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ABSTRACT

The need for the development of automatic tools to explore astronomical databases has been recognized since the
inception of CCDs and modern computers. Astronomers already have developed solutions to tackle several science
problems, such as automatic classification of stellar objects, outlier detection, and globular clusters identification,
among others. New scientific problems emerge, and it is critical to be able to reuse the models learned before,
without rebuilding everything from the beginning when the sciencientific problem changes. In this paper, we
propose a new meta-model that automatically integrates existing classification models of variable stars. The
proposed meta-model incorporates existing models that are trained in a different context, answering different
questions and using different representations of data. A conventional mixture of expert algorithms in machine
learning literature cannot be used since each expert (model) uses different inputs. We also consider the
computational complexity of the model by using the most expensive models only when it is necessary. We test our
model with EROS-2 and MACHO data sets, and we show that we solve most of the classification challenges only
by training a meta-model to learn how to integrate the previous experts.
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1. INTRODUCTION

The scientific community is dealing with massive amounts of
digital information and astronomy is not an exception (see, for
example, Cook et al. 1995; Derue et al. 2002; Kaiser 2004;
Ivezic et al. 2008; Udalski et al. 2008). It is practically
impossible to analyze the vast amount of data, generated by
modern telescopes and surveys, without the help of machines.
This is done either with the use of simple algorithmic solutions
or machine learning approaches. A particular example of such
automatic methods is the automatic classification of variable
objects (Bloom & Richards 2011; Bloom et al. 2011; Richards
et al. 2011; Kim et al. 2012; Pichara et al. 2012; Pichara &
Protopapas 2013), which is the focus of this paper. Automatic
classification of variable stars makes it possible to speed
scientific discoveries through an initial labelling, thus allowing
astronomers to have a selection of light curves of interest for
further study and analysis. Many solutions in automatic
classification have been proposed (Butler & Bloom 2011;
Richards et al. 2011; Long et al. 2012; Pichara et al. 2012; Kim
et al. 2014). These models, called experts in this paper, classify
to a subset of possible classes, using a set of specific variables
(hereinafter called features) that represent the light curves. In
this work, we suggest that future models can take advantage of
those models in solving new challenges. As an example,
suppose that we have the following models.

1. A model that classifies objects in quasars and no-quasars,
trained with a specific set of features (Kelly et al. 2009;
Pichara et al. 2012; Kim et al. 2012).

2. A model that separates periodic from non-periodic
objects (Huijse et al. 2012; Protopapas et al. 2015; Kim
et al. 2014).

3. A general purpose classifier that can classify (with a bit
lower accuracy) many different variability classes
(Richards et al. 2011; Long et al. 2012; Pichara &
Protopapas 2013).

4. A model that classifies RR Lyrae (Gran et al. 2015) from
the rest.

5. A model that identifies microlensing and eclipsing
binaries (Belokurov et al. 2003).

Assuming we need to create a model that classifies RR
Lyrae, Eclipsing Binaries, Be stars, and quasars, it is apparent
that there is a lot of intersection between the new desired model
and the previous models we have. Therefore, we should be able
to solve our new challenge without the need to build a totally
new model.
The idea of mixing many different models is very old in

machine learning literature (Rasmussen & Ghahramani 1991;
Jordan & Jacobs 1993; Meir 1996; Breiman 2001; Kuncheva &
Whitaker 2003; Kuncheva 2007; Bishop & Svensen 2012;
Chamroukhi 2015). These approaches are guided by the
“divide and conquer” principle, in which each expert focuses
on a particular area of feature space. Most of the solutions
proposed from machine learning literature assume the same
context for each of the experts. In other words, they deal with
data represented in the same feature space (same variables
describing the data), and in most cases with the same set of
predicted classes. To the best of our knowledge, there is not a
mixture of expert solutions that combine all of the context
variants we mentioned before, together with the efficient
management of the computational complexity of the experts.
Our approach is based on the very simple idea of empirically

estimating how fitting a model is in a given scenario. In other
words, the best we can do in learning how to combine different
experts is to try them in different cases and evaluate their
results. This method allows us to avoid the need for the
understanding of the internal structure of the experts, which can
be very costly. Our approach first creates a meta-data set
containing all of the experts’ outputs obtained from the initial
training data set. We search for patterns in the classification
results and we model these patterns to predict the light-curve
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classes. This is the meta-classifier, which integrates the outputs
from the experts to make a final prediction.

