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Abstract—The F-measure and its variants are performance
measures of choice for evaluating classification and retrieval
tasks in the presence of severe class imbalance. It is thus highly
desirable to be able to directly optimize these performance
measures on large-scale data. Recent advances have shown
that this is possible in the simple binary classification setting.
However, scant progress exists in multiclass settings with a large
number of classes where, in addition, class-imbalance is much
more severe. The lack of progress is especially conspicuous for
the macro-averaged F-measure, which is the widely preferred F-
measure variant in multiclass settings due to its equal emphasis
on rare classes. Known methods of optimization scale poorly
for macro F-measure, often requiring run times that are
exponential in the number of classes.

We develop BEAM-F, the first efficient method for directly
optimizing the macro F-measure in multiclass settings. The
challenge here is the intractability of optimizing a sum of
fractional-linear functions over the space of confusion matrices.
We overcome this difficulty by formulating the problem as a
biconcave maximization program and solve it using an efficient
alternating maximization approach that involves a Frank-
Wolfe based iterative solver. Our approach offers guaranteed
convergence to a stationary point and experiments show that,
for a range synthetic data sets and real-world applications, our
method offers superior performance on problems exhibiting
large class imbalance.

Keywords-F-measure; Class imbalance; Multiclass classifica-
tion; Alternating maximization; Frank-Wolfe method

I. INTRODUCTION

In real world classification tasks, ranging from medical
diagnosis to web-scale document tagging, one frequently
encounters cases of severe imbalance in the classes. The
thrust in all these applications is on correctly labeling the
rare classes. Performance measures such as classification
accuracy do not satisfy this goal, as they unreasonably
reward a naive classifier that classifies all points to a majority
class. Performance measures that do account for rare classes
are more involved, and evaluate classifiers in a more holistic
manner. An excellent example of such measures is the F-
measure, the harmonic mean of the precision and recall of
a classifier [1]. The F-measure has enjoyed prominence in
learning and retrieval literature and several variants exist. For

multiclass settings, a popular variant is to compute the F-
measure for the binary one-vs-all problem for each class and
then take their average. This version, known as the macro-
averaged F-measure, is very popular in many classification
and retrieval problems [2] due to its emphasis on performing
well on rare classes.

However, the macro F-measure is extremely challenging
to optimize directly, owing to its complicated sum of frac-
tional linear structure. Existing approaches often attempt
to extend techniques used in optimizing F-measure in the
binary classification setting to the multiclass setting. Of
these techniques, there exist three broad classes: (a) plug-in
methods [3]–[6] which learn a class probability estimation
model and then tune a threshold over the estimates to obtain
a classifier, (b) the structural SVM technique that optimizes
a concave surrogate to the F-measure [7], and (c) stochastic
optimization techniques that work with a pseudo-concave
surrogate for the F-measure [8], [9].

However, multiclass extensions of all these techniques
fail. The plug-in method for macro F-measure optimization
fails as it requires a joint tuning of Ωpn2q thresholds, where
n is the number of classes, which takes time exponential
in n. The structural SVM method also takes exponential
time for subgradient computations. The stochastic methods
do not apply to multiclass settings since the pseudo-concave
structure they assume is missing in the macro F-measure.

There has been some work on optimizing the micro-
averaged F-measure in multiclass settings [10], as well as
optimizing the macro F-measure in multilabel classification
settings [11]–[14]. However, these do not extend to multi-
class settings. The work of [10] assumes a pseudo-concave
structure that macro F-measure does not have. The multilabel
work on the other hand is simply inapplicable. In multilabel
learning, labels can coexist, while in multiclass settings,
classes are exclusive. This non-exclusivity decomposes the
problem and allows a simple one-vs-all approach to optimize
the multilabel macro F-measure. The multiclass macro F-
measure is in fact a sum of fractional-linear functions of the
confusion matrix – neither pseudo concave nor decompos-
able. In fact, the problem of optimizing a sum of fractional-



linear functions is known to be NP-hard in general [15].
In this paper, we develop BEAM-F, the first efficient

learning algorithm for directly optimizing the multiclass
macro F-measure. Our main contribution is that of building
upon the framework of [10] and adapting intuition from
optimization literature [16] to cast the macro F-measure
optimization problem as a biconcave program. This allows
us to utilitze tools for optimizing concave performance
measures [10] to solve the macro F-measure optimization
problem, using an alternating maximization-based solver.
We show that BEAM-F provably converges to the stationary
points of the optimization problem. In our experiments, we
found plug-in and structural SVM approaches too expensive
to benchmark, something that has been observed before
[10]. Nevertheless, on a range of real life applications
and synthetic data sets, BEAM-F demonstrates superior
performance compared to existing standard approaches to
multiclass classification, especially when the class imbalance
is excessive and the class overlap is significant.

