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ABSTRACT

The development of synoptic sky surveys has led to a massive amount of data for which resources needed for
analysis are beyond human capabilities. In order to process this information and to extract all possible knowledge,
machine learning techniques become necessary. Here we present a new methodology to automatically discover
unknown variable objects in large astronomical catalogs. With the aim of taking full advantage of all information
we have about known objects, our method is based on a supervised algorithm. In particular, we train a random
forest classifier using known variability classes of objects and obtain votes for each of the objects in the training set.
We then model this voting distribution with a Bayesian network and obtain the joint voting distribution among the
training objects. Consequently, an unknown object is considered as an outlier insofar it has a low joint probability.
By leaving out one of the classes on the training set, we perform a validity test and show that when the random
forest classifier attempts to classify unknown light curves (the class left out), it votes with an unusual distribution
among the classes. This rare voting is detected by the Bayesian network and expressed as a low joint probability.
Our method is suitable for exploring massive data sets given that the training process is performed offline. We tested
our algorithm on 20 million light curves from the MACHO catalog and generated a list of anomalous candidates.
After analysis, we divided the candidates into two main classes of outliers: artifacts and intrinsic outliers. Artifacts
were principally due to air mass variation, seasonal variation, bad calibration, or instrumental errors and were
consequently removed from our outlier list and added to the training set. After retraining, we selected about 4000
objects, which we passed to a post-analysis stage by performing a cross-match with all publicly available catalogs.
Within these candidates we identified certain known but rare objects such as eclipsing Cepheids, blue variables,
cataclysmic variables, and X-ray sources. For some outliers there was no additional information. Among them we
identified three unknown variability types and a few individual outliers that will be followed up in order to perform
a deeper analysis.
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1. INTRODUCTION

Several important discoveries in astronomy have occurred
serendipitously while astronomers were examining other ef-
fects. For example, William Herschel discovered Uranus on
1781 March 13 (Herschel 1857) while surveying bright stars
and nearby faint stars. Similarly, Giuseppe Piazzi found the first
asteroid, Ceres, on 1801 January 1 (Serio et al. 2002) while com-
piling a catalog of star positions. Equally unexpected was the
discovery of the cosmic microwave background (CMB) radia-
tion in 1965 by Arno Penzias and Robert Wilson while testing
the Bell Labshorn antenna (Penzias & Wilson 1965).

With the proliferation of data in astronomy and the intro-
duction of automatic methods for classification and character-
ization, the keen astronomer has been progressively removed
from the analysis. Anomalous objects or mechanisms that do not
fit the norm are now expected to be discovered systematically:
serendipity is now a machine learning task. As a consequence,
the astronomer’s job is no longer to be behind the telescope,
but to be capable of selecting and interpreting the increasing
amount of data that is provided by technology.

Outlier detection, as presented here, can guide the scientist
to identify unusual, rare, or unknown types of astronomical ob-
jects or phenomena (e.g., high-redshift quasars, brown dwarfs,

pulsars). These discoveries might be useful not only to pro-
vide new information, but also to outline observations, which
might require further and deeper investigation. In particular,
our research detects anomalies in photometric time series data
(light curves). For this work, each light curve is described by 13
variability characteristics (period, amplitude, color, etc.) called
features (Kim et al. 2011; Pichara et al. 2012), which have been
used for classification. It is worth noting that the method devel-
oped in this paper is not only applicable to time-series data, but
could also be used for any type of data that need to be inspected
for anomalies. In addition to this advantage, the fact that it can
be applied to large data makes this algorithm suitable for almost
any outlier detection problem.

Many outlier detection methods have been proposed in
astronomy. Most of them are unsupervised techniques, where
the assumption is made that there is no information about the set
of light curves or their types (Xiong et al. 2010). One of these
approaches considers a point-by-point comparison of every pair
of light curves in the database by using correlation coefficient
(Protopapas et al. 2006). Other techniques search for anomalies
in lower-dimensional subspaces of the data in order to deal with
the massive number of objects or the large quantity of features
that describe them (Henrion et al. 2013; Xiong et al. 2010).
Clustering methods are equally applied in the astronomical
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Figure 1. Simple illustration of the method. In most unsupervised methods the red points in the middle will not be considered as outliers because they are in a region
with point density that is not separable. The product of the probabilities or the sum of the distances to the known classes may not be adequate as an outlier score, and
therefore the joint probability is a better measure for outliers. This case occurs when the conditional probability is lower than the marginal probability, as can be seen
from this simple illustration.

(A color version of this figure is available in the online journal.)

outlier detection area aiming to find clusters of new variability
classes (Bhattacharyya et al. 2012; Rebbapragada et al. 2008).
Unfortunately, these methods either scale poorly with massive
data sets and with high-dimensional spaces or partially explore
the data, therefore missing possible outliers.

In this paper, we face these constraints by creating an al-
gorithm that is able to efficiently deal with large data and is
capable of exploring the data space as exhaustively as possi-
ble. Furthermore, we address this matter from a point of view
different from that presented by He & Carbonell (2006) as the
new-class discovery challenge.Contrary to unsupervised meth-
ods, it relies on using labeled examples for each known class
in the training set, and, unlike supervised methods, we assume
the existence of some rare classes in the data set for which
we do not have any labeled examples. This approach takes ad-
vantage of available information, but it does not restrict the
anomalous findings to a certain type of light curves. Further-
more, in unsupervised anomaly detection methods, in which
no prior information is available about the abnormalities in the
data, anything that differs from the entire data set is flagged
as an outlier, and, consequently, many of the anomalies found
would simply be noise. In contrast to these techniques, super-
vised methods incorporate specific knowledge into the outlier
analysis process, thus obtaining more meaningful anomalies.
This is illustrated in Figure 1. The blue and green points rep-
resent instances in a two-dimensional feature space from the
known class 1 and class 2, respectively. The shaded areas rep-
resent the boundaries learned from a classifier. The gray points
represent isolated outliers, and the red points represent outlier
classes. In most unsupervised methods, the red points in the
middle will not be considered as outliers because they are in a
region with point density that is not separable. In the most naive
supervised methods, anything that is outside the boundaries is
considered as an outlier. For the example of the outlier class in
the middle, the product of the probabilities or the sum of the
distances to the known classes may not be adequate as an outlier
score, and therefore the joint probability is a better measure for
outliers. This case occurs when the conditional probability is

lower than the marginal probability,6 as can be seen from this
simple illustration. The conditional probability shown on the
left is smaller than the marginal probability shown on the right.
Our model will consider those objects as outliers.

In the first stage of our method, we build a classifier that is
trained with known classes (every known object is represented
by its features and a label). We then use the classifier decision
mechanism to our advantage. More precisely, we learn a
probability distribution for the classifier votes on the training
set in order to model the behavior of the classifier when the
objects correspond to a known variability class. The intuition
behind this method is to recognize, and thus to learn, how the
classifier is confused when it comes to voting. By confusion, we
refer not only to the hesitation between two or more classes for
an object label but also to the weights it assigns to each of these
possibilities.