The idea of studying model outputs has been used before,
but in different contexts, such as anomaly detection (Nun
et al. 2014) and measurements of diversity (Kuncheva &
Whitaker 2003).

Furthermore, the integration model has to be easily under-
stood and interpretable. It is not desirable to have a “black box”
that integrates the decision in an unknown and confusing way
because we cannot gain intuition on how the model is deciding
or how each expert is contributing to the final decision.
Decision trees are very suitable for simple decision patterns;
each node represents a question, and each directed edge
pointing out from a node represents an answer to the node.
There are many algorithms proposed to train a decision tree
(Quinlan 1986, 1993), but those algorithms just focus on
optimizing the classification accuracy rather than consider the
cost of each question done on each of the nodes.

There are many known techniques that aim to describe light
curves as vectors of real numbers (features) by trying to extract
the maximum information from light curves while maximizing
the classification performance. In a recent work, Nun et al.
(2015) presented an automatic tool that calculates more than 60
such features. Depending on the classification task, some
features are more useful than others, and some features are
more computationally costly than others. One example of
computationally costly features are the coefficients for a
continuous autoregressive model (Kelly et al. 2009; Pichara
et al. 2012). However, these features have been shown to be
helpful in differentiating quasars from other stars. Another
example is the correntropy kernelized periodogram (Huijse
et al. 2012), which has been used to classify periodicity classes.
Both kinds of features are more expensive than others, but both
present significant improvements on the classification tasks.

In our mixture of experts set up, each of the models solves
different problems using different features with different
estimation cost. The cost of classification from the mixture of
experts can be calculated. Every time we ask a model to
classify a given light curve, we know the features used by that
model, and we either empirically measure or estimate the cost
of each feature evaluation. Our meta-model deals with the
experts’ cost by minimizing the overall cost. Besides the
classification accuracy of each expert, the algorithm also
considers their cost.

This work is organized as follows. In Section 2, we present a
brief description of the current research in mixtures of experts
and related topics. In Section 3, we give all of the details of the
proposed methodology. In Section 4, we describe the
experimental results obtained in different tests with real data
sets. Finally, in Section 5, we discuss the main results of
our work.

2. RELATED WORK

There are dozens of different methodologies to improve
classification rates by combining the “expertise” of different
classifiers. This whole topic is known in the machine learning
community as ensemble learning or mixture of experts (Jordan
& Jacobs 1993; Bishop 2006). One of the earliest discussions
of ensemble learning appears in the work of Bazell & Aha
(2001), in which they combine different instances of the same
model via bootstrapping, train each classifier in a randomly

chosen sub-sample of the training set, and finally predict
through majority voting.
The work of Freund et al. (1999) introduces the Adaboost

algorithm, which combines classifiers in a cascade scheme. In
the cascade of classifiers, each model trains only with the
instances that the previous model predicted incorrectly. This is
achieved by tuning hyperparameters that control the false
positive rate and the minimum acceptable detection rate.
Unfortunately, this method works only for the two class
problem, though there are works that discuss extensions to
multi-classes (Lin & Liu 2005; Zehnder et al. 2008).
Although this ensemble method achieves good classification

rates, it cannot be applied to our problem. This is because the
combinations and the classifiers are trained together; classifiers
are not already trained. In our case, experts are already trained,
and we do not need to train them again. On the contrary, we
want to reuse previously acquired knowledge. Moreover, most
boosting methods assume that instances of each model are
represented through the same feature space (they use the same
features on every model), and the predicted classes for every
model are also the same. In our case, we use different features
for each model and different output classes.
In Faraway et al. (2014), similarly to our work, one of the