II. PROBLEM SETTING AND PRELIMINARIES

Consider an instance space X and label space rns “
t1, . . . , nu. We wish to learn a classifier h : X Ñ rns
that maps instances in X to one of the labels. We assume
that an unknown distribution D over X ˆ rns generates the
data. Let ηipxq “ Ppy “ i |xq denote the conditional class
probability, and pi “ Ppy “ 1q be the class proportions. We
will be interested in settings where the class proportions pi
deviate significantly from 1{n, resulting in class imbalance.

Classification accuracy. A standard approach for eval-
uating a classifier is to evaluate its classification accu-
racy, the fraction of correctly labeled instances Accrhs “
Ppx,yq„Dphpxq “ yq. This evaluation measure is not well-
suited for class imbalanced settings, as a classifier that
performs well only on popular classes will still yield high
classification accuracy. For such class imbalanced settings,
measures that give equal attention to all classes are required.

Precision and Recall. For a classifier h, its recall with
respect to class i is the fraction of instances of that class that
are correctly classified i.e. Recallirhs “ Pphpxq “ i | y “ iq.
The precision with respect to class i is the fraction of points
classified by h as belonging to class i that in fact do belong
to i, i.e. Precirhs “ Ppy “ i |hpxq “ iq. Note that a naive
classifier that predicts i on all instances will have a recall
of 1, but will have low precision; similarly, a classifier that
never predicts i will have a precision of 1, but will have
zero recall.

Binary F-measure. In the binary setting (n “ 2), the
harmonic mean of the precision and the recall of a classifier
F1rhs “

2ˆPrec1rhsˆRecall1rhs
Prec1rhs`Recall1rhs

define its F-measure perfor-
mance. The F-measure takes a value between 0 and 1, and
higher values imply better performance.

Multiclass F-measure Variants. The micro F-measure
extends F-measure to multiclass settings by using precision

and recall values averaged across all classes [2], or by
treating one class as negative and others as positive, and
computing the binary F-measure [5]. However, both these
variants do not place enough emphasis on rare classes, and
are thus not of much use in class imbalanced settings.
The more useful variant is the macro F-measure, which
instead computes the average F-measure across all one-vs-all
problems as follows:

Fmacro
1 rhs “

1

n

n
ÿ

i“1

2ˆ Precirhs ˆ Recallirhs
Precirhs ` Recallirhs

.

The macro F-measure is popular in class imbalanced
settings and will be the focus of this paper. Given a training
sample S “ tpx1, y1q, . . . , pxN , yN qqu „ D, our goal would
be to learn a classifier ph with maximum macro F-measure.

Confusion matrix. For a classifier h, its confusion ma-
trix Crhs P r0, 1snˆn is defined as Cijrhs “ Ppy “

i, hpxq “ jq. Given a sample S, the empirical confusion
matrix pCrh;Ss is defined as pCijrh;Ss “ 1

N

řN
k“1 1pyk “

i, hpxkq “ jq. The empirical confusion matrix acts as a
proxy for the true confusion matrix while executing plug-
in approaches. We will rewrite our performance measures
in terms of the confusion matrix. The binary F-measure
can be written as a function of the 2 ˆ 2 confusion matrix
as F1rhs “

2C11rhs
2C11rhs `C10rhs `C01rhs

. Thus, F-measure has a
fractional-linear form. It is the ratio of two linear functions
of the confusion matrix. One can similarly write the macro
F-measure as

Fmacro
1 rhs “

1

n

n
ÿ

i“1

2ˆ Ciirhs
řn

j“1 Cijrhs `
řn

j“1 Cjirhs
,

The macro F-measure is a sum of fractional-linear functions
over the confusion matrix and is non-convex in general.

We now give an overview of plug-in approaches for binary
and multiclass classification.

Plug-in for Binary F-measure. The plug-in approach for
maximizing F-measure in binary classification involves first
learning a class probability model pη1 : X Ñ r0, 1s that
estimates the conditional probability pη1pxq « Ppy “ 1|xq
of instances, and then constructing a classifier phpxq “
signppη1pxq ´ θq, by tuning a threshold θ P r0, 1s that yields
the maximum F-measure on a validation set. The method has
recently received much attention and is known to converge
to the optimal classifier for the binary F-measure [4], [6].

