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ABSTRACT

We present an algorithm that allows fast and efficient detection of transits, including planetary
transits, from light-curves. The method is based on building an ensemble of fiducial models
and compressing the data using the MOPED compression algorithm. We describe the method
and demonstrate its efficiency by finding planet-like transits in simulated Panoramic Survey
Telescope & Rapid Response System (Pan-STARRS) light-curves. We show that our method
is independent of the size of the search space of transit parameters. In large sets of light-curves,
we achieve speed-up factors of the order of 10% times over an optimized adaptive search in
the x2 space. We discuss how the algorithm can be used in forthcoming large surveys like
Pan-STARRS and the Large Synoptic Survey Telescope (LSST), and how it may be optimized
for future space missions like Kepler and COROT where most of the processing must be done

on board.
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1 INTRODUCTION

If the orbit of a planet around a star is so favourably inclined that
sin(i) ~ 1, the planet will transit the disc of the star once per orbit.
During the transit, the observed flux from the star is reduced by the
ratio of the areas of the planet and the star, typically ~1 per cent for
a Jupiter-like planet around a Sun-like star. When this photometric
dimming is observed to repeat periodically, a small-radius compan-
ion may be inferred to exist. This effect is seen in star HD 209458
(Charbonneau et al. 2000), which was first identified as a planetary
system using the radial velocity technique. The added value of the
detection of transits is significant: not only is the sin(i) ambiguity
resolved, but the radius of the planet may be inferred, and spectro-
scopic examination of the object during transit allows the study of
the atmosphere of the planet (Charbonneau et al. 2002).

The transit technique to search for planets has some advantages:
photometry is less costly in telescope time than spectroscopy, and
one knows sin(i) for all the systems found this way. The major dis-
advantage is that the yield is comparatively low, since only systems
with sin(i) &~ 1 will be detected.

A large number of transit searches for extrasolar planets, both
space-based and ground-based, have been completed or are under
way (Gilliland et al. 2000; Mochejska et al. 2002; Udalski et al. 2002,
2003; Mallén-Ornelas et al. 2003). Many of these efforts employ
small-aperture, wide-field cameras to monitor tens of thousands of
nearby, bright stars. Of the surveys using this approach, the only
success to date has come from the Trans-Atlantic Exoplanet Survey
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(TrES), which recently announced the discovery of a planet dubbed
TrES-1 (Alonso et al. 2004). The only other success (albeit for
fainter stars where follow-up is more difficult) has come from the
OGLE survey (Udalski et al. 2002, 2003). The vast majority of
transits have been false detections resulting from grazing transits of
stellar companions or a blend of an eclipsing binary with a brighter
foreground or background star (Torres et al. 2004; Pont et al. 2005).
Some progress has been made at differentiating these from planets
(Hoekstra, Wu & Udalski 2005). However, the few candidates not
eliminated by follow-up studies, in particular OGLE-TR-56b with
its 1.2-d orbital period, further challenge our already revised models
of planet formation (Konacki et al. 2003).

The detection of a weak, short, periodic transit in noisy light-
curves is a challenging task. The large number of light-curves col-
lected makes automation and optimization processes a necessity.
This requirement is even stronger in the context of space missions,
where much of the processing must be done on board. A number
of transit detection algorithms have been implemented in the liter-
ature (Doyle et al. 2000; Defay, Deleuil & Barge 2001; Aigrain &
Favata 2002; Jenkins, Caldwell & Borucki 2002; Kovacs, Zucker &
Mazeh 2002; Udalski et al. 2002; Street et al. 2003; Drake & Cook
2004) and there has been some effort to compare their respective
performances (Tingley 2003).