classifiers they consider is hierarchical. They first evaluate
whether or not the object is a transient and, depending on the
answer, they attempt to classify among the other classes. What
makes a big difference is that we propose a model that
automatically learns that hierarchy and is able to create
different hierarchical classifiers depending on the case. On
the other hand, Faraway et al. (2014) define a hierarchical
classifier where the structure is set by hand and there is no
learning process about that hierarchy.
A seminal work in the mixture of experts was proposed in

Jordan & Jacobs (1994). They create a hierarchy of base level
models that specialize in separate areas of the input space. On
each level of the hierarchy, each expert is combined by a gate
function that learns a model-combination function that varies
depending on the instance to be classified. The combination
function assigns a weight to each model in the final prediction.
In the original paper, this function is a multinomial distribution,
but there exist extensions using probability models from the
exponential family (Xu et al. 1995). Unfortunately, like most of
the current machine learning approaches in mixtures of experts,
this method is not helpful for our proposes because the gate
functions and the base models are all trained together to create
the effect of specialization/cooperation and, therefore, all of
the models must belong to the same problem context (features
and classes).
Another perspective of ensemble modeling, in the context of

meta-models, is the use of a technique called Stacked
Generalization (Wolpert 1992). In this framework, each base
model (or level-0 model, in the nomenclature of the cited work)
is “fed” with the data and the output of these models is
considered to be an input for a meta-model (level-1 model).
This essentially creates an Intermediate Feature Space
(Kuncheva 2004) where the second stage learning can be
performed. In the work of Wolpert (1992), this is referred as a
level-1 data set, and the level-0 data set is where the level-0
models are trained. This process can be repeated an indefinite
number of times. Intuitively, the meta-model objective is to
correct the bias of the base models (LeBlanc &
Tibshirani 1996).
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Rather than focus on work reutilization, most of the methods
mentioned above concentrate on the “divide and conquer”
principle and they do not consider cost, making them hard to
use in the framework we are addressing in this work.
Furthermore, to the best of our knowledge, there is no work
in the field of astronomy addressing the problem of how to
automatically combine previously learned models. We believe
that in the area of light-curve classification, automatic
integration can make important contributions, especially with
the continuous growth of data and models.

3. PROPOSED METHOD

We start by assuming that we have m already trained models
M M M, , , m1 2{ }¼ , where each model Mi corresponds to a light-
curve classifier. Each classifier Mi uses a specific set of features
FMi to represent the light curves and classifies each light curve
into a set CMi of possible classes. For example, M0 can
be a model that uses the features FM0={Amplitude,
Autocor− length, CAR− tau, FluxPercentileRatio}, and is
able to classify them into C QSO, RRL, Be, OtherMi { }= .
Besides having the already trained models M M M, , , m1 2{ }¼ , we
have a training set (DN), corresponding to the data associated
with the new classification problem, the one we need to solve
with the trained models.

3.1. Creation of the Prediction Data Set

The first step of the process is to create a (meta-)data set
containing the predictions of each model (DP) associated to
each of the light curves in DN. The main purpose of DP is to
have training data for the meta-model. To create DP, we just
run each of the trained models, getting their predictions on the
training set DN. Then, we save those predictions as rows in DP

together with the real class label of the light curve. Figure 1
shows an example of this process for three given models.