Therefore, when an unlabeled light curve is fed into the
model, the classifier attempts to label it, and if this classifying
behavior is known by the model, the object will have a high
probability of occurrence and consequently a low outlierness
score. On the contrary, the object will have a higher anomaly
score and will be flagged as an outlier candidate insofar as the
classifier operates in a different manner from the previously
known mechanisms.

Once our outlier candidates are selected, an iterative post-
analysis stage becomes necessary. By visual inspection we
discriminate artifacts from true anomalies, and we (1) remove
them systematically from our data set and (2) create classes of
spurious objects that we add to our training set. We then rerun the
algorithm and obtain new candidates. These steps are repeated
until we do not obtain any apparent artifacts in our outlier list
and a clustering method is finally executed. The purpose of
this phase is to group similar objects in new variability classes
and to consequently give them an astronomical interpretation.
Finally, we cross-match the most interesting outliers with all
publicly available catalogs with the aim of verifying whether

6 This is not necessarily true for all cases.
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there is any additional information about them. In particular,
we are interested in knowing whether they belong to a known
class. In the negative case, the outliers will be followed up using
spectroscopy to deeply analyze their identity and behavior.

To achieve this, we use random forest (RF; Breiman 2001)
for the supervised classification in order to obtain the labeling
mechanism for each class on the training set. RF has been
extensively and successfully used in astronomy for cataloging
(Pichara & Protopapas 2013; Kim et al. 2014). Starting with
the RF output, we construct a Bayesian network (BN) with the
purpose of extracting the classification patterns that we use for
our final score of outlier detection.

The paper is organized in the following way. Section 2 is
devoted to other methods related to anomaly detections in
machine learning and astronomy. In Section 3 we detail the
background theory, including the basic blocks of an RF network
and a BN. Our approach and the pipeline followed in the paper
are shown in Section 4. Section 5 contains information about the
data used in this work, and Section 6 presents the results of the
tests performed and the experiments with real data, including
retraining and eliminating artifacts. We proceed by explaining in
Section 7 the post-analysis process. Finally, conclusions follow
in Section 8.

2. RELATED WORK

2.1. Outlier Detection in Machine Learning

A vast amount of literature has been published in relation to
anomaly/outlier detection problems (Chandola et al. 2009; Kou
et al. 2004), but it can generally be classified into two main
classes: supervised and unsupervised methods.

In unsupervised approaches, the examples given are unla-
beled, and consequently there is no training set in which the data
are separated into different classes. In turn, these techniques can
be partitioned into three main subcategories: statistical methods,
proximity-based methods, and clustering methods.

Statistical approaches are the earliest methods used for
anomaly detection. These methods detect anomalies as outliers
that deviate markedly from the generality of the observations
(Grubb & Frank 1969) by assuming that a statistical model gen-
erates normal data objects and that data that do not follow the
model are outliers. In particular, many of these methods use
mixture models by applying Gaussian distributions (Agarwal
2005; Eskin 2000). The typical strategy considers the calcula-
tion of a score and a threshold, both used to identify points that
deviate from normal data. For example, Eskin (2000) proposes
an algorithm that fits mixture models, normal and anomalous,
using the expectation maximization (EM) algorithm and assum-
ing a prior probability λ of being anomalous. Then, the author
obtains an anomaly score that is based on measuring the vari-
ation of the normal distribution when a point is moved to the
anomalous distribution. One of the main drawbacks of the statis-
tical approach is that it is generally applied to quantitative data
sets or at the very least quantitative ordinal data distributions
where the ordinal data can be transformed to suitable numerical
values for statistical processing. This limits its range of appli-
cation and can increase the processing time when complex data
transformations are needed as a preprocess. (Hodge & Austin
2004).

Clustering-based methods (Yang et al. 2006; Son et al. 2009;
Zhang et al. 1996) are based on the fact that similar instances
can be grouped into clusters and that normal data lie on
large and dense clusters, while anomalies belong to small or

sparse clusters, or to no cluster at all. Most recent clustering
algorithms proposed for anomaly detection are in the context
of intrusion detection on networks (Yang et al. 2006; Son
et al. 2009). Unfortunately, clustering algorithms suffer from
a dimensionality problem. Often, in large-dimensional spaces,
distance metrics that are applied to characterize similarity do
not provide suitable clusters. Subspace clustering algorithms, a
remedy to the dimensionality curse, have not been commonly
used for anomaly detection, with the exception of some recent
works (Seidl et al. 2009; Pichara et al. 2008; Pichara &
Soto 2011). Seidl et al. (2009) perform a subspace clustering
algorithm to rank data points according to the size of the clusters
and the number of dimensions of each subspace where the points
belong. To identify microclusters containing anomalies, Pichara
et al. (2008) search for relevant subspaces in subsets of variables
that belong to the same factor in a trained BN. Similarly, Pichara
& Soto (2011) present a semi-supervised algorithm that actively
learns to detect anomalies in relevant subsets of dimensions,
where dimensions are selected by using a subspace clustering
technique that finds dense regions in a sparse multidimensional
data set. One of the main drawbacks of these kinds of approaches
is that they use heuristics to find relevant subspaces, and those
heuristics may ignore combinations of spaces where anomalies
could also lie.

Finally, proximity-based methods follow the intuition that
anomalies are records with fewer neighbors than normal records
(Ramaswamy et al. 2000; Knorr & Ng 1998; Breunig et al.
2000). For example, Breunig et al. (2000) assign an anomaly
score called the local outlier factor (LOF) to each data instance;
this score is given by the ratio between the local density of the
point and the average local density of its k-nearest neighbors.
Local density is calculated using the radius of the smallest
hypersphere that is centered at the data instance and contains
k (nearest) neighbors. Papadimitriou et al. (2003) propose
a variant of the LOF called the multi-granularity deviation
factor (MDEF). For a given record, its MDEF is calculated
as the standard deviation among its local density and the local
densities of its k-nearest neighbors. Then they use the MDEFs
to search microclusters of anomalous records. Along the same
lines, Jin et al. (2001) propose another variant of LOF that
improves efficiency by avoiding unnecessary calculations. They
achieve this by calculating upper and lower bounds among the
microclusters detected. Unfortunately, density-based algorithms
are usually quadratic in the number of instances, and thus they
are not suitable for large data. Furthermore, these methods also
suffer from the curse of dimensionality for the same reasons
mentioned above for the clustering methods.