Plug-in for Multiclass linear measures. A similar two-
step approach can also be applied in multiclass settings
for linear performance measures of the form ψlinearpCq “
řn
i,j“1WijCij . The weights Wij P R` encode the reward

or penalty for classifying an instance of class i as class j. In
this case, one can learn a multiclass class probability model
pη : X Ñ ∆n which estimates the probability of an instance
x belonging to class i: pηipxq « Ppy “ i|xq, and then
construct a classifier as phpxq P argmaxyPrns

řn
i“1 ηipxqWiy .

This classifier enjoys consistency properties as well [10].



It is tempting to apply this approach for optimizing non-
linear performance measures, such as micro and macro F-
measure, but such an approach is intractable. The threshold
tuning step in this case requires simultaneously tuning Ωpn2q
thresholds on a grid over r0, 1sn

2

, a task that is exponential
in n2 and hence computationally infeasible. [10] were able
to overcome this problem for the micro F-measure by
exploiting its pseudo-concave structure. However, no such
structure exists for the macro F-measure.

III. BICONCAVE OPTIMIZATION FOR F-MEASURE

A critical step in our BEAM-F algorithm is developing
a workaround to the threshold tuning step for the macro
F-measure. We do this by extending the plug-in based
framework introduced by [10] for optimizing multiclass
performance measures. In framework, the learning problem
is cast as optimization problem over a space of feasible
confusion matrices. However, we reiterate that the work of
[10] does not directly apply to the macro F-measure, which
is not pseudo-concave. In the following, we develop this idea
in steps. Due to space constraints, we omit the proofs here.

Feasible confusion matrices. For a given distribution D,
let CD “ tCrhs |h : X Ñrnsu be the set of all confusion
matrices that correspond to some classifier. There may exist
confusion matrices that are infeasible with respect to D.
For example, unless there exists a perfect classifier for
D, the identity matrix will not be in its feasible set. The
problem of maximizing the macro F-measure over D can
be cast as an equivalent optimization problem over the set
of feasible confusion matrices: maxCPCD ψmacropCq, where
ψmacropCq “ 1

n

řn
i“1

2ˆCii
řn

j“1 Cij`
řn

j“1 Cji
. We optimize ψmacro

using the training sample S as a proxy for D. To ensure
that the constraint set is convex, we relax the problem by
replacing CD with its convex hull CD:

max
CPCD

ψmacropCq. (OP1)

Since CD is the set of all confusion matrices generated
by randomized classifiers [10], (OP1) seeks to learn a
randomized classifier that maximizes the macro F-measure.
Recall that the plug-in technique cannot be used to solve
this optimization problem, as the macro F-measure is non-
linear. Moreover, standard techniques such as projected
gradient descent are inapplicable, since the constraint set
CD is not available explicitly. While oracle and interior-
point methods do not require explicit access to the constraint
set, these method apply only to concave and pseudo-concave
optimization [10]. The main contribution of this paper, is a
biconcave optimization approach for maximizing the macro
F-measure.

Fractional-linear Functions. As a warmup, consider op-
timizing a single fractional-linear function of the confusion
matrix maxCPCD

xA,Cy
xB,Cy . Observe that for any α ą 0,

maxCPCD

xA,Cy
xB,Cy ě α iff maxCPCD

xA,Cy´α xB,Cy ě 0.

Thus, to verify that maximum achievable performance level
exceeds α, we need only solve the linear maximization
problem maxCPCD

xA´ αB,Cy, and check if the optimal
value is non-negative. To find the optimal performance value
and the corresponding classifier, one can then simply do a
binary search over values of α P r0, 1s.

Sum of Fraction-linear Functions. Doing the above with
a sum of more than one fractional linear function is not
feasible since we would have to tune αi for each function
jointly, which is intractable [15]. We adopt a totally different
strategy, formulating (OP1) as an equivalent biconcave op-
timization problem over certain auxiliary variables and the
confusion matrix [16]. It is easy to see that the macro F-
measure can be rewritten as ψmacropCq “ 1

n

řn
i“1

xAi,Cy
xBi,Cy ,

where, for each class i, the matrix Ai satisfies Aijk “ 1
if j “ k “ i and 0 otherwise, and where Bi satisfies
Biii “ 2, Biij “ Biji “ 1 and Bijk “ 0 for all
j, k ‰ i. We introduce an auxiliary variable ui P R` for
each class i. These variables are analogous to the level
variable α used previously in optimizing a single fractional-
linear function. Consider the following biconcave function
ψbiconcavepu,Cq “ 1

n

řn
i“1

“

2ui
a

xAi,Cy ´ u2i xB
i,Cy

‰

.
One can verify that for a fixed value of u P Rn`, the function
is concave with respect to C, and that for a fixed C P CD, the
function is concave in u. Our original optimization problem
(OP1) can then be shown to be equivalent to the following

max
CPCD,uPRn

`

ψbiconcavepu,Cq. (OP2)