3.2. Meta-model Representation

After obtaining DP, we can build a meta-model that
efficiently mixes the decision of each of the previously trained
models. The meta-model has to act as a “director.” Every time

the meta-model receives a new query light curve, it has to
choose which is the first model to be used, then, depending on
the prediction of that model, select the next model, and so forth.
A natural representation of the meta-model is a decision tree
structured schema, where each node represents one of the
previously trained models Mi. Each of the edges pointing out
from each node represents one of the possible predictions made
from the model represented by the node, and leaves represent a
final prediction done by the meta-model. Figure 2 shows an
example with four models M M M M, , ,0 1 2 3{ }. The tree structure
meta-model first asks modelM2 to do the prediction. In the case
that M2 predicts a microlensing (ML), the meta-model
immediately predicts ML (reaches a leaf). In the case that
model M2 says Non-ML the meta-model asks model M3 for a
prediction. If M3 predicts Cepheid (CEPH), RR Lyrae (RRL),
or Eclipsing Binary (EB) the meta-model predicts according to
M3, but in the case that M3 predicts OTHERS, the meta-model
now asks M1 for a prediction, and so on. This kind of structure
is very suitable for what we need. It is very easy to understand,
uses a very well-known data structure from computer science
(very mature searching and traversal algorithms), and the most
important benefit is that it can be interpretable.

3.3. Automatically Building the Meta-model

After understanding the structure of the meta-model and how
it works, the central question is how do we build it? We
propose an algorithm that is mainly driven by the probability
that a given model correctly predicts the class of a light curve
and the cost of running that model. The likelihood that a model
correctly predicts the class of a given light curve can be
estimated from the training data (DP), and the cost of running
that model can be easily calculated from the cost of all the
features the model uses to represent the light curve.

Figure 1. Graphical description of the creation of model prediction data (DP).
We can see that starting from a set of labeled light curves (DN) we ask for each
model to predict the class of each of those light curves, then we record their
predictions as new rows in DP, generating a second data set later used to train
the mixture of models.

Figure 2. Example of a meta-model. Round nodes represent the previously
trained models, edges show which path to follow depending on the model’s
prediction, and square nodes represent the leaves that correspond to a final
prediction done by the meta-model.
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The meta-model learning algorithm is inspired by the
classical decision tree learning algorithm (Quinlan 1986, 1993).
Given a score that measures the quality of any node, the best
node is selected to be the root of the tree. Then, the algorithms
traverse down from each of the possible edges pointing out
from the root (possible predictions of the model associated to
the root) and recursively searches for the next best model. We
select the best model (M*) for a given node of the tree as
follows:

M
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where CM is the union of all possible classes predicted among
all models. Similarly, CM

v is the union of all classes predicted
across the models M M M M M, , , , , ,i i m1 2 1 1{ }¼ ¼- + when the
model Mi predicts v. In simpler words, H vclass( ∣ ) is the
entropy of the class column of DP selecting only the rows of DP

that match M vi = . Intuitively, the information gain tells us if a
model’s Mi predictions are good enough to separate among
possible classes, in the sense that if every time we instantiate
the model Mi to its possible predictions, we see whether the
uncertainty in the class column is reduced or not (entropy).
This concept is directly related to the probability of getting a
successful classification if the meta-model uses Mi to do the
final prediction.

The term E MCost i[ ( )] is the expected cost of a model,
estimated as follows:
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The term P ML i( ) indicates the probability that modelMi reaches
a leaf in the tree in the next step. In other words, how likely it is
that model Mi will be making a final decision (reaching a leaf).
Given that the decision tree algorithm creates a leaf every time
most of the remaining instances belong to the same class, to
estimate the probability of reaching a leaf, we need an indicator
of how good the model was after predicting a given class. This
is also related to the information gain of the model at that level
of the tree. To have valid probability values, we normalize the

information gain from 0, 1[ ] as
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The cost of model Mi ( MCost i( )) is calculated as the sum of
the features that model Mi uses to represent each light curve.
The second part of Equation (3) is basically the weighted sum
of every model, except for model Mi cost, where each weight
corresponds to the probability that the given model reaches a
correct leaf in the tree in the next step. Intuitively, Equation (1)
is finding the model whose cost is minimum and, at the same
time, taking the meta-model models to the right prediction.
We summarize the training and predicting steps of the meta-

classification process below.
Training:

1. For each new model Mi, create a new data column D iP [ ]
with the prediction of each model Mi over the
training data.

2. Build DP as a union of all the predic-
tions, D D i .P i

m
P1⋃ [ ]= =

3. Create the meta-training set, adding to DP a column with
the known class of each object (this is the same class
column included in DN).