On the other hand, in supervised approaches, outlier detection
can be treated as a classification problem, where a training
set with class labels is used to generate a classifier that
distinguishes between normal and anomalous data (Gibbons
& Matias 1998; Aggarwal & Yu 2001; Chandola et al. 2009).
Various anomaly detection algorithms have been proposed in
this area, such as decision trees (John 1995; Arning et al.
1996) and neural networks (Nairac et al. 1999; Bishop 1994).
Decision tree algorithms fit the data focusing only on salient
attributes, a desirable characteristic when dealing with high-
dimensional data. These algorithms work by modeling all
points corresponding to normal classes; then points having
an erroneous or unexpected classification are considered as
anomalies. Similarly, neural networks are employed to model
the unknown distribution of normal class points by training a
feed-forward network. This is achieved by adjusting the weights
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and thresholds while learning from the input data. Neural
networks work well when training sets are representative of the
unseen data. Unfortunately, this may not occur for new instances
that are beyond of the scope of the training set. Decision trees
and neural networks are susceptible to overfitting when stopping
criteria are not well determined.

2.2. Outlier Detection in Astronomy

Because synoptic sky surveys have significantly increased in
the past decade (Keller et al. 2007; Hodapp et al. 2004; Tyson
et al. 2002), astronomical anomaly detection has not yet been
fully implemented in the enormous amount of data that has been
gathered. As a matter of fact, barring a few exceptions, most
of the previous studies can be divided into only two different
trends: clustering and subspace analysis methods.

In Rebbapragada et al. (2008), the authors create an algorithm
called periodic curve anomaly detection (PCAD), an unsuper-
vised outlier detection method for sets of unsynchronized peri-
odic time series, by modifying the k-means clustering algorithm.
The method samples the data and generates a set of represen-
tative light curve centroids from which the anomaly score is
calculated. In order to solve the phasing issue, during each iter-
ation, every time series is rephased to its closest centroid before
recalculating the new one. The anomaly score is then calcu-
lated as the distance of the time series to its closest centroid.
Even if the anomaly detection is satisfactory on a restricted and
small data set, the technique scales poorly with massive data
sets. This is mainly due to the distinctive high-dimensionality
problem that clustering methods encounter, as mentioned in the
previous section. Furthermore, since the algorithm is based on
the alignment of the time series periods, it is restricted to peri-
odic light curves, thus limiting the scope of possible astronomy
applications.

Similarly, Protopapas et al. (2006) search for outlier light
curves in catalogs of periodic variable stars. To this end, they
use cross-correlation as a measure of similarity between two
individual light curves and then classify light curves with the
lowest average similarity as outliers. Unfortunately, this method
scales as N2

LC , where NLC is the number of light curves. In order
to deal with this high operational cost and to apply the algorithm
to large data sets, they make an approximation they call universal
phasing. By using clustering, they find where the signal with the
highest/lowest magnitude dip occurs for each light curve and
set it to a particular phase by time-shifting the folded light curve.
Once they find an absolute phase for all the light curves, they
calculate the correlation of each one with the average of the
rest of the set, reducing the operational cost of the algorithm
to NLC. Unfortunately, this method is an approximation since it
does not guarantee that the correlation between two light curves
is maximum. Furthermore, this approximation also implies not
taking into account the observational errors, thus losing highly
valuable information. Finally, as in Rebbapragada et al. (2008),
this algorithm is also restricted to periodic light curves.

Xiong et al. (2010) separate astronomy anomalies into two
different categories: point anomalies, which include individual
anomalous objects, such as single stars or galaxies that present
unique characteristics, and group anomalies (anomalous groups
of objects), such as unusual clusters of the galaxies that are
close together. For that end, they develop one method for each
of these cases. For the former case, the authors create mixed-
error matrix factorization (MEMF), an unsupervised algorithm
that explores subspaces of the data. They also assume that
normal data lie in a low-dimensional subspace and that their

features can be reconstructed by linear combination of a few
base features. Quite the opposite, anomalies lie outside of that
subspace and cannot be well reconstructed by these bases. To do
so, they find a robust low-rank factorization of the data matrix
and consider the low-rank approximation error to be an additive
mixture of the regular Gaussian noise and the outliers that can
be measured differently in the model. One limitation of MEMF
is that the factorization rank k has to be specified by the user
and is consequently often determined by heuristics. For group
anomalies, the authors use hierarchical probabilistic models to
capture the generative mechanism of the data. In particular, they
propose the Dirichlet genre model (DGM), which assumes that
the distribution of the groups in the data set can be represented by
a Dirichlet distribution. Two anomaly scores are then presented:
the likelihood of the whole group and a scoring function that
focuses on the distribution of objects in the group. One of
the main drawbacks of this method is that the inference stage
considers a nonconvex problem and is consequently restricted
to the limitation of variational approximations.

Henrion et al. (2013) propose CASOS, an algorithm that
detects outliers in data sets obtained by cross-matching astro-
nomical surveys. To do so, they compute an anomaly score for
each observation in lower-dimensional subspaces of the data,
where subspaces make allusions to subsets of the original data
variables. In particular, any anomaly detection method that pro-
duces numerical anomaly scores can be used with this approach.
The idea is to analyze the anomaly score of each observation in
every possible subspace and then combine them in such a way
that objects with many observed variables and objects with only
a few are equally likely to have high anomaly scores. Unfortu-
nately, CASOS has the disadvantage that it will not be able to
detect outliers, which are only apparent in multivariate spaces
with significant numbers of variables.

Finally, Richards et al. (2012) apply a semi-supervised ap-
proach for astronomical outlier detection. Unlike the previously
mentioned algorithms, in this work the authors compute a dis-
tance metric from every candidate object to each source in a
training set. To do so, they train an RF classifier with known
classes and measure the proximity value ρij for all the new in-
stances i to every j object on the training set. The proximity
measure ρij gives the proportion of trees in the RF for which the
feature vectors xi and xj appear in the same terminal node. Using
this proximity measure, they create an outlier score and evaluate
each instance in the database. A threshold on the anomaly score
is then determined in order to decide whether or not an object
is an outlier. This approach suffers from the same constraints
as density-based outlier detection methods. It is operationally
expensive and slow for large databases since every evaluated
object must be compared with each instance on the training
set. Furthermore, it has the problem of determining the out-
lier threshold, in other words, what is considered as a “far” or
“close” distance.

3. BACKGROUND THEORY

Our algorithm is based on known machine learning methods,
namely, RF and Bayesian networks. In this section, we summa-
rize the background for all these methods. Detailed explanations
for each of these approaches can be found in Breiman (2001),
Koller & Friedman (2009), and Cooper & Herskovits (1992).

3.1. Random Forest

RF developed by Breiman (2001) is a very effective machine
learning classification algorithm. The intuition behind this

4



The Astrophysical Journal, 793:23 (16pp), 2014 September 20 Nun et al.

method is to train several decision trees using labeled data
(training set) and then use the resulting trained decision trees to
classify new unlabeled objects in a voting system. The main
principle is to follow a divide-and-conquer approach; each
decision tree is trained with a random sample of the data and is
consequently considered as a “weak” classifier. Nevertheless,
the ensemble of these decision trees generates a robust or
“strong” classifier that, based on the combinatorial power of
its construction, creates an accurate and effective model.

The process of training or building an RF model given some
training data is as follows.

1. Let R be the number of trees in the forest (a user-defined
parameter) and |F | be the number of features describing
the data.