Theorem 1. The optimization problems OP1 and OP2 have
the same set of maximizers over CD.

This theorem is a special case of a result in [16].

IV. ALTERNATING MAXIMIZATION SOLVER

We now develop the BEAM-F method to solve the bicon-
cave program in (OP2). BEAM-F adopts an alternating max-
imization approach, alternately fixing the auxiliary variable
and the confusion matrix, and updating the other. BEAM-F
starts with an initial C0 and loops over Steps I, II.
Step I. ut P argmaxuPRn

`
ψbiconcavepu,Ct´1q. This step

admits a closed form solution uti “
?
xAi,Ct´1y

xBi,Ct´1y
.

Step II: Ct P argmaxCPCD
ψbiconcaveput,Cq. We use a

Frank-Wolfe method [10] to solve this concave problem.
Frank-Wolfe Based Concave Maximization The Frank-

Wolfe (FW) algorithm is a provably convergent technique
for solving concave maximization problems over a convex
set [17], when the constraint set is not explicitly available
but linear maximization over the set is nevertheless possible.
This fits very well with our setting: although CD is not
accessible, as we show below, linear maximization over this
set can be performed efficiently using the plug-in approach.
BEAM-F exploits this fact to maximize the concave objec-
tive ψbiconcaveput,Cq over CD, by formulating a sequence of



linear approximations to the objective. More specifically, let
ut be the current value of the auxiliary variables. The FW
algorithm starts with an initial confusion matrix Γpt,0q and at
each sub-iteration pt, sq, computes the gradient of the con-
cave objective at Γpt,sq: Gpt,sq “ ∇Cψ

biconcaveput,Γpt,sqq,
and maximizes the corresponding linear approximation of
the objective over CD: maxCPCD

xGpt,sq,Cy. Now although
it is not clear how to optimize over CD, the following
result shows that it is enough to optimize xG,Cy only over
C P CD, which can be done using the plug-in approach.

Theorem 2. For any G, argmax
CPCD

xG,Cy Ď argmax
CPCD

xG,Cy.

The plug-in approach (1) divides the training set into
two parts, S “ pS1, S2q, (2) uses S1 to learn a
class probability model pη : X Ñ∆n, and (3) at any
sub-iteration pt, sq, constructs the classifier hpt,sqpxq P

argmaxyPrns
řn
i“1 pηipxqG

pt,sq
iy and estimates a new confu-

sion matrix pCrhpt,sq;S2s.
The next iterate Γpt,s`1q of the FW solver is then set to a

suitable convex combination of the previous iterate, and the
new confusion matrix determined through a line search. An
outline of the BEAM-F solver is provided in Algorithm 1.

BEAM-F finally outputs a randomized classifier by com-
bining the deterministic classifiers obtained across different
iterations, along with their corresponding weights.

Running time. Whereas the plug-in and structural SVM
approaches require exponential run-time, BEAM-F only
requires Opn2q time per iteration. In practice, BEAM-F was
always found to converge in a small number of iterations.

Convergence Guarantees Existing convergence analyses
for alternating minimization [18], [19] do not apply directly
to BEAM-F since those analyses require exact updates in the
alternations, which the Frank-Wolfe solver is unable to offer
due to its inability to access the data distribution D. Never-
theless, we can show that the iterates generated by BEAM-F
converge to an approximate stationary point ppu, pCq such that
}∇ψbiconcaveppu, pCq}2 ď ε, where ε diminishes to 0 as the
number of training points N Ñ 8. We omit the details of
this result for lack of space.

V. EXPERIMENTS

We empirically evaluated the BEAM-F method on a range
of synthetic and benchmark data sets, and a case study on
celestial object classification1.