4. Build the meta-model according to Section 3.3.

Predicting:

1. For any unclassified light curve x, start traversing the
meta-model tree from the root.

2. On each node Mi, extract the features FMi, go down the
tree according to the prediction of Mi until a leaf is
reached.

3. Predict according to the reached leaf.

4. EXPERIMENTAL RESULTS

We tested our model with two light-curve data sets,
MACHO (Cook et al. 1995) and EROS-2 (Tisserand
et al. 2007). On each data set, we created different expert
models trained to classify different subsets of variability
classes. Each model in the setup uses a specific set of features
to describe the light curves. These specific sets are determined
using a feature importance algorithm called mean decrease
impurity, described in Breiman et al. (1984). After a particular
model Mi is trained, if the meta-model requires a prediction
from Mi, it will only extract the features included on Miʼs
specific set. Note that if another model previously extracted
some of the required features, they will not be extracted again.
For each of the experts, we use a Random Forest classifier

(Breiman 2001). We use the FATS (Feature Analysis for Time
Series; Nun et al. 2015) tool to extract the features of light
curves. This tool is able to extract up to 64 different features
per lightcurve. All details about the meaning of each of the
features can be found in Nun et al. (2015). As mentioned
above, some of the features are more expensive than others.
Since each expert uses a selection of the best features according
to its own classification problem, models have different
associated costs.
All of the accuracy results are presented throughout recall,

precision, f-score, and confusion matrix. All of these indicators
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were obtained using a 10-fold cross-validation process on each
of the training sets.

4.1. MACHO Data Set

The MACHO Project (Massive Compact Halo Objects;
Cook et al. 1995) observed the Magellanic Clouds and Galactic
bulge with the main purpose of detecting microlensing events.
Observations were done using blue (∼4500–6300Å) and red
(∼6300–7600Å) passbands. The cadence is about one
observation per two days for 7.4 years, which generates
approximately 1000 observations per object. The light curves
used in this work are from the Small and Large Magellanic
Clouds. The fields cover almost the entire LMC bar (10 square
degrees) to a limiting magnitude of V ≈ 22. The training set
contains 6059 labeled light curves (Kim et al. 2011). Table 1
shows the number of light curves per each of the available
classes. We created seven models to work as experts, each one

Table 1
Number of Instances per Class of Variability in the MACHO Training Set

Class # Instances

Be stars 127
CEPH 101
EB 255
LPV 361
ML 580
NV 3963
QSO 59
RRL 613

Table 2
Pretrained Models for MACHO Data Set, Features Used on each Model, Classes That Each Model Can Predict, and Cost

That Each Model Takes To Represent One Light Curve

Name Features Used in the Model Possible Classes
Avg. Cost per Light

curve (secs)

M0 Psi eta, StetsonL, Psi CS, PeriodLS, StetsonJ, Rcs, Period fit, StetsonK AC PERIODIC, NON-
PERIODIC

1.729

M1 Rcs, Color, PeriodLS, Psi CS, Auto-cor-length, Mean, MedianAbsDev, StetsonJ, CAR tau, CAR
mean, StetsonL, PercentDifferenceFluxPercentile, Q31, SlottedA length, Eta e, AndersonDarling,
Con, FluxPercentileRatioMid65, Freq1 harmonics rel phase 1, Q31 color, Freq2 harmonics
amplitude 2, Meanvariance, MedianBRP, Skew, MaxSlope

NON-QSO, QSO 2.554

M2 Rcs, PeriodLS, Color, Autocor length, Psi CS, SlottedA length, StetsonL, Meanvariance, StetsonJ,
PercentAmplitude, Amplitude, Std, Mean, Psi eta, CAR tau, FluxPercentileRatioMid65, Con,
Freq3 harmonics amplitude 0