2. Build R sets (bags) of n samples taken with replacement
from the training set (bootstrap samples). Note that each of
the R bags has the same number of elements as the training
set, but some of the examples are selected more than once,
given that the samples are taken with replacement.

3. For each of the R sets, train a decision tree using at each node
a feature selected from a random sample of |F ′| features
(|F ′| is a model parameter where |F ′| � |F |) that optimizes
the split.

Each decision tree is created independently and randomly
using two principles. First, each individual tree is trained on dif-
ferent samples of the training set. Growing trees from different
samples of the training set creates the expected diversity among
the individual classifiers. The second principle is the random
feature selection, which means that for each tree the splitting
(decisive) feature in every node is chosen from a random subset
of the features. This contributes to the reduction of the dimen-
sionality and has been shown to significantly improve the RF
accuracy (Bernard et al. 2008; Geurts et al. 2006). Furthermore,
each tree is grown to the maximum possible subject to the mini-
mum size chosen for the terminal nodes (model parameter). For
this paper, we set the terminal node minimum size to be 1, so
the trees can be as large as the model allows it.

When classifying a new instance, each tree gives a classifi-
cation or “votes” by following the decision rules in every node
of the tree until reaching a terminal node. Since RF is a compo-
sition of many trees, the output corresponds to the votes of all
the trees. The class probability, P (class yj/features(i)), is the
proportion of trees that voted for the class j (j ∈ {1, . . . , k},
where k is the total number of classes).

3.2. Bayesian Networks

A BN is a directed acyclic graph (DAG), a particular prob-
abilistic graphical model that encodes local statistical depen-
dencies among random variables. A BN is defined by a set of
nodes representing random variables V = {v1, . . . , vk} and a
set of edges ε = {ε1, . . . , εb} connecting the variables. One of
the applications of a BN is to estimate joint probability density
functions (pdfs). This is done by assuming that the variables
in the pdf are the nodes in the BN and that the connections
between the nodes determine certain dependence relationships
that simplify the joint distribution. More formally, if we want to
estimate the joint probability distribution P (v1, . . . , vk) and we
have a BN describing connections between these variables, we
can simplify it as

P (v1, . . . , vk) =
k∏

i=1

P (vi |PaBN (vi)), (1)

where PaBN (vi) corresponds to the parents of the node vi in
the BN. Note that the pdf has been decomposed in a product of
smaller factors (conditional probabilities).

The main challenges of learning a BN that models a PDF
over a set of variables are (1) to learn the set of edges ε, or in
other words the BN structure, and (2) to learn the conditional
probabilities P (vi |PaBN (vi)).

3.3. Learning the Edges of the BN

A BN is a directed acyclic graph where each node represents
a random variable. In our case the random variables we are
modeling are the RF outputs, in other words, a probability
vector [v1, . . . , vk] vj ∈ [0, 1], representing the probabilities
of belonging to each of the possible classes cj (j ∈ [1 . . . k],
with k being the number of known classes). Given that the
amount of possible network structures is exponential in the
number of variables, it is necessary to use heuristics to find
the optimal network. In our work, we use a greedy algorithm
proposed by Cooper & Herskovits (1992). They define a score
to evaluate each possible network structure and greedily search
for the structure with the maximum score. First, they decide an
order of the variables (topological order) from where possible
structures will be explored. A topological order {1, . . . , k} is
such that if i is smaller than j in the order, then vi is an ancestor
of vj in the network structure. After deciding on a particular
order, the algorithm proceeds by finding the best set of parents
per node, greedily adding a new candidate parent and checking
whether or not the new addition creates a better network score.
In the case in which the edge addition improves the network
score, the edge remains in the actual network. Note that the
maximum number of parents per node is an input parameter of
the algorithm.

Finally, to calculate the network score, they evaluate the
probability of the structure given the data, which corresponds
to applying the same factorization imposed by the structure to
the data and using multinomial distributions over each factor.
Exactly how the score is assigned to a given structure is well
described in the original work (Cooper & Herskovits 1992;
Pichara & Protopapas 2013).

3.4. Learning the Parameters of the Conditional Distributions

In order to model the conditional probabilities, we may as-
sume that all variables (votes) are continuous and normally
distributed. Since V comes from the RF votes, its distribution is
multimodal, and consequently a single Gaussian would not de-
scribe the data. A better solution is to discretize the continuous
data (Monti & Cooper 1998), so as to use multinomial distribu-
tions. Even if this process only gets rough characteristics of the
distribution of the continuous variables, it better describes the
data by capturing its multimodality. To perform the discretiza-
tion, the data are divided into a set of bins; thus, every data value
that falls in a given interval is replaced by a representative value
of that interval.

Given that our data are now discrete, we use multi-
nomial distributions to model each conditional probability
P (vj |PaBN (vj )). The number of parameters to be estimated de-
pends on the number of values that variables vj and PaBN (vj )
can take. For example, suppose that the parents of variable vj

are {va, vb}, where each of the three variables {vj , va, vb} can
take two different values (for simplicity, say, 1 and 2). The prob-
ability distribution P (vj |va, vb) is then completely determined
by Table 1.
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Table 1
Probability of vj Given the Different Values of the Parents, P ((vj |va, vb)).

vj = 1 vj = 2

va = 1, vb = 1 θ1 1 − θ1

va = 1, vb = 2 θ2 1 − θ2

va = 2, vb = 1 θ3 1 − θ3

va = 2, vb = 2 θ4 1 − θ4

Note. There is one multinomial distribution per each combination of the values
of the parents. The number of outcomes of each distribution corresponds to the
number of values of variable vj .

The number of parameters for each variable is consequently
given by the following expression:

(Nbins − 1) × (Nbins)
Nparents, (2)

where Nbins is the number of bins chosen for the discretization
and Nparents corresponds to the number of parents of the variable.
In the example given above, the number of parameters we have
to estimate is (2 − 1) × 22 = 4. To estimate the parameters, we
use the maximum a posteriori (MAP) approach, where we select
the value for the unknown parameter as the value with maximum
probability under the posterior distribution of the parameter. The
posterior distribution of, say, θ1 is calculated as

P (θ1|data) = P (data|θ1) × P (θ1)∑
θ1

P (data|θ1) × P (θ1)
, (3)

where P (data|θ1) is the likelihood of the model and P (θ1) is
the prior of the parameter θ1. The likelihood is calculated as

P (data|θ1) = θ
N1
1 × (1 − θ1)N2 , (4)

where N1 is the number of cases in the data where vj takes a
particular value. Following the example above, N1 is the number
of cases where vj = 1 and va = 1, vb = 1, and N2 is the number
of cases where vj = 2 and va = 1, vb = 1.