Such transit searches are generally performed by comparing light-
curves to a family of models with a common set of parameters: the
transit period 7, the transit duration n, the epoch t (which is equal
to the time ¢ at the start of the first transit) and the transit depth 6.
The best set of parameters is identified by finding the model most
likely to have given rise to the observed data, i.e. the model with
the highest likelihood L. This is exactly the kind of problem the
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Massively Optimized Parameter Estimation and Data compression
algorithm (MOPED) (Heavens, Jimenez & Lahav 2000) was designed
to address. In particular, light-curves contain plenty of redundant
information: the light between transits. By using MOPED one can
weight more the part of the light-curve that is sensitive to the transit,
thus constructing one eigenvector for each of the parameters in the
transit model. However, for the case of transit detection in light-
curves, the MOPED eigenvectors are sensitive to the fiducial model,
and thus MOPED incorrectly overweights some data. In this paper
we present a solution to this problem by building an ensemble of
fiducial models. We find that, for each model in an ensemble of
fiducial models, there are many possible solutions. However, only
one solution is common to all models in the ensemble of fiducial
models: the one with the correct parameter values of the transit.
We construct a new statistical measure to determine for the set of
fiducial models the correct value of the parameters for the transit.
We also show that our algorithm passes the null test, i.e. it correctly
identifies a light-curve with no transit. The set of fiducial models
can be pre-computed, and we provide a recipe to do this. We show
that this needs to be done only once before the search for transits is
performed in a set of light-curves.

The speed-up in the analysis is significant. For a simulated light-
curve typical of the the Panoramic Survey Telescope & Rapid
Response System (Pan-STARRS), we find that our algorithm is
10% times faster than an optimized adaptive search in the x? space.
The speed-up is due to the fact that, using MOPED, the maximum-
likelihood search is performed on four data (the number of parame-
ters) instead of thousands, and that the ensemble of fiducial models
can be pre-computed. This achieved increase in speed to compute
the likelihood is important for transit analysis since the likelihood
surface has multiple maxima, of which only one is the desired solu-
tion, and therefore the search for this best solution needs to explore
the whole likelihood surface.!

This paper is organized as follows. In Section 2, we briefly de-
scribe MOPED. Section 3 presents the transit model used and how a
set of synthetic light-curves were constructed. In Section 4, we de-
scribe the extension of MOPED using an ensemble of fiducial models,
and we also present how the results should be compared to the null
hypothesis. Results are discussed in Section 5, and our conclusions
summarized in Section 7. In Section 6, we describe the numerical
topics, including a numerical recipe.

2 MOPED

We briefly review the parameter estimation and data compression
method MOPED, which was originally described in Heavens et al.
(2000). The method is as follows: Given a set of data x (in our case
a light-curve) that includes a signal part p and noise n, i.e.

xX=p+n, )]

the idea then is to find weighting vectors b,,, where m runs from 1
to the number of parameters M, such that

Ym =bpux )

contain as much information as possible about the parameters (pe-
riod, duration of the transit, etc.). These numbers y,, are then used
as the data set in a likelihood analysis, with the consequent increase

"'In surveys with high cadence and short observational period (e.g. TrES),
the likelihood surface is smooth and methods utilizing smart searches of the
likelihood surface are better suited.
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in speed at finding the best solution. In MOPED, there is one vector
associated with each parameter.

In Heavens et al. (2000) an optimal and lossless method was
found to calculate b, for multiple parameters (as is the case with
transits). The definition of ‘lossless’ here is that the Fisher matrix at
the maximum-likelihood point is the same whether we use the full
data set or the compressed version. The Fisher matrix is defined by

?InL
Fyp=—( ——- 3
o <aeaaeﬁ>’ ©)

where the average is over an ensemble with the same parameters
(04; 0p) but different noise. The a posteriori probability for the
parameters is the likelihood, which for Gaussian noise is

1

SN
1
xexp | = Z(x,- — m)C3 (= )| - “
L

The Fisher matrix gives a good estimate of the errors on the
parameters, provided the likelihood surface is well described by a
multivariate Gaussian near the peak. The method is strictly lossless
in this sense provided that the noise is independent of the parameters,
and provided our initial guess of the parameters is correct. This
is not exactly true because our initial guess is inevitably wrong.
However, the increase in parameter errors is very small in these cases
(see Heavens et al. 2000) — MOPED recovers the correct solutions
extremely accurately even when the conditions for losslessness are
not satisfied. The weights required are

C_I#,l

Vi C

C_I m = "‘:' /mb b
by = D (b)b ©)
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where a comma denotes the partial derivative with respect to the pa-
rameter m, and C is the covariance matrix with components C;; =
(n;n;), with i and j running from 1 to the size of the data set. To com-
pute the weight vectors requires an initial guess of the parameters.
We term this the fiducial model (¢;) and we discuss in Section 6 the
impact on the MOPED solution of the choice of the fiducial model.
For the case of transits, C does not depend on the parameters and
therefore the b,, depend only on the fiducial parameters (g¢). On the
other hand, p represents the signal part and thus depends on the free
parameters, which we denote by q.