Non-QSO-Be, Be, QSO 2.551

M3 Color, Con, SlottedA length, Mean, Rcs, StetsonK, Eta e, Skew Non-ML, ML 0.823

M4 Psi eta, PeriodLS, Rcs, Psi CS, CAR mean, StetsonL, CAR tau, Period fit, StetsonJ, FluxPercen-
tileRatioMid35, Skew, Mean, Color

CEPH, RRL, EB,
OTHERS

1.730

M5 Psi eta, SlottedA length, Psi CS, StetsonJ, Color, StetsonL, Period fit, StetsonK AC, Con, Rcs,
FluxPercentileRatioMid35, FluxPercentileRatioMid50, Eta e, Skew, Beyond1Std, FluxPercenti-
leRatioMid80, FluxPercentileRatioMid65, FluxPercentileRatioMid20, PeriodLS, MedianBRP

CEPH, OTHERS,
NV, EB

2.550

M6 Color, Rcs, Skew, SlottedA length, Con, Psi CS, Psi eta, StetsonJ, PeriodLS, Eta e, StetsonK,
FluxPercentileRatioMid35, Mean, Period fit, CAR mean, StetsonL, FluxPercentileRatioMid50,
FluxPercentileRatioMid20, FluxPercentileRatioMid65, CAR tau, Autocor length, Q31 color,
Beyond1Std

EB, OTHERS, Be, ML 2.552

Note.The cost is directly related to the features that models must extract in order to classify a given light curve.

Table 3
Accuracy Indicators per Each Class on Each of the Models’ Problems

in the MACHO Data Set

Model Class Precision Recall F-score

M6 Be 0.733 0.780 0.756
OTHERS 0.985 0.985 0.985

ML 0.970 0.964 0.967
EB 0.877 0.867 0.872

M0 PERIODIC 0.957 0.962 0.960
NON-PERIODIC 0.989 0.988 0.989

M3 Non-ML 0.995 0.997 0.996
ML 0.970 0.957 0.964

M2 Be 0.866 0.811 0.837
QSO 0.738 0.525 0.614

Non-QSO-Be 0.994 0.998 0.996

M4 CEPH 0.929 0.901 0.915
RRL 0.967 0.949 0.958
EB 0.900 0.878 0.889

OTHERS 0.993 0.997 0.995

M1 NON-QSO 0.995 0.998 0.996
QSO 0.675 0.458 0.545

M5 CEPH 0.936 0.871 0.903
OTHERS 0.954 0.976 0.965

EB 0.897 0.855 0.876
NV 0.992 0.987 0.990
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trained on a specific problem, with a specific set of features.
Table 2 shows the features used on each model and the classes
each model predicts.

Table 3 presents the precision, recall, and f-score of each of
the classes per each of the models. Most of the models are
getting high f-scores for all their classes. We can see that
quasars are the most complicated objects, mainly because they
are confused with Be stars (model M2).

After learning the meta-model from the MACHO data using
the proposed algorithm, we obtained the structure that is shown
in Figure 3. We can see how the meta-model performs the
classification. The meta-model starts by asking M5 and if M5
predicts “EB,” “CEPH,” or “NV,” the meta-model predicts as
M5 without asking any other model, but if M5 predicts

Figure 3. Meta-model learned from the MACHO training set.

Table 4
Accuracy Indicators per Class for the Meta-model

in the MACHO Training Set

Class Precision Recall F-Score

Be 0.857 0.756 0.803
CEPH 0.936 0.871 0.903
EB 0.897 0.855 0.876
LPV 0.799 0.978 0.879
ML 0.977 0.960 0.969
NV 0.992 0.987 0.990
QSO 0.732 0.508 0.600
RRL 0.946 0.949 0.948

Figure 4. Confusion matrix for the meta-model learned from the MACHO
training set.