The main purpose of the priors is to avoid overfitting. In
other words, in cases where we have just a few cases in
the data with a given combination of values, the estimation of the
parameters should tend to stay in a predefined value until the
data cases increase. Priors are a way to simulate previously seen
“imaginary data” in order to compensate situations of a few
cases. We choose conjugate priors to simplify the calculations
of the posteriors. In our case, given that the likelihood is a
multinomial, the chosen prior for P (θ ) is a Dirichlet distribution,
which is the conjugate distribution for the multinomial. Using a
Dirichlet prior, the obtained posterior is

P (θ1|data) ∝ θ
N1+α1
1 × (1 − θ1)N2+α2 , (5)

where {α1, α2} are the Dirichlet distribution parameters. The
values of {α1, α2} act as the “imaginary data” that we count, and
we just assume that all combinations of values have the same
number of previously seen cases. Analogously, we can find the
value of every parameter θj for variables with any number of
different values.

4. METHODOLOGY

In the next section, we detail our work and methodology. For
illustration, we present in Figure 2 a pictorial representation
of our algorithm and its two main stages: the training stage

Table 2
Training Set Composition

Class Number of Objects

1 Nonvariable 3969
2 Quasars 58
3 Be Stars 127
4 Cepheid 78
5 RR Lyrae 288
6 Eclipsing Binaries 193
7 MicroLensing 574
8 Long Period Variable 359

(left panel) and the outlier detection stage (right panel). In
the training stage, we start with a training set followed by the
training of the RF, discretization of the probabilities, and finally
the construction of the BN. In the outlier discovery stage, every
new instance is passed through the already-learned RF and BN
resulting in a score for being outlier.

As we previously mentioned, the idea behind our method is
to train a classifier with known classes and learn its decision
mechanism with a model. In this manner, when an outlier is
being analyzed, the classifier will present an abnormal voting
confusion that will be immediately flagged by our model.

Our method starts with a set of n labeled instances (train-
ing set) S = {(x1, y1), . . . , (xn, yn)}, where each xi =
{xi1, . . . , xiD} is a vector in a D-dimensional space—the
statistical descriptors or features that represent each light
curve—and yi corresponding to the label of xi (yi ∈ {c1, . . . , ck}
are all the known classes in the training set). In Section 5 we
give details about the classes and statistical descriptors we used.

We train an RF classifier and obtain voted labels for each
element using the set S. Since trees are constructed from
different bootstrapped samples of the original data (as explained
in Section 3.1), about one-third of the cases are left out of the
“bag” and not used in the construction of each tree. By putting
these out-of-bag (oob) observations down the trees that were
not trained with oob data, we end up with unbiased predicted
labels for S. Each prediction obtained from the RF comes as a
vector {vi1, . . . , vik}, where each vij ∈ [0, 1], j ∈ [1, . . . , k]
tells us the probability that the element xi belongs to the class
yj,

∑k
j=1 vij = 1, ∀i ∈ [1, . . . , n], or, as we explained in

Section 3.1, vij corresponds to P (class yj/features(i)).
In our experiments we use 20 bins for the discretization and

a maximum of two parents.
After this step is performed, we conclude with a new data

set V = {v1, . . . , vn}, where each vi = {vi1, . . . , vik}. This data
set gives us information about how the RF votes among objects
that belong to each of the known variability classes. We want
to use this data set to decide whether or not an unlabeled object
belongs to an unknown variability class, simply by comparing
the RF votes of this unlabeled object with the “usual” votes of
the RF obtained from the data set V. If the voting vector for the
unlabeled object is too different from the voting vectors stored in
the data set V, we flag it as an outlier. To do this comparison, we
learn the joint probability distribution over the data set V using
a BN. Recall that BNs estimate joint probability distributions
as a product of smaller factors. These factors are conditional
probability distributions, and, in our case, the joint probability
we aim to model is the joint probability of the various votes,
P (v1, . . . , vk).

When analyzing an unlabeled object i, we first obtain its
RF votes {vi1, . . . , vik} using the already-trained RF, and next

6
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Figure 2. Pictorial representation of the algorithm and its two main stages: the training stage (left panel) and the outlier detection stage (right panel).

(A color version of this figure is available in the online journal.)

we calculate the joint probability associated with this vector
P (vi1, . . . , vik) using the already-learned BN. Our outlier score
is calculated as 1 minus the joint probability; the lower the joint
probability is, the higher the score is and therefore the more
outlying the corresponding object is.

In Section 3.4, we mentioned the necessity of a prior in order
to include all the possible cases in our model. We assume the
same value for all the necessary priors. To choose the value
of α, we calculate the number of instances one would hope to
see if the data were uniformly distributed. Three parameters
are considered for this estimation: the size of our data (5646),
the number of bins in the discretization process (20), and the
maximum number of parents a node can have on the BN. Given
that the minimum number of parents is 0 and the maximum is 3,
a reasonable number for α is 4. We also empirically tested with
different values of α and found that the results are not sensitive
to the choice of α.

5. DATA

5.1. MACHO Catalog

MACHO (Massive Compact Halo Object) is a survey that
observed the sky, starting in 1992 July and ending in 1999, to
detect microlensing events produced by Milky Way halo objects.
Several tens of millions of stars were observed in the Large
Magellanic Cloud (LMC), the Small Magellanic Cloud (SMC),
and the Galactic bulge. The average number of observations per
object is several hundred, with the center of the LMC being
observed more frequently than the periphery. The reader can
find a detailed description of MACHO in Alcock et al. (1997e).

Every light curve is described by 13 features corresponding
to the blue nonstandard pass with a bandpass of 440–590 nm
(see Pichara et al. 2012 for more details).

5.2. Training Set

The training set is composed of a subset of 5646 labeled
observations from the MACHO catalog (Kim et al. 2011).7 The
constitution of the training set is presented in Table 1, and a
representative example of each class light curve is shown in
Figure 3.

The catalog comprises several sources from MACHO variable
studies (Alcock et al. 1996, 1997a, 1997d, 1999), the MACHO
microlensing studies (Alcock et al. 1997c, 1997e, 1997b;
Thomas et al. 2005), and the LMC long-period variable study
(Wood 2000). Quasars in the training set were collected from
Blanco & Heathcote (1986); Schmidtke et al. (1999); Dobrzycki
et al. (2002); Geha et al. (2003). Be stars were obtained from
private communication with M. Geha (2009). The nonvariables
were randomly chosen from the MACHO LMC database, and
any previously known MACHO variables were removed from
the nonvariable set.

6. RESULTS

In this section, we show how we applied the above methods
to the MACHO catalog.

6.1. Performance Test

To prove the performance of our algorithm, we created a test
set leaving one class out of the MACHO training set; we trained

7 We collected these variables from the MACHO variable catalog found at
http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=II/247.
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Figure 3. Example light curves of each class in the MACHO training set. The x-axis is the modified Julian date (MJD), and the y-axis is the MACHO B magnitude.
Note that Cepheid, RR Lyrae, and eclipsing binary light curves are folded since they are periodic.

our algorithm with the remaining classes and considered the
excluded class as unknown objects that we want to discover.
In other words, we expected these light curves to have the
highest outlierness score as they have never been seen by the
model.