The data set {y,} is orthonormal: i.e. the y,, are uncorrelated,
and of unit variance. The y,, have means

(ym) = bm(qf) : N(II) (7)

The new likelihood is easy to compute, namely,

b = (&)

and

S O = ()
In £(6,) = constant — Z %

m=1

constant — Z[b,,,(qﬂ x —bu(qy) - p@l. ®

m

Further details are given in Heavens et al. (2000).

It is important to note that, if the covariance matrix is known for
a large data set (e.g. a large synoptic survey) or it does not change
significantly from light-curve to light-curve, then the (y,,) need be
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computed only once for the whole data set, thus massively speeding
up the computing of the likelihood.

3 TRANSIT MODEL AND SYNTHETIC
LIGHT-CURVES

3.1 Transit model

For the transit analysis, we have constructed a model, p, that closely
represents the shape of a planetary transit light-curve. An obvious
and usually chosen approach is to use a square wave: u(t) = —1
for —1 <t < 1 and u(t) = 0 otherwise. However, in order to allow
for softer edges and being analytically differentiable, we used the
following function:

w;T,n,0,7)
= constant + %9{2 — tanh [c(t’ + %)] + tanh [c(t’ — %)] },
©
where 7' is given by
Y (T,n, 1) = M’ 10

]

T is the period, T is the epoch, 7 is the transit duration, 6 is the depth
of the transit and c is a constant.?

Applying the transit model to the MOPED framework, one needs
to calculate the b weight vectors (equation 6), which depend on
the derivatives of the model p [the derivatives of equation (9) with
respect to the four parameters T, 6, n and t]. These derivatives can
be analytically calculated and thus are computationally inexpensive
since they do not require conditional statements.

3.2 Synthetic light-curves

In order to test our method and estimate the gain in speed, we cre-
ated a sample of synthetic light-curves by setting the four free pa-
rameters to realistic values and generating magnitudes according
to equation (9) with Gaussian noise added to simulate real light-
curves better. We adjusted the Gaussian noise to achieve desirable
signal-to-noise ratio (S/N) values.

We simulated observational sampling patterns from Pan-
STARRS (one observation every 10 min, four times a month) and
generated magnitudes as described in the equation

x(t:;T,n,0,7t) = w(t;;T,n,0,7) +ny, (11)

where t; are the observational times and n; is a Gaussian noise
obtained from Pan-STARRS photometric accuracy of 0.01 mag.
Fig. 1 (top panel) shows a typical synthetic light-curve with period
1.3dand S/N =5.

4 EXTENSION TO MOPED USING
AN ENSEMBLE OF FIDUCIAL MODELS

Unlike the case of galaxy spectra (Heavens et al. 2000), the fiducial
model will weight some data high, very erroneously if the fiducial
model is way off from the true model. This is because the derivatives
of the fiducial model with respect to the parameters are large near
the walls of the box-like shape of the model.

2 The constant ¢ controls the sharpness of the edges. We used ¢ = 100 for
all calculations in this work.
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Figure 1. Top: Synthetic light-curve with transit signal: S/N ~ 5, period
T = 1.3 d, transit duration of n = 0.1 d, transit depth 6 ~ 0.01. Bottom:
Same synthetic light-curve folded with the right period 7 = 1.3 d. The folded
light-curve has not been used in any of the analysis and it is only shown here
for demonstration.

In this section we present an alternative approach to find the best-
fitting transit model to a light-curve. The method is based on using
an ensemble of randomly chosen fiducial models. For an arbitrary
fiducial model, the likelihood function (equation 8) will have several
maxima, one of which is guaranteed to be the correct solution. This
is the case where the values of the free parameters (g) are close
to the true one; thus p(g) in equation (8) is similar to x. For a
different arbitrary fiducial model, there are also several maxima,
but only one will be guaranteed to be a maximum, the true one.
Therefore, by using several fiducial models, one can eliminate the
spurious maxima and keep the one that is common to all the fiducial
models, which is the true one. We combine the MOPED likelihoods
for different fiducial models by simply averaging them.3

The new measure Y is defined as

1
Y@ =3 D L@, (12)

{q1}

where ¢ and ¢ are the parameter vectors {7, n, 6, t} and their
fiducial values {T', ny, O¢, ¢} and Ny is the number of fiducial
models. The summation is over an ensemble of fiducial models
{q:}. L(g;q,) is the MOPED likelihood (equation 8), i.e.