Figure 5. Meta-model learned from the MACHO training set without
considering the cost of the models.

Table 5
Accuracy Indicators per each Class for the Meta-model without Considering

the Cost of Models in MACHO Training Set

Class Precision Recall F-Score

Be 0.832 0.740 0.783
CEPH 0.938 0.901 0.919
EB 0.884 0.863 0.873
LPV 0.779 0.978 0.867
ML 0.974 0.964 0.969
NV 0.993 0.985 0.989
QSO 0.667 0.441 0.531
RRL 0.954 0.938 0.946

Figure 6. Confusion matrix for the meta-model without considering the cost of
the experts, learned from the MACHO training set.
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“Others,” then the meta-model asks for the prediction from M6,
and so on. From the tree, we can also see in most cases that the
meta-model asks other models when the prediction is not so
confident, like “Others” or when there is a hard class. For
example, if M6 says that the object is a Be star, the meta-model
does not predict immediately, but it continues and asks M2,
which also knows about Be stars, and M2 predicts a quasar
(which is usually confused with Be stars); the meta-model also
predicts a Quasar. If M2 predicts a Be star, the meta-model can
also predict a Be star. A more interesting situation occurs when

M2 predicts “Non-QSO-Be” (Non-Quasar and Non-Be star). In
this case, the best decision the meta-model can make is to
predict a Be star, which is more likely than any other class
given that M6 predicted a Be star. It is also interesting to see
that the meta-model can classify Long Period Variables (LPV)
even if none of the previous models can classify them, mainly
because from the training set the meta-model could infer
prediction patterns from the models that occur together with the
LPV class. From the tree, we can see that the meta-model is
predicting LPV by discarding the other classes because most of
the edges along the paths that end up in an LPV tree correspond
to predictions for “Others” or “Non-<some classes>” from
most of the models. Another very fascinating pattern happens
with LPV; the meta-model realizes that LPV is a Periodic star,
after the model M0 in the fourth level of the tree. Note also that
the meta-model does not use model M1. Model M1 classifies
between Non-QSO and QSO, which are classes already
covered by model M2.
To show that the meta-model does not sacrifice performance

after the integration, Table 4 shows recall, precision, and f-
score of the final meta-model. In Figure 4, we can see the
confusion matrix of the meta-classifier. Most of the recall,
precision, and f-score values are maintained in the meta-
classifier, even some indicators are improving, such as in the
case of Cepheids, as a result of the collaboration of two
different models that are able to classify Cepheids.

Table 6
Number of Instances per Class of Variability in EROS Training Set

Class # Instances

Ceph 1O 870
Ceph F 1272
Ceph 1O 2O 111
EB 13523
LPV OSARG RGB O 31487
LPV SRV AGB O 4337
LPV SRV AGB C 3748
LPV Mira AGB C 760
LPV Mira AGB O 320
RRL 12167
T2CEPH 123

Table 7
Pretrained Models for the EROS Data Set, Features Used on each Model, Classes that each model can Predict, and Cost that each Model

takes to Represent One Light Curve

Name Features Used in the Model Possible Classes
Avg. Cost Per

Light curve (secs)

M0 Color, Mean, PeriodLS, CAR mean, Q31 color, Autocor length, CAR tau,
FluxPercentileRatioMid50, FluxPercentileRatioMid35, SlottedA length,
FluxPercentileRatioMid65, Rcs, Q31, MedianAbsDev, FluxPercentileR-
atioMid20, Beyond1Std, CAR sigma, Amplitude, Psi eta

OTHERS, CEPHEID, RRL, EB 16.326

M1 Color, Mean, CAR mean, Autocor length, Q31 color, CAR tau, SlottedA
length, PeriodLS, Rcs, CAR sigma, Amplitude,
PercentDifferenceFluxPercentile