We performed three different tests, each time leaving out of
the training set one of the classes: quasars, eclipsing binaries,
and Be stars. The RF considered 500 trees, with |F ′| = �√|F |

features in every node.

Next, we present the results for the test leaving the quasars
out of the training set. In order to visualize the voting database
V, we present the average number of objects voted by the RF
for each class in Figure 4. By using a color scale, we also show

the average distribution of the votes among the different classes
during the training phase and for the test class (quasars) during
the testing phase (right vertical line). For example, when the
RF is classifying an RR Lyrae, it has doubts mainly among
nonvariables, eclipsing binaries, and the true class, RR Lyrae.
This is shown in the colors along the vertical line labeled
RRL. This hesitation is learned by the BN, and the relationship
between classes is represented on a graph as shown in Figure 5.
An RR Lyrae node is a child node of Cepheid and nonvariable
nodes, meaning that when the light curve to be classified is from
the RR Lyrae class, the voting vector will present high values in
these other two classes. On the other hand, the Be star node is
independent of the other classes, as expected.
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Figure 4. RF vote distribution (NV: nonvariable; BE: BE stars; CEPH: Cepheid;
RRL: RR Lyrae; EB: eclipsing binaries; ML: microlensing, LPV: long-period
variable; QSO: quasars).

(A color version of this figure is available in the online journal.)

Figure 5. BN structure for the performance test.

After the algorithm training stage was completed, the outlier
detection stage was performed. We first obtained from the
trained RF a vector vi for every object in the training set, quasars
included. We then determined the joint probability and thus the
outlier score of each vi by using the already-learned BN. We
were expecting the quasars to have the highest outlier scores
and thus to find them on the top of the resulting outlier list.
Figure 6 shows how objects of “known” classes present high
joint probabilities while outlier objects (quasars) have the lowest
values. Finally, the top left panel of Figure 7 represents our
algorithm performance, comparing the imputed outlier (quasars)
positions in the top outlier list with the ideal case result—the 58
quasars will be using the 58 first places in the outlier list. It can
be seen that the top 40–60 outliers are quasars and all imputed
outliers (quasars) are in the top 200 list. The same behavior is
observed when we choose other classes as the outlier class, as
shown in the top right and bottom panels of Figure 7.

6.2. Running on the Whole Data Set

Once we tested the accuracy of our method, we trained an RF
(F-score = 0.9080) with the complete training set and learned
a new BN. The same parameters of the performance test were
used in this stage.

We ran our model on the whole MACHO data set (about
20 million light curves) to obtain a list of outlier candidates.
Fortunately, the main computational cost of the algorithm occurs
during the training phase, for which the model needs to build the
RF and learn the BN structure and parameters. After training
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Figure 6. Stacked plot of the outlier score distribution for the performed test.
Each layer represents the outlier score distribution of the objects of a class (blue
lines show the training set classes and the red line the outlier class). The y-axis
scale for each layer goes from 0 to 1, but it was removed for visual clarity.

(A color version of this figure is available in the online journal.)

the model, performing the inference for a light curve takes a
fraction of a second and can easily be repeated.

6.2.1. Removal of Spurious Outliers

Figure 8 shows some of the outliers we obtained from this
first iteration. The top left and right outliers in Figure 8 are
characterized by having one-day periods, while the bottom right
has a period of approximately a year. This is probably caused by
MACHO’s nightly and seasonal observational pattern and not
by an intrinsic anomalous behavior. We also faced other kinds
of artifacts, like the outlier in the bottom left panel of Figure 8,
which is obviously due to some instrumentation problems—this
behavior at the beginning of the light curve appeared in many
light curves.

In order to remove the spurious outliers, we perform the
following steps.

1. Filter all outlier candidates that have periods very close to
a sidereal day or a year. There is no doubt that those light
curves exhibit strange behavior owing to variable seeing
conditions during the night or seasonal aliases.

2. We run the entire analysis in the MACHO red nonstandard
bandpass. MACHO was observed in two bandpasses simul-
taneously, and therefore there are corresponding red-band
light curves for each object. For every outlier candidate that
is not in the top 20,000 list of the equivalent list in the red
candidate list, we consider it as an artifact/spurious and
therefore remove it from the candidate list.

3. We visually inspect all candidates and group those that
are obviously spurious, like the examples in Figure 8, into
groups of similar shapes and behaviors. We add these new
classes to the training set, retrain, and then predict outliers
again as explained above.

4. Repeat previous steps until finding no artifacts on the top
outlier list.

We expect that once we filter the artifacts, the true outliers
will be the only ones remaining.
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Figure 7. Performance test results for quasars, eclipsing binaries, and Be stars
as outliers. The dashed line represents the ideal result, where the class left out
uses the top positions in the outlier list. Gray squares show the actual positions
obtained.

7. POST ANALYSIS

As a first step, we visually inspected all the candidates
starting from the top of the list (“strongest” outliers) and moving
our way to the “weakest” outliers. We determined that about
4000 candidates was a good number of candidates to start,
since candidates beyond this point either were not showing any
significant variation or had low signal-to-noise ratio (S/N) and
therefore were not interesting.

As a second step, we cross-matched our candidates with
other astronomical catalogs of known types, or catalogs with
additional contextual information. Some of these catalogs are
collections of known types; for example, LMC Long Period
Variables (Fraser et al. 2008) is a collection of long-period
variables from LMC. On the other hand, catalogs like XMM-
Newton (Watson et al. 2009) contain X-ray information, which
can be useful to further understand the nature of the candidates.
Having additional information for some of the outlier candidates
could be helpful to identify the nature of these objects. Table 3
summarizes all the catalogs used in the analysis and the resulting
cross-matched numbers (Nx-matched).

The fact that some of the outlier candidates appear in catalogs
of known objects, as is shown in Table 3, could be explained by
the following reasons.

1. Known classes with a small number of objects were not
included in our original training set (i.e., cataclysmic
variables, R Coronae Borealis, etc.). Since these are rare
classes, we were expecting to find more objects of their
kind.

2. The objects in these catalogs were mislabeled or incorrectly
classified. Many of these catalogs are guided by algorithms
or done automatically, so unavoidably they contain errors.
Even when humans are involved in the classification,
biases are always present. These “errors” should present
themselves as outliers in our final analysis. Indeed, 45 of our
outliers that were labeled as eclipsing binaries, Cepheids,
or RR Lyrae in other catalogs do not have the characteristics
or the light curve shapes of these classes and therefore were
flagged as outliers.

3. The features considered in this work and the features used
by the other catalogs are not consistent. For example, the
period of MACHO_77.7428.190 is 906.3559 days, while
in Soszynski et al. (2008) it is 0.2843359 days. Because
of this, this light curve does not appear to be an RRL in
our model, and therefore it is identified as an outlier. It is
known that uncertainties in features could result in low-
quality classification and consequently erroneous outlier
predictions. Dealing with feature uncertainties is a topic of
future work.