InL(g:q) =Y [bu(@) - bu(ga) - x —bu(gp) - @ (13)

m

Fig. 2 shows Y as a function of period T for different size sets of
fiducial models for a synthetic light-curve with S/N = 3 and 2000
observations. The top panel shows the value of Y using an ensemble
of three fiducial models. As can be seen from the figure, there are

3 This is chosen ad hoc. We have tried other approaches, all of which work
similarly well. Averaging turned out to be the functional form in which the
error and confidence level of the measurement could be easily and analyti-
cally calculated.
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Figure 2. Plots of Y as a function of period 7 for a set of fiducial models
for a synthetic light-curve with S/N = 3 and 2000 observations and 7 = 1.3
d. The top panel shows the value of Y using three randomly selected fiducial
models, the middle panel using 10 and the bottom using 20. As the number
of fiducial models used increases, the number of minima decreases. At N
= 20 there is only one obvious minimum at 77 = 1.3 d.

more than a few minima. Using an ensemble of 10 fiducial models
(middle panel) reduces the number of minima. In the bottom panel
we used an ensemble of 20 fiducial models, and there is only one
obvious minimum, the true one.

Fig. 3 shows the value of Y as a function of each free parameter for
a synthetic light-curve. We set the values of three of the parameters
to the ‘correct’ values (used to construct the light-curve) and we
left the fourth free for each panel. Note that the shape of Y as a
function of n, 6 and t is smooth; however, the dependence on T'
is erratic, suggesting that efficient minimization techniques are not
applicable.

4.1 Confidence and error analysis

To determine confidently that the minimum found is not spurious,
the likelihood of the candidate solution must be compared to the
value and distribution of Y derived from a set of light-curves with
no transit signal. One can simulate a set of null light-curves and
build a distribution by calculating the value of Y for each point in
the parameter space for each simulated ‘null’ light-curve — a very
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expensive computational task. Alternatively, this null distribution
can be analytically derived.

Since x ~ N({x), o,) and all other variables are deterministic,
then it can be shown that Y(g) follows a non-central X% distribution
Y(q) ~ X*(r, ), where r is the number of degrees of freedom and
A is distribution Y (q) ~ X%(r, A), where r is the number of degrees
of freedom and X is the

w=r+A (14)
and
0% =2(r +2), (15)
where r = 4 and A is given by

E?[X]
A= . 16

var[ X'] 6)
The square of the expectation value is

2
E*[X] =Y [()Bu(g) — Du@:90)] (17)
where we define
Bug) = b0, (18)
t
and
Dm(q;q(') = bm(ql') : IL(Q), (19)
the variance is given by
varlX] = var | "bo(@) - x — Y bu(gy) - (@)
m m
=D Ibug)l varlx']
= szﬂm (q (‘) (20)
and where we define 8,,(¢g¢) to be
ﬂm(qr) = bm(ql') : bm(qr)- (21)
Combining the above equations we get
Bm ) T D» sqy 2

e D oul(x) Bulgy) (q:9,)] 22)

sz ﬂm (qf)

To compute confidence levels for a particular Y, we integrate a non-
central X2 distribution with non-centrality given by equation (22)
from Y(g) to infinity. This is done numerically; still, this is a very
quick operation. Furthermore, as we will show in Section 6, this will
only be performed a few times per light-curve.

Fig. 4 shows the values of Y(T) for the null case (i.e. a light-
curve without a transit) both simulated (crosses) and theoretically
calculated using the equations above (solid line is the expected value
and dotted line is the 80 per cent confidence level). It is clear that
the simulated values agree well with the theoretical ones. Note that,
because the confidence can be calculated analytically, we do not
have to simulate null light-curves and recalculate the Y for each
light-curve, thus gaining computational speed.