BEAM-F. The class probability model in BEAM-F was
learned using a multiclass (softmax) logistic regression tech-
nique. Since BEAM-F seeks to optimize a non-convex ob-
jective, we use multiple restarts and choose the classifier re-
sulting in the best performance on the training set. BEAM-F
was initialized using confusion matrices from plain logistic
regression, balanced logistic regression model, and three

1Code available at: https://github.com/onefishy/BEAM-F

Algorithm 1 BEAM-F: BiconcavE progrAmming for
Macro F-measure optimization

1: Input: S “ ppx1, y1q, . . . , pxN , yN qq
2: Parameter: Tout, Tin
3: Split S into S1 and S2

4: Learn class probability model pη : X Ñ ∆n using S1

5: Initialize: h0,0 : X Ñrns, C0 “ pCrh0,0;S2s

6: For t “ 1 to Tout do
7: Step I: Maximize over u for fixed Ct´1

8: uti “

a

xAi,Ct´1y

xBi,Ct´1y

9: Step II: Maximize over C for fixed ut

10: Γpt,0q “ Ct

11: For s “ 1 to Tin do
12: Gpt,sq “ ∇C ψ

biconcaveput,Γpt,s´1qq

13: Construct hpt,sqpxq P argmax
yPrns

n
ÿ

i“1

pηipxqG
pt,sq
iy

14: C1 “ pCrhpt,sq;S2s

15: αpt,sq P argmax
αPr0,1s

ψbiconcave
`

p1´αqΓpt,s´1q`αC1
˘

16: αpt,`q “ αpt,`qαpt,sq @` “ 1, . . . , s´ 1
17: Γpt,sq “ p1´ αpt,sqqΓpt,s´1q ` αpt,sqC1

18: End For
19: Ct`1 “ Γpt,Tinq

20: End For
21: Output: A randomized classifier constructed from

hp1,1q, . . . , hpTout,Tinq that for any instance x P X predicts
hpt,sqpxq with probability αpt,sq

random classifiers. The inner and outer loops of BEAM-F
were terminated upon observing insufficient improvement in
the objective. In practice, we found BEAM-F to converge
within 3–7 inner and outer iterations. For stability, we used a
regularized biconcave function rψpu,Cq “ ψbiconcavepu,Cq´
0.5 ¨ λ}C}2F .

Baselines. We found the plug-in and structural SVM
approaches too expensive to benchmark [10] and hence
compared against three standard multiclass methods:

1) LogReg: A standard multiclass logistic regression
model with equal weights on all classes.

2) Bal-LogReg: A balanced version of the multiclass
logistic regression model where the classifier is con-
structed by performing a weighted argmax on the
estimated probabilities, with the weight for class i set
to the the inverse of its proportion in the train set pi
with the aim to place larger emphasis on rare classes.

3) CS-SVM: A standard multiclass SVM based on the
Crammer-Singer surrogate from the LIBLINEAR li-
brary2.

In each case, we used 70% of the data for training, and
the remaining for testing. The parameters for all baselines

2https://www.csie.ntu.edu.tw/„cjlin/liblinear/



(a) (b) (c)

Figure 1. Experiments on synthetic data: (a) sample data depicting three overlapping classes; a comparison of BEAM-F and baseline methods on macro
F-measure as a function of (b) the amount of class skewness; (c) the mean separation parameter β between the classes.

Table I
STATISTICS OF THE REAL-WORLD BENCHMARK DATA SETS USED IN THE

EXPERIMENTS. SKEW SIGNIFIES THE CLASS IMBALANCE I.E. maxi pi
mini pi

.

Data set # instances # features # classes Skew
connect-4 67557 126 3 6.9
covtype 581012 54 7 103.1
dna 2000 180 3 2.3
nursery 12958 27 4 13.1
poker 25010 10 10 2498.6
shuttle 43500 9 7 5684.7
usps 7291 256 10 2.2
MACHO 6059 64 8 67.2

Table II
MACRO F-MEASURE PERFORMANCE OF DIFFERENT METHODS.

BEAM-F GIVES THE BEST OR COMPARABLE MACRO F-MEASURE
PERFORMANCE, OFTEN BEATING BASELINES BY A WIDE MARGIN.

Data set BEAM-F LR Bal-LR CS-SVM
connect-4 0.570 0.499 0.570 0.498
covtype 0.565 0.487 0.476 0.488

dna 0.945 0.943 0.942 0.939
nursery 0.901 0.696 0.873 0.888
poker 0.096 0.067 0.020 0.059
shuttle 0.460 0.461 0.340 0.625
usps 0.948 0.948 0.943 0.952

MACHO 0.605 0.314 0.359 0.316

and BEAM-F were tuned using 3-fold cross-validation on
the training set. In BEAM-F, the complete training set was
used for both learning a class probability model, and for
running the alternating maximization solver.