4. The S/N of the light curves is survey-dependent, and
therefore features that depend on the actual amplitude of
the variability vary from catalog to catalog. For example,
if a catalog is compiled using a survey that is more
sensitive than ours, the fainter objects are indistinguishable
from the nonvariables in our database even if it is a true
known variable. Moreover, as described above, low-S/N
light curves have uncertain features and therefore higher
probability of being false positive.

Most of these reasons can be attributed to the lack of a perfect
training set and high-quality features. Because our method is
based on a supervised classification, the results depend heavily
on the choice of these representative objects. In an ideal scenario,
one would compile a training set that contains every possible
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Figure 8. Top left panel: one-day period artifact MACHO_77.7187.271; top right panel: one-day period artifact MACHO_79.4780.358; bottom left panel: sampling
artifact MACHO_5.5010.986; bottom right panel: 370 day period MACHO_49.5899.715.

Table 3
Catalogs Used for Post-analysis

Catalog Reference Number of objects in catalog Nx−matched

LMC LPVs from MACHO Fraser et al. (2008) 56,453 52a

XMM-Newton Watson et al. (2009) 262,902 13
ROSAT All-Sky Bright Source Catalogue (1RXS) Voges et al. (1999) 18,806 2
LMC Blue variable stars from MACHO Keller et al. (2002) 1280 91
OGLE eclipsing binaries in LMC Wyrzykowski et al. (2003) 2720 29
OGLE RR Lyrae in LMC Soszynski et al. (2003) 7661 8
LMC Cepheids in OGLE and MACHO data Poleski (2008) 2946 8
OGLE+2MASS+DENIS LPV in Magellanic Clouds Groenewegen (2004) 2919 9
Variable Stars in the Large Magellanic Clouds Alcock et al. (2004) 21474 334
Machine-learned ASAS Classification Cat. (MACC) Richards et al. (2012) 50124 5
QSO Candidates in the MACHO LMC database Kim et al. (2012) 2566 51
EROS Periodic Variable Candidates Kim et al. (2014) 150,115 432
Type II and anomalous Cepheids in LMC Soszynski et al. (2008) 286 19
OGLE Variables in Magellanic Clouds Ita et al. (2004) 8852 134
GCVS, Vol. V.: Extragalactic Variable Stars Artyukhina et al. (1996) 10979 74
High proper-motion stars from MACHO astrometry Alcock et al. (2001) 154 0

Note. a 52 were types 0, 9, or no types in this paper.

Table 4
The Others: Examples of New Variability Classes and Individual Outliers

Class MACHO id R.A. Decl. Period [days] V R Color S/N

Class A 82.8887.471 5.59031 −69.2956 657.19 19.78 19.28 0.49 1.53
Class A 82.9009.834 5.59633 −69.2722 525.75 20.25 19.71 0.536 2.38
Class A 82.9009.1850 5.59655 −69.2762 525.75 21.04 20.96 0.08 1.66
Class A 82.8887.2395 5.59106 −69.2954 876.25 21.04 21.20 −0.16 1.59

Class B 56.5178.29 5.19911 −66.5471 363.00 16.50 17.02 −0.51 4.44
Class B 44.1616.257 4.84559 −70.0673 871.32 16.23 16.704 −0.47 3.84
Class B 35.7272.13 5.42992 −72.127 374.98 16.23 16.70 −0.47 5.63
Class B 48.2864.67 4.96026 −67.5326 872.94 17.00 17.53 −0.52 2.98
Class B 82.8284.126 5.51805 −69.202 438.12 17.56 17.61 −0.04 2.34

Class C 17.2711.26 4.9556 −69.6723 680.70 15.41 15.87 −0.46 9.14
Class C 82.8283.41 5.5218 −69.2594 525.75 15.07 15.66 −0.59 8.53
Class C 62.7361.30 5.4249 −66.2181 848.30 16.38 16.65 −0.27 5.44

Individual Outlier 13.5835.11 5.2742 −71.0974 296.98 14.85 15.21 −0.36 51.52
Individual Outlier 18.2478.9 4.9342 −69.0323 226.90 14.76 15.23 −0.46 36.69
Individual Outlier 78.6462.561 5.3366 −69.6743 678.95 18.11 17.91 0.20 7.02
Individual Outlier 62.7241.19 5.4114 −66.1581 636.23 16.16 16.34 −0.18 52.51
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Figure 9. Top panel: eclipsing Cepheid MACHO_6.6454.5; bottom panel: its
folded light curve.
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Figure 10. Nova-like variable MACHO_77.7546.2744.
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Figure 11. Blue variable MACHO_81.9727.662.

known object with high-quality features. In our case, we started
with a trustworthy training set that was missing some of the
known but rare types. This served as a blind test, since some of
these types were never presented to the method, never trained
with them, and therefore should have been discovered by our
method. As expected, we recovered most of these objects in the
candidate list.

As a third step, we examined the color–magnitude diagram
(CMD) of the candidate list and identified regions where objects
were most likely from a known type. One of the advantages of
the LMC is that all stellar populations are at essentially the same
distance, and thus we can use CMDs as an additional way to
separate and identify the sources. Figure 14 shows the CMD for
the outliers.

As a fourth step, we grouped the outliers into sets based
on the morphology of the light curves. Here we present the
most interesting subgroups, some of which are known but rare
classes, while others do not obviously belong to any known class
of objects.
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Figure 12. X-ray binary MACHO_61.9045.32.
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Figure 13. R Coronae Borealis MACHO_6.6696.60.

1. Eclipsing Cepheid: Eclipsing Cepheids have been dis-
cussed in papers of the MACHO, OGLE, and EROS-2 sur-
veys (Alcock et al. 2002; Marconi et al. 2013; Cassisi &
Salaris 2011). These objects are Cepheids in binary systems
where there are flux drops during the pulsating cycle caused
by the transit of a companion star. Although it is known that
50% of Galactic Cepheids are in binary systems, only about
20 such Cepheids are known in the LMC, which is mainly
due to their faint magnitudes caused by the distance to the
LMC. Recently, Pietrzyński et al. (2010) have used such
a system to limit the distance uncertainty to the LMC, so
finding such systems is very valuable for precision cosmol-
ogy. By simply looking through our catalog of outliers, we
found few objects of this kind. Figure 9 shows one of these
examples.

2. Cataclysmic Variables (CVs): Another interesting group of
outliers are CVs, novae, or novae-like-looking objects. Be-
cause there are no unified variability characteristics, this
group was not included in the training set, and therefore
there are few CVs in our candidate list. These objects
can increase more than 20 mag, becoming approximately
108 times brighter. Novae and recurrent novae are close
binary systems that are variable owing to explosions on
their surfaces. The eruptions can last from a few days
to almost a year and can be quasi-periodic as the recur-
rent novae (Schaefer 2010; Knigge 2011). This is a sub-
ject of extensive research, and recently the interests fo-
cused on superluminous supernovae (Quimby et al. 2011).
Figure 10 shows MACHO_77.7546.2744, one example of
this class, where the change in magnitude is 2.5 and the
relaxation time is about a year. Our candidate list con-
tains a few dozen of these objects; nevertheless, some of
them are already known, such as those presented in Shafter
(2013).