5 RESULTS

Fig. 3 shows the results of likelihood as a function of each parameter
using a typical synthetic light-curve. The above searches were per-
formed only in one parameter at a time; regardless, we successfully
recover the true values for the parameters of the transit.
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Figure 3. Likelihood as a function of period T (top left), transit duration # (top right),  (bottom left) and t (bottom right). In all parameters the correct value is
found (we used 20 fiducial models). Note that for 7' the topology of the likelihood surface is fairly complicated, with many local minima, thus making efficient

minimization techniques not applicable.
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Figure4. Valuesof Y(T')for the null case (i.e. a light-curve without a transit)
both simulated (crosses) and analytically calculated (see Section 4.1) (solid
line is the expected value and dotted line is the 67 per cent confidence level).
It is clear that the simulated values agree well with the theoretical ones.

In Fig. 5 we show the value of Y as a function of period for
synthetic light-curves with a transit of 1.28 d. The run was done
using 40 fiducial models. The different panels show different values
of S/N. The dotted line shows the 80 per cent confidence level. For
all four cases there is a well-defined minimum at the right period,
where the minimum is below the 80 per cent level for S/N as low
as 5 and at 71 per cent for S/N = 3.

The more realistic case is to perform the search in the four param-
eter spaces simultaneously and show that our method successfully

recovers the ‘correct’ values of 7, n, 6 and t for a sample of synthetic
light-curves. This is shown in Figs 6, 7 and 8, where the 2D pro-
jections of the four-dimensional search are presented. The different
contours correspond to 50, 65 and 80 per cent confidence levels. It is
worth commenting on the ‘multiple’ maxima in the likelihood. This
feature also appears in the one-dimensional search: multiple minima
appear at multiples of the true period, but note that the best-fitting
model is still the true period only (at the 50 per cent confidence level
the other solutions are excluded). This behaviour is expected since,
when the period is allowed to be a multiple of the true one, one out
of n (n is an integer) transits will fit and therefore will produce a
better fit than the null case. These multiple solutions can be easily
excluded by keeping the shortest period. This only occurs for T’ the
other parameters have only one well-defined minimum at the true
value.

5.1 Application to multiple light-curves

After having shown that our algorithm works properly on sev-
eral synthetic light-curves, we now explore the performance of the
method for a wide range of values for T, 6, n and t. In particular,
we have simulated light-curves for 0.1d < T < 4d, 1 percent <
n < 5percent of the period, 0 < < T, Rpjanet/ R+ ~ 0.1 and 12 <
V < 24. The observation frequency of the light-curve is similar to
that of a Pan-STARRS light-curve. This space parameter and obser-
vation frequency should cover the range of light transit observations
expected from surveys like Pan-STARRS* and the Large Synoptic
Survey Telescope (LSST).?

4 http://pan-starrs.ifa.hawaii.edu
5 http://www.lsst.org
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Figure 5. The value of Y as a function of period for a synthetic light-curve
with a transit at 1.25 d. The various panels show different values of S/N.
Note that there is a well-defined minimum at the right period. The dotted
line shows the 80 per cent confidence level. Note that at this level there is
only a single minimum at the right period even for S/N as low as 5.

We have simulated 100 light-curves with S/N = 5. For each
light-curve we estimated the likelihood Y (g ) for the ensemble of
fiducial models and then we calculated the confidence that this value
is not a spurious detection. Fig. 9 shows the distribution for these

© 2005 RAS, MNRAS 362, 460-468

Fast transit identification 465

RN I
0.05 F : LI
WON: : i
% 0.04F T
T 003k i !
s 0.03¢ : b

E |: !
0.02 i .

1.0 1.5 2.0 2.5

T/days

Figure 6. Projection of the four-dimensional likelihood surface on the two-
dimensional space n—T'. Note that contours close around the right period and
that they appear at multiples of the right period as happens for the one-
dimensional case (see text for more details).
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Figure 7. Same as Fig. 6 but for parameters 0 and 7.
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Figure 8. Same as Fig. 6 but for parameters 6 and 7.

confidence values. Two histograms are shown: the dotted one is for
curves with a total of 2000 observations (about 1 yr); the thick solid
one is for the case when the range is doubled to 4000 measurements
(2 yr). For the higher number of observations, there is a significant
increase in the confidence of recovering the true period. For this
case, most transits (80 per cent) are found with confidence over the
null case higher than 70 per cent, i.e. for all stars the recovered pe-
riod T has a confidence greater than 70 per cent of being the correct
one. In about 25 per cent of cases the confidence in recovering the
true period is greater than 90 per cent. For the case of 2000 mea-
surements, the success rate is somewhat lower. This is because the
error on the estimated parameters depends on the number of obser-
vations. For 6, n and 7 this depends on the number of observations
in the transits. However, for T this depends on the number of transits
observed. One can show that the probability of observing a single
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Figure 9. Distribution function for the confidence of finding the true period
T for a set of 100 simulated light-curves with S/N =5 for the range of values
of transit parameters described in Section 5.1. Two sets of 100 light-curves
have been simulated: a set where the number of measurements per light-
curve is 2000 (dotted line) and another with 4000 measurements (solid line).
Note that for the 4000 measurements case most 7" values are recovered with
confidence higher than 80 per cent and that for about 30 per cent of the
simulated light-curves the confidence in recovering the true period is greater
than 90 per cent.

transit is proportional to n/T, though the probability of observing
multiple transits is smaller. Furthermore, it also depends on the ir-
regularity of the observational times (the more irregular the times,
the better the chance of recovering the signal).

6 NUMERICAL METHOD

The real advantage of the present method lies in the fact that for a set
of light-curves most of the work can be done once in calculating the
fiducial models. In this section we describe the numerical approach
in more detail and we present the numerical gain over the brute-force
calculation using the full X2

6.1 Calculations of the fiducial models

The second term of equation (13) does not depend on the actual light-
curve data x. Therefore, D,,(q+; q), b}, (q¢) and qqy; qq), b!,(q,) and
stored in files. Thus for each light-curve we only need to calculate
Z[ bl (q)x', whichis independent of the search parameter ¢. This is
amajor advantage of our method. Before we describe the numerical
steps in more detail, we need to address how we choose the fiducial
models and how many fiducial models are needed.

6.2 Choice of fiducial models

There are three questions that we need to address about the choice
of fiducial models.

(1) Number of fiducial models. Since the confidence level can
be calculated at each iteration step, the number of fiducial models
does not need to be predetermined. If there is only one solution at

confidence larger than 70 per cent, that parameter is considered to
be the correct value and the iteration is stopped. Yet, for light-curves
with low S/N the actual solution may never exceed that threshold.
Therefore, we imposed a maximum of 100 fiducial models. Besides,
for a typical survey there will be only a few expected light-curves
containing a transit signal. Thus for most cases the iteration will be
terminated at the 100 fiducial model limit.

(ii) Choice of fiducial parameters. It is simplest in finding the
true solution to sample the parameter domain uniformly.

(iii) Choice of search parameters q. Despite the fact that D,, will
be calculated only once and it will not contribute to the overall
computational burden of finding transits in a set of light-curves, the
size of the data base (files) that stores the fiducial model information
depends heavily on the choice of the free parameters range and grid
size. This is mostly important for

As can be seen from Fig. 3 (top left panel), finding the ‘correct’
period where there is a non-linear dependence of the model on the
period is a most difficult task. This is due to the fact that a small
change in the value of period T produces a huge variation at the tail
of the light-curve.

Theory suggests that the asymptotic standard deviation of the
estimate of the period is of the order of T%/3, so the grid should
be that small too. We therefore performed the search on a uniform
grid in frequency, T~ rather than on a uniform grid in T. There
is also a related question of how fine the search grid should be for
n and t. Since for data folded at period 7, the folded observation
times are roughly uniform, the average spacing of subsequent folded
observations is T/N (N is the total number of observations); thus
T/N is a natural choice for the grid size for the n and 7 searches.
However, the spacing of n/4 should suffice to pick up the local
minima, since the x2 surface will be correlated on this scale. For
a typical search the total number of searches can be as high as
10°, which translates to 1 TB of data. This is prohibitive for space
missions. In what follows we examine how to reduce the search
space further using physical and statistical arguments.

Transit length range

For a given period, one can allow 7 to take values between 0 and
T /2. This is a naive estimate based on the fact that the planet spends
half of the time in front of the star. The range of n can be further
limited using geometrical arguments and Kepler’s law. It can be
shown that the transit duration is (Sackett 1999)

n ~ (T /m)\/(R./a)* — cos?(i), (23)

where R, is the radius of the star, a is the orbit radius of the planet
and i is the inclination angle. The maximum value that n can take is
when the inclination angle i is zero. Using Kepler’s law the ratio of
duration over period is

- R . (24)
T 7l(T*GM,)/(dm?)]'/3

For a typical main-sequence star this yields n/T = 4 per cent for
periods of 1-2 d. The fraction gets smaller as the period increases,
resulting in a gain of a factor of 50 in computational time (compared
to the naive approximation /T < 1/2).

Longest period

Equation (24) can be used to determine the longest period that can
be recovered from the data. Namely, this is period at which the
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transit duration over the period is small enough that the probability
of observing more than a few occultations is insignificant. It can be
shown that for most inclinations the probability per data point of
observing an occultation is given by
n 1 R,

P=T=ma
This is basically the probability that an observation taken at random
orbital phase falls during a transit.

The probability of observing x occultations during the whole life-
time of the survey is given by a binomial distribution. At the limit
where the number of observations is large, the probability distribu-
tion becomes a Gaussian distribution

(25)

1 (x — p)?
P(x) = exp |————| 26
() = ——exp { s (26)
where p is given in equation (25). The mean value is given by
w=np, @7

and the standard deviation by

o =/np(l—p), (28)

where 7, is the number of complete transits T rang /T . The probability
of observing at least three transits is therefore given by the integral

1 °O — )
P(x>3) = W/ exp [—%} dx. (29)
3

For a typical main-sequence star, a planet with a period of 20 d has
a probability of observing 10 occultations that is less than a few per
cent. Using that as the upper limit to our search reduces the number
of iterations by a factor of 5-10.

6.3 Numerical recipe
The steps of the numerical method are described below:

(i) Select a set of fiducial models. The choice of the fiducial
parameters spans the domain of the search parameters.

(ii) Calculate D,,(q¢ ; q), b,(q¢) and B}, (gs) and sampling fre-
quency of the free parameters ¢ are according to the physical argu-
ments described above. Save values in a data base (binary files).

(iii) For each light-curve, calculate

Z brtn (q 1‘)xt :
t

(iv) Search through the fiducial models for D, (g ; ¢) with similar
values as

Z b)tn (q f)xr
t

from the previous step. Note that, since the data base is sorted with
respect to D, this is a log (N,) operation, where N, is the number of
free parameter values.

(v) Calculate Y for those parameters such that

berz(qi')xl — Dn(q::q)
t

is small.

(vi) Compute the confidence level for the selected g values using
equation (22). Note that since the D, B and B values are

(vii) Compute the confidence level for the selected ¢ values us-
ing equation (22). Note that since the D, B and $ values are pre-
calculated, we only need to compute (x).

© 2005 RAS, MNRAS 362, 460-468

Fast transit identification 467

(viii) If there is only one minimum with confidence level higher
than 70 per cent, exit.

(ix) If number of fiducial models is larger than 100, exit.

(x) Go back to step (iii).

6.4 Required number of operations
The brute-force minimization for the likelihood function requires

mew ~ Nobqu (30)

total

operations. The number of operations for our method after the fidu-
cial models are computed is

NM()PED+ ~ N()bsNﬁd~ (3 1 )

total

For a typical light-curve with low observing frequency like Pan-
STARRS in the four-dimensional parameter space, N, can easily
be 10'°. This number is large because of the non-linear dependence
of the period to the likelihood, and thus Ny ~ 100000 (see the
arguments above).

7 CONCLUSIONS

We have presented a new algorithm for fast and efficient detection
of transits in light-curves. Our algorithm produces a major speed-up
factor in light transit searches of about eight orders of magnitude,
compared to the brute-force method using the full x2. This trans-
lates into finding a transit on a light-curve with 10* observations in
well under a second on current desktop computers. We have devel-
oped a four-parameter model for the transit of an object and have
shown, using synthetic light-curves, that our algorithm is successful
at recovering the true parameters of the transit. We have simulated
a set of light-curves with the sampling rate and photometric ac-
curacy expected in large synoptic surveys like Pan-STARRS and
shown that for a large range in the values of the parameters (7', 7,
0, t) we recover the true values. For surveys like Pan-STARRS and
LSST it should be possible to detect transits by Jupiter-like planets
and planets several times the size of Earth. Since the expected de-
tection rate of transits in these large surveys is very low, only one
transit out of thousands of light-curves, we believe that our method
provides a fast and efficient algorithm to detect transits for future
surveys.
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