∆Ψ̂(t),∆2Ψ̂(t)

)
(10)

and set RHS to its appropriate value (in our examples, RHS = 0).
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Figure 1: Schematic representation of DEQGAN. We perturb points t from the mesh and input them
to a generator G, which produces candidate solutions Ψ̂. Then we analytically adjust these solutions
according to Φ and apply automatic differentiation to construct LHS from the differential equation
F . RHS and LHS are passed to a discriminator D, which is trained to classify them as “real" and
“fake" respectively.

From here, training proceeds in a manner similar to traditional GANs. We update the weights of the
generator G and discriminator D according to the gradients

ηG = ∇θg
1

m

m∑
i=1

log
(

1−D
(
LHS(i)

))
, (11)

ηD = ∇θd
1

m

m∑
i=1

[
logD

(
RHS(i)

)
+ log

(
1−D

(
LHS(i)

))]
(12)

where LHS(i) is the output of G
(
t(i)
)

after adjusting for initial or boundary conditions and con-
structing the LHS from F . Note that we perform stochastic gradient descent for G (gradient steps
∝ −ηG), and stochastic gradient ascent for D (gradient steps ∝ ηD). We provide a schematic
representation of DEQGAN in Figure 1 and detail the training steps in Algorithm 1.

Algorithm 1 DEQGAN

Input: Differential equation F , generator G(·; θg), discriminator D(·; θd), mesh t of m points
with spacing ∆t, perturbation precision τ , analytic adjustment function Φ, total steps N , learning
rates αG, αD, Adam optimizer [18] parameters βG1, βG2, βD1, βD2

for i = 1 to N do
for j = 1 to m do

Perturb j-th point in mesh t(j)s = t(j) + ε, ε ∼ N (0, ∆t
τ )

Forward pass Ψ̂ = G(t
(j)
s )

Analytic adjustment Ψ̂′ = Φ(Ψ̂) (Equation 8)
Compute LHS(j) = F (t, Ψ̂′,∇Ψ̂′,∇2Ψ̂′), set RHS(j) = 0

end for
Compute gradients ηG, ηD (Equation 11 & 12)
Update generator θg ← Adam(θg,−ηG, αG, βG1, βG2)
Update discriminator θd ← Adam(θd, ηD, αD, βD1, βD2)

end for
Output: G

Informally, our algorithm trains a GAN by setting the “fake" component to be the LHS (in our
formulation, the residuals of the equation), and the “real" component to be the RHS of the equation.
This results in a GAN that learns to produce solutions that make LHS indistinguishable from RHS,
thereby approximately solving the differential equation.

An important note here is that training can be unstable if LHS and RHS are not chosen properly.
Specifically, we find that training fails if RHS is a function of the generator. For example, consider
the equation ẍ+x = 0. If we set LHS = ẍ andRHS = −x, then RHS is a function of the generator
and will be constantly changing as the generator is updated throughout training, and DEQGAN will
become exceedingly unstable. We can fix this, however, by simply setting LHS = ẍ + x and
RHS = 0.
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Table 1: Summary of Experiments
Key Equation Class Order Linear System

EXP ẋ(t) + x(t) = 0 ODE 1st Yes No
SHO ẍ(t) + x(t) = 0 ODE 2nd Yes No
NLO ẍ(t) + 2βẋ(t) + ω2x(t) + φx(t)2 + εx(t)3 = 0 ODE 2nd No No

NAS
{
ẋ(t) = −ty
ẏ(t) = tx

ODE 1st Yes Yes

SIR


Ṡ(t) = −βI(t)S(t)/N

İ(t) = βI(t)S(t)/N − γI(t)

Ṙ(t) = γI(t)

ODE 1st No Yes

POS uxx + uyy = 2x(y − 1)(y − 2x+ xy + 2)ex−y PDE 2nd Yes No

Table 2: Experimental Results
Mean Squared Error

Key L1 L2 Huber DEQGAN Traditional

EXP 1 · 10−3 3 · 10−6 1 · 10−6 3 · 10−16 2 · 10−14 (RK4)
SHO 2 · 10−5 2 · 10−9 8 · 10−10 1 · 10−12 1 · 10−11 (RK4)
NLO 6 · 10−2 1 · 10−9 4 · 10−10 2 · 10−12 4 · 10−11 (RK4)
NAS 6 · 10−1 6 · 10−5 2 · 10−3 8 · 10−9 2 · 10−9 (RK4)
SIR 7 · 10−4 6 · 10−9 3 · 10−9 2 · 10−10 5 · 10−13 (RK4)
POS 4 · 10−6 5 · 10−11 2 · 10−11 8 · 10−13 3 · 10−10 (FD)