3. Blue Variables: the class coined blue variables is a generic
class without a unified light curve morphology or features.
Because of this, we did not include such a class in the
training set. Keller & Wood (2002) proposed that the
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Figure 14. CMD of all the outliers. The outlier rank is indicated by the color of each data point. The bluer, the higher the outlier score. Black boxes mark the location
of blue main sequence (BMS), lower red giant branch (LRGB), long-period variables (LPV), RR Lyrae (LLR), and Cepheid (CEPH).

(A color version of this figure is available in the online journal.)
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Figure 15. Top left panel: Class_A MACHO_82.8887.471; top right panel: Class_A MACHO_82.9009.834; bottom left panel: Class_A MACHO_82.9009.1850;
bottom right panel: Class_A MACHO_82.8887.2395.
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Figure 16. Left panel: Class_B MACHO_56.5178.29; right panel: Class_B MACHO_44.1616.257.

variability of these stars is the result of processes related to
the establishment, maintenance, and dissipation of the Be
disk. The emission that characterizes Be stars originates in a
gaseous circumstellar quasi-Keplerian disk. These objects

appear to be blue and are simply variable. Sixty-eight of
our candidates fall into this category. An example of such
a light curve is shown in Figure 11, and the locations of all
the members in the CMD are shown in Figure 14.
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Figure 17. Left panel: Class_C MACHO_82.8283.41; right panel: Class_C MACHO_62.7361.30.
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Figure 18. Top left panel: outlier MACHO_13.5835.11; top right panel: outlier MACHO_18.2478.9; bottom left panel: outlier MACHO_78.6462.561; bottom right
panel: outlier MACHO_62.7241.19.

4. X-ray Sources: there are 2 sources cross-matched with the
ROSAT all-sky survey bright source catalog (Voges et al.
1999) and 13 with the second XMM-Newton serendipitous
source catalog (Watson et al. 2009). Among these X-ray
sources, MACHO_61.9045.32 is a confirmed high-mass
X-ray binary (Liu et al. 2005) hosting a radio pulsar (Ridley
et al. 2013), but the other 14 counterparts are not carefully
studied for their X-ray origins. These remaining objects
are interesting sources since they show strong optical vari-
ability, either periodic or nonperiodic, and X-ray emission
simultaneously. They could be either W UMa-type contact
binaries, X-ray binaries, or other types of X-ray emitters
(e.g., see Ness et al. 2002; Chen et al. 2006; Liu et al.
2007 and references therein). Particularly, X-ray binaries
are most interesting sources since they are known to host
either neutron stars or black holes (i.e., accretor) together
with a companion star. Their X-ray emission is caused by
accreting material falling from the companion star into the
accretor (van den Heuvel et al. 1992; Done et al. 2007).
Thus, studying X-ray binaries helps us to understand the
process of accretion and the fundamental physics of the
binaries such as mass, radius, orbit, and jets (e.g., see van
der Klis 2000; Fender et al. 2004). Figure 12 shows one
representative example.

5. R Coronae Borealis: within our outliers we identified one
object belonging to one of the most rare and interesting
classes among the variable stars. MACHO_6.6696.60 is
an R Coronae Borealis star. These kinds of objects are
yellow supergiant stars whose atmospheres are carbon-rich
and extremely hydrogen-deficient. This causes irregular

intervals of dust-formation episodes that result in a drop
in brightness of up to 8 mag in a short period (Clayton
1996). An example of this type of light curve is shown in
Figure 13.

6. The Others: undoubtedly, there are many variable classes,
and it is out of the scope of this work to analyze and
comment on every outlier from our list. Our goal was to find
novel objects that have not been identified before. For this
end, we first ran a clustering algorithm on all the candidates,
then visually inspected all the light curves that are not in the
categories mentioned above, and identified a few classes
of objects and a few individual objects that could not be
assigned to known classes. We show three classes and four
individual outliers in Table 4, in Figures 15, 16, 17, 18, and
also in the CMD in Figure 14.

Nevertheless, we had to perform a more specific analysis for
outliers in Class A. We noticed that the objects belonging to
this class are neighbors (they are located in the same field,
number 82), and therefore it is likely that the perturbation
on the light curves was caused by a high-proper-motion
star moving close to these sources. In order to confirm or
reject this hypothesis, we calculated the distance between
these objects and the time differences of the peaks of
the variation. The time difference of the variation was
on average 400 days, but the objects were ∼100′′apart.
Since typical proper motions are less than a few arsec per
year, the hypothesis was rejected. Objects of Class A are
consequently good candidates to conform a new variability
class.
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8. CONCLUSIONS

The generation of precise, large, and complete sky surveys
in recent years has increased the need of developing automated
analysis tools to process this tremendous amount of data. These
tools should help astronomers to classify stars, characterize
objects, and detect anomalies, among other applications. In this
paper, we presented an algorithm based on a supervised classifier
mechanism that enables us to discover outliers in catalogs of
light curves. To do so, we trained an RF classifier and used a
BN to obtain the joint probability distribution, which was used
for our outlierness score. Different from existing methods, our
work comprises a supervised algorithm where all the available
information is used to our advantage.

Since the amount of data to be processed is huge, one
could have expected a high computational complexity and the
overtaking of the resources. Nevertheless, our algorithm is only
expensive in the training stage and is extremely fast in the
unknown light curve analysis, allowing us to explore very large
data sets. Furthermore, our method is not only restricted to
astronomical problems and could be applied to any database
where anomaly detection is necessary.

The results from the application of our work on catalogs
of classified periodic stars from the MACHO project are
encouraging and establish that our method correctly identifies
light curves that do not belong to these catalogs as outliers.

We have identified light curves that were artifacts because
of instrumental, mechanical, electronic, or human errors and
about 4000 light curves that emerged as intrinsic. After cross-
matching these candidates with the available catalogs, we found
known but rare objects among our outliers and also objects that
did not have previous information. By performing a clustering,
we classified some of them as new variability classes and others
as intriguing unique outliers. As future work these objects will
be followed up using spectroscopy in order to characterize them
and identify them with new observations. We hope that by doing
this analysis we would be able to find more of these objects and
turn our isolated outliers into new known variability classes.

On the other hand, we are planning to improve our algorithm
in the future by creating new robust features and by constructing
a more complete and large training set. Furthermore, we aim
to apply our algorithm to different large sky surveys such as
EROS (Ansari 2004), Pan-Starrs (Hodapp et al. 2004), and,
when finished, LSST (Tyson et al. 2002).

Finally, in order to help astronomers, we are planning a
full release of software that will include feature calculation
of the light curves and the application of our algorithm as a
downloadable software and as an online tool and web services
in the near future.
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