LPV, Non-LPV 16.325

M2 Color, Mean, PeriodLS, CAR mean, Q31 color, CAR tau, FluxPercentileR-
atioMid50, SlottedA length, FluxPercentileRatioMid35, Autocor length,
FluxPercentileRatioMid65, FluxPercentileRatioMid20, CAR sigma, Rcs,
Q31, MedianAbsDev, Beyond1Std, Amplitude, Freq1 harmonics amplitude
0, Psi eta

OTHERS, RRL, CEPH T2CEPH, EB 21.644

M3 PeriodLS, Mean, Color, FluxPercentileRatioMid50, Q31, FluxPercentileR-
atioMid35, Q31 color, MedianAbsDev, CAR mean, FluxPercentileR-
atioMid65, CAR tau, Freq1 harmonics amplitude 0,
FluxPercentileRatioMid20, Beyond1Std, Std, StetsonK, Rcs, SlottedA
length, StetsonL, FluxPercentileRatioMid80, PercentDifference-
FluxPercentile, Amplitude

OTHERS, Ceph 1O 2O, RRL, Ceph 1O,
T2CEPH, Ceph F

7.866

M4 Color, Mean, Q31 color, SlottedA length, PercentDifferenceFluxPercentile,
CAR mean, Amplitude, Autocor length, Q31, Std, CAR tau, Media-
nAbsDev, Meanvariance, StetsonJ, Freq1 harmonics amplitude 0, Peri-
odLS, Rcs

OTHERS, LPV OSARG RGB O, LPV Mira
AGB C, LPV SRV AGB O, LPV SRV AGB C,
LPV Mira AGB O

7.866

M5 PeriodLS, Mean, Color, FluxPercentileRatioMid50, FluxPercentileR-
atioMid35, MedianAbsDev, Q31 color, Q31, CAR mean, Freq1 harmonics
amplitude 0, FluxPercentileRatioMid20, FluxPercentileRatioMid65, CAR
tau, Beyond1Std, Autocor length, FluxPercentileRatioMid80, SlottedA
length, StetsonK, Std, Skew, StetsonL

OTHERS, CEPHEID, RRL 7.867

Note.The cost is directly related to the features that models must extract in order to classify a given light curve.
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To show the contribution of the cost estimation of each
model, we run the same experiment only considering the
information gain in the score of each model; in other words, we
assume that all models have the same cost. The resulting meta-
model is shown in Figure 5. The meta-model, in this case, is
less efficient, asking for a prediction more than once from most
of the models, for example, independently of the prediction of
model M0, the meta-model asks twice for a prediction from
M1. Also, note that this meta-model decides to use M1 instead
of M2, which is a cheaper model, but not necessarily worse
than M1. As we can see from Table 5 and the confusion matrix
in Figure 6, there is no strong difference between the
classification results; only in Cepheids can we see a 2%
improvement in the f-score when the meta-classifier does not
penalize each model according to their cost, but there is a drop
in f-score for the class of Be stars. Calculating the total training
cost for the meta-classifier in both cases (with and without
considering the cost of the expert models), when the meta-
model does not take into account the cost, the training process
takes 167% longer than in the case when the meta-classifier
takes into account the cost of the model experts.

4.2. EROS Data Set

The EROS project (Expérience de Recherche dObjets
Sombres; Derue et al. 1999) observed the Galactic Spiral
Arms (GSA), LMC, SMC, and Galactic bulge during 6.7 years,
dedicated to detect microlensing events. Observations were
done in two nonstandard passbands. One is the EROS-red
passband RE, centered on 762 nml̄ = and EROS-visible

passbandVE, centered on 600 nml̄ = . The light curves used in
this work are from the LMC (60 fields) and SMC (10 fields).
The limiting magnitude of the EROS VE band is ∼ 20. The
cadence varies among the fields, but, in average, about 500
observations were obtained for each light curve. The training
set contains 68,718 labeled light curves, obtained from Kim
et al. (2014). Table 6 shows the number of light curves per each
of the available classes. This training