Real-world Benchmark Data. We evaluated BEAM-F
on a variety of real-world benchmark data sets with varying
degree of class skewness (see Table I). The results are
tabulated in Table II. It is notable that BEAM-F is the winner
or tied winner on most datasets. However, BEAM-F offers
a significant improvement over the Bal-LogReg method
whenever the skew of the dataset is high. This is to be
expected since, on excessively skewed datasets, the Bal-
LogReg method places a huge weight on the rare classes,
distorting its view of the data. This trend will be corrob-
orated in the synthetic experiments. Also, notice that on

these highly skewed datasets, the simple LogReg performs
better, as it does not encounter these huge weights. However,
BEAM-F mostly beats both these methods and CS-SVM. It
is also worth noting that the behaviour of CS-SVM is very
erratic as it does not seek to optimize macro F-measure at
all. On the other hand, Table III confirms that BEAM-F is
much more scalable than the CS-SVM method, being as
much as 50ˆ faster.

Synthetic Data. To closely analyze the behavior of var-
ious algorithms, we considered a toy 3-class classification
problem with 2-dimensional features (see Figure 1(a)). The
data distributions of the 3 classes was conditionally Gaussian
with common covariance and means µi, i “ 1, 2, 3 chosen
so that class 2 is sandwiched between the other two classes.

In the first experiment, we varied p2 from 0.1 to 0.9 and
set p1 “ p3 “ 0.5 ´ p2{2, thereby increasing the class
skew p2{p1. Figure 1(b) reveals two clear trends. Firstly,
for extremely high skew, LogReg outperforms the more
careful Bal-LogReg method, a trend we observed in the
benchmark datasets as well. Secondly, BEAM-F consistently
outperforms all methods, more so when skew is larger.

In the second experiment, we fixed class proportions at
p1 “ 0.05, p2 “ 0.1, and p3 “ 0.85, but set the means to
µ1 “ ´µ3 “ r´β,´βsJ, µ2 “ r0, 0s

J, where β was varied
from 0.1 to 10. A larger β produces a simpler problem with
large class separations. Figure 1(c) confirms that BEAM-F
is consistently the best method, especially when the classes
are closely spaced and the problem is hard to solve. As the
separation increases and the problem becomes easier, other
methods improve in performance as well.

Case Study: Celestial Object Classification. As a case
study, we applied BEAM-F to the task of classifying celestial
objects from the Massive Compact Halo Object (MACHO)
catalog using photometric time series data [20]. There are
6059 light curves corresponding to either one of seven celes-
tial objects or a miscellaneous category. The dataset is highly
skewed, making it an ideal candidate for macro F-measure
optimization. As Table II indicates, BEAM-F method yields
a significantly higher macro F-measure compared to all other
baselines.



Table III
TRAINING TIMES (SECS) OF BEAM-F AND CS-SVM. BEAM-F CAN

BE SEVERAL TIMES FASTER THAN THE CS-SVM SOLVER.

Data set BEAM-F CS-SVM Speedup
connect-4 17.9 79.1 4.4ˆ
covtype 207.1 354.2 1.7ˆ
poker 10.2 496.2 48ˆ
shuttle 10.8 21.9 2ˆ

1 2 3 4 5 6 7 8
1 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00
4 0.00 0.00 0.00 0.01 0.00 0.05 0.00 0.00
5 0.00 0.00 0.00 0.00 0.02 0.07 0.00 0.00
6 0.00 0.00 0.00 0.00 0.02 0.65 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00

(a) LogReg

1 2 3 4 5 6 7 8
1 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02
4 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.05 0.02 0.02 0.00
6 0.00 0.00 0.00 0.00 0.01 0.60 0.02 0.04
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.05

(b) BEAM-F

Figure 2. Confusion Matrices for the Celestial Objective Detection task.
BEAM-F does not neglect rare classes in favor of the majority class.

The confusion matrices (see Figure 2) of the LogReg and
BEAM-F method provide greater insight into the results.
Notice that LogReg performs very well on class 6 while
sacrificing performance on most other classes. On the other
hand, BEAM-F yields non-zero accuracies on all but one
class, at the cost of lower accuracy on class 6.
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[13] K. Dembczyński, A. Jachnik, W. Kotlowski, W. Waegeman,
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