Our intuition for this is that if RHS depends on the outputs of the generator, the “real" data
distribution pdata(x) (from Equation 4) changes as the generator weights are updated throughout
training. If the distribution pdata(x) is constantly changing, the discriminator will not have a reliable
signal for learning to classify “real" from “fake", which violates a core assumption of traditional
GANs. By setting RHS = 0, we resolve the problem by effectively setting the “real" distribution to
be the fixed Dirac delta function pdata(x) = δ(0). For the examples in this paper, we move all terms
of the differential equation to LHS and set RHS = 0.

5 Experiments

We conducted experiments on several differential equations of increasing complexity, comparing
DEQGAN to an alternative unsupervised neural network method using squared L2 (i.e. mean squared
error2), L1, and Huber [16] loss functions. We also report results obtained by the traditional fourth-
order Runge-Kutta (RK4) and second-order finite differences (FD) methods for initial and boundary
value problems, respectively. A detailed description of each experiment including exact problem
specifications, hyperparameters, and a comparison of loss functions used is provided in the Appendix.

We report the mean squared errors of the solutions produced by each method, computed from known
solutions obtained either analytically or with high-quality numerical solvers [40], but we do not
use these solution data for training. We add residual connections between neighboring layers of all
models, and apply spectral normalization to the discriminator in all experiments. Results are obtained
with hyperparameters tuned for DEQGAN. In the Appendix, we tune each alternative method for
comparison but do not observe a meaningful difference.

We note that deterministic differential equations do not exhibit aleatoric uncertainty and that all errors
we observe are therefore epistemic. Given that neural networks are, theoretically, universal function
approximators [15], one may initially expect to obtain arbitrarily low error. The reason we do not
observe this is, first, that our models are finite-width and may lack representational capacity and,

2We use the term L2 to avoid conflating the loss function being used, which is the mean squared error on the
unsupervised problem of minimizing the differential equation residuals, with the final evaluation metric, which
is the mean squared error of the predicted solution computed against the known ground truth.
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(a) Exponential Decay (EXP) (b) Simple Harmonic Oscillator (SHO)

(c) Nonlinear Oscillator (NLO) (d) Non-Autonomous System (NAS)

(e) SIR Disease Model (SIR) (f) Poisson Equation (POS)

Figure 2: Mean squared errors vs. iteration for DEQGAN, L2, L1, and Huber loss for various
equations. We perform five randomized trials and plot the median (bold) and (25, 75) percentile
range (shaded). We smooth the values using a simple moving average with window size 50.

second, that optimizing the objective in Equation 4 with stochastic gradient descent is unlikely to
reach globally optimal solutions and is more likely to converge to local optima.

Table 1 summarizes the equations we study in our experiments, and Table 2 reports the lowest mean
squared errors obtained across five trials for each method. We see that DEQGAN obtains multiple
orders of magnitude lower mean squared errors than the alternative unsupervised neural network
method with L1, L2, and Huber loss functions across the differential equations studied. Moreover,
DEQGAN achieves accuracy that is competitive with the traditional RK4 and FD numerical methods.

Figure 2 plots mean squared error against training iteration for DEQGAN and the alternative neural
network method with L1, L2 and Huber loss functions. We observe that DEQGAN converges to
lower mean squared errors than the alternative unsupervised neural network method, often by multiple
orders of magnitude, across the equations studied. We note, however, that the mean squared error
curves of DEQGAN are less smooth and exhibit greater variability than the normal unsupervised
neural network method, an issue we study in the following section.
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6 Stability of DEQGAN Training

A point that we have not addressed is the instability of the DEQGAN training algorithm. The
instability of GANs is not a new problem and much work has been dedicated to improving the
stability and convergence of GANs [1, 9, 3, 28, 29]. In our experiments we find that the initial
weights of the generator and discriminator can have a substantial impact on the final performance of
DEQGAN. The solution that we adopt is to fix the initial model weights when tuning hyperparameters
for DEQGAN and to keep the same weight initialization thereafter, which appears to significantly
reduce the problem of instability.

To illustrate the relationship between performance, hyperparameters, and initial model weights,
Figure 3 plots the results of 500 DEQGAN experiments for the exponential decay equation. For each
experiment, we uniformly at random select model weight initialization random seeds as integers
from the range [0, 9], as well as separate learning rates for the discriminator and generator in the
range [10−6, 10−2]. We then record the final mean squared error on the validation set after running
DEQGAN training for 500 steps. Each line represents a combination of model weight initialization
random seed, learning rate hyperparameters, and final (log) mean squared error of a single experiment.

Notably, the results as a whole exhibit considerable variation in final mean squared error. However,
when we filter on experiments achieving low mean squared errors (≤ 10−8), we see that hyperpa-
rameter settings exist, for each of the model weight initialization seeds, that provide highly accurate
DEQGAN solutions. We also observe a pattern in the hyperparameters which produce the low mean
squared error experiments. We note that relatively high generator learning rates and low discriminator
learning rates lead to the best DEQGAN performance across different model initialization seeds.

Figure 3: Parallel plot showing the results of 500 DEQGAN experiments on the exponential decay
equation. The colors represent the different random seeds used to initialize model weights. We filter
the results (non-selected lines appear gray) to highlight experiments achieving mean squared error
≤ 10−8. The mean squared error is plotted on a log10 scale.

7 Conclusion

We have presented a novel method which leverages GAN-based adversarial training to “learn" the
loss function for solving differential equations with unsupervised neural networks. We have shown
empirically that our our method, which we call Differential Equation GAN (DEQGAN), can obtain
multiple orders of magnitude lower mean squared errors than an alternative unsupervised neural
network method with L2, L1, and Huber loss functions. Moreover, we show that DEQGAN achieves
solution accuracy that is competitive with the traditional fourth-order Runge-Kutta and second-order
finite difference methods. While our approach is sensitive to hyperparmaters, we have shown that
it is possible to train a GAN in a fully unsupervised manner to achieve highly accurate solutions to
differential equations.
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Broader Impact

We hope that the broader impact of this work will be to advance the study of unsupervised neural
network methods for solving differential equations. We do not believe that our work holds particularly
poignant ethical or societal consequences. We note that our method does not provide theoretical
guarantees of solution accuracy, and any critical implementations relying on this should exercise
caution.
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Appendix

Description of Experiments

A plot of the various classical loss functions is provided in Figure 4.

Figure 4: Comparison of L2, L1, and Huber loss functions. The Huber loss is equal to L2 for e ≤ 1
and to L1 for e > 1.

Exponential Decay (EXP) Consider a model for population decay x(t) given by the exponential
differential equation

ẋ(t) + x(t) = 0, (13)

with x(0) = 1 and t ∈ (0, 10). The ground truth solution x(t) = e−t can be obtained analytically.
We reiterate, however, that our method is fully unsupervised and does not make use of this solution
data during training. We simply use the ground truth solutions to report mean squared errors of
predicted solutions.

To set up the problem for DEQGAN, we define LHS = ẋ+ x and RHS = 0. Figure 5 presents the
results from training DEQGAN on this equation.

Figure 5: Visualization of DEQGAN training for the exponential decay problem. The left-most figure
plots the mean squared error vs. iteration. To the right, we plot the value of the generator (G) and
discriminator (D) losses at each iteration. Right of this we plot the prediction of the generator x̂ and
the true analytic solution x as functions of time t. The right-most figure plots the absolute value of
the residual of the predicted solution F̂ .

Simple Harmonic Oscillator (SHO) Consider the motion of an oscillating body x(t), which can
be modeled by the simple harmonic oscillator differential equation

ẍ(t) + x(t) = 0, (14)

with x(0) = 0, ẋ(0) = 1, and t ∈ (0, 2π). This differential equation can be solved analytically and
has an exact solution x(t) = sin t.

Here we set LHS = ẍ+ x and RHS = 0. Figure 6 plots the results of training DEQGAN on this
problem.
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Figure 6: Visualization of DEQGAN training for the simple harmonic oscillator problem. The
left-most figure plots the mean squared error vs. step (iteration) count. To the right of this, we plot
the value of the generator (G) and discriminator (D) losses for each step. Right of this we plot the
prediction of the generator x̂ and the true analytic solution x as functions of time t. The right-most
figure plots the absolute value of the residual of the predicted solution F̂ .

Nonlinear Oscillator (NLO) Further increasing the complexity of the differential equations being
considered, consider a less idealized oscillating body subject to additional forces, whose motion x(t)
we can described by the nonlinear oscillator differential equation

ẍ(t) + 2βẋ(t) + ω2x(t) + φx(t)2 + εx(t)3 = 0, (15)

with β = 0.1, ω = 1, φ = 1, ε = 0.1, x(0) = 0, ẋ(0) = 0.5, and t ∈ (0, 4π). This equation does not
admit an analytical solution. Instead, we use the high-quality solver provided by SciPy’s solve_ivp
[40].

We set LHS = ẍ+ 2βẋ+ ω2x+ φx2 + εx3 = 0 and RHS = 0. Figure 7 plots the results obtained
from training DEQGAN on this equation.

Figure 7: Visualization of DEQGAN training for the nonlinear oscillator problem. The left-most
figure plots the mean squared error vs. step (iteration) count. To the right of this, we plot the value of
the generator (G) and discriminator (D) losses for each step. Right of this we plot the prediction of
the generator x̂ and the ground truth solution x as functions of time t. The right-most figure plots the
absolute value of the residual of the predicted solution F̂ .

Non-Autonomous System (NAS) Consider the system of ordinary differential equations given by

ẋ(t) = −ty (16)

ẏ(t) = tx (17)

with x(0) = 1, y(0) = 0, and t ∈ (0, 2π). This equation has an exact analytical solution given by

x = cos

(
t2

2

)
(18)

y = sin

(
t2

2

)
. (19)
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Here we set

LHS =

[
dx

dt
+ ty,

dy

dt
− xy

]T
(20)

and RHS = [0, 0]
T . Figure 8 plots the result of training DEQGAN on this problem.

Figure 8: Visualization of DEQGAN training for the non-autonomous system of equations. The
left-most figure plots the mean squared error vs. step (iteration) count. To the right of this, we
plot the value of the generator (G) and discriminator (D) losses for each step. Right of this we
plot the predictions of the generator x̂, ŷ and the true analytic solutions x, y as functions of time t.
The right-most figure plots the absolute value of the residuals of the predicted solution F̂j for each
equation j.

SIR Epidemiological Model (SIR) Given the recent outbreak and pandemic of novel coronavirus
(COVID-19) [41], we consider an epidemiological model of infectious disease spread given by a
system of ordinary differential equations. Specifically, consider the Susceptible S(t), Infected I(t),
Recovered R(t) model for the spread of an infectious disease over time t. The model is defined by a
system of three ordinary differential equations

dS

dt
= −β IS

N
(21)

dI

dt
= β

IS

N
− γI (22)

dR

dt
= γI (23)

where β = 3, γ = 1 are given constants related to the infectiousness of the disease, N = S + I +R
is the (constant) total population, S(0) = 0.99, I(0) = 0.01, R(0) = 0, and t ∈ (0, 10). Again we
use SciPy’s solve_ivp solver [40] to obtain ground truth solutions.

We set LHS to be the vector

LHS =

[
dS

dt
+ β

IS

N
,
dI

dt
− β IS

N
+ γI,

dR

dt
− γI

]T
(24)

andRHS = [0, 0, 0]
T . We present the results of training DEQGAN to solve this system of differential

equations in Figure 9.

Poisson Equation (POS) Consider the Poisson partial differential equation (PDE) given by

∂2u

∂x2
+
∂2u

∂y2
= 2x(y − 1)(y − 2x+ xy + 2)ex−y (25)
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Figure 9: Visualization of DEQGAN training for the SIR system of equations. The left-most figure
plots the mean squared error vs. step (iteration) count. To the right of this, we plot the value of the
generator (G) and discriminator (D) losses for each step. Right of this we plot the predictions of the
generator Ŝ, Î, R̂ and the ground truth solutions S, I , R as functions of time t. The right-most figure
plots the absolute value of the residuals of the predicted solution F̂j for each equation j.

where (x, y) ∈ [0, 1]× [0, 1]. The equation is subject to Dirichlet boundary conditions on the edges
of the unit square

u(x, y)

∣∣∣∣
x=0

= 0

u(x, y)

∣∣∣∣
x=1

= 0

u(x, y)

∣∣∣∣
y=0

= 0

u(x, y)

∣∣∣∣
y=1

= 0.

(26)

The analytical solution is
u(x, y) = x(1− x)y(1− y)ex−y. (27)

We use the two-dimensional Dirichlet boundary adjustment formulae provided in Chen et al. [4]. To
set up the problem for DEQGAN we let

LHS =
∂2u

∂x2
+
∂2u

∂y2
− 2x(y − 1)(y − 2x+ xy + 2)ex−y (28)

and RHS = 0. We present the results of training DEQGAN on this problem in Figure 10.

Figure 10: Visualization of DEQGAN training for the Poisson equation. The left-most figure plots the
mean squared error vs. step (iteration) count. To the right of this, we plot the value of the generator
(G) and discriminator (D) losses for each step. Right of this we plot the prediction of the generator û
as a function of position (x, y). The right-most figure plots the absolute value of the residual F̂ , as a
function of (x, y).

DEQGAN Hyperparameters

We performed 1000 iterations of random search to tune the hyperparameters of DEQGAN for each
differential equation. Table 3 summarizes the final hyperparameter settings used for DEQGAN.
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Table 3: Hyperparameter Settings for DEQGAN

HYPERPARAMETER EXP SHO NLO NAS SIR POS

NUM. ITERATIONS 2 · 103 1 · 104 2 · 104 5 · 104 3 · 104 4 · 103
NUM. GRID POINTS 100 400 400 800 800 32× 32
G UNITS/LAYER 30 40 40 30 40 40
G NUM. LAYERS 2 4 4 3 2 4
D UNITS/LAYER 20 40 30 50 20 20
D NUM. LAYERS 4 2 3 2 3 4
ACTIVATIONS tanh tanh tanh tanh tanh tanh
G LEARNING RATE 0.008 0.009 0.006 0.006 0.010 0.008
D LEARNING RATE 0.0005 0.002 0.0007 0.001 0.002 0.002
G β1 (ADAM) 0.671 0.444 0.102 0.706 0.207 0.410
G β2 (ADAM) 0.143 0.633 0.763 0.861 0.169 0.447
D β1 (ADAM) 0.866 0.271 0.541 0.538 0.193 0.593
D β2 (ADAM) 0.165 0.142 0.677 0.615 0.617 0.915
EXPONENTIAL LR DECAY (γ) 0.991 0.998 0.999 0.9998 0.9996 0.996

Non-GAN Hyperparameter Tuning

Table 4 presents results after tuning the hyperparameters of the alternative unsupervised neural
network method with L1, L2, and Huber loss functions. We ran 1000 random search iterations for
each differential equation.

Table 4: Experimental Results With Non-GAN Hyperparameter Tuning
Mean Squared Error

Key L1 L2 Huber DEQGAN Traditional

EXP 1 · 10−4 3 · 10−8 1 · 10−8 3 · 10−16 2 · 10−14 (RK4)
SHO 2 · 10−5 3 · 10−9 1 · 10−9 1 · 10−12 1 · 10−11 (RK4)
NLO 2 · 10−5 5 · 10−10 6 · 10−10 2 · 10−12 4 · 10−11 (RK4)
NAS 5 · 10−1 2 · 10−4 7 · 10−6 8 · 10−9 2 · 10−9 (RK4)
SIR 2 · 10−5 6 · 10−10 3 · 10−10 2 · 10−10 5 · 10−13 (RK4)
POS 1 · 10−5 3 · 10−10 2 · 10−10 8 · 10−13 3 · 10−10 (FD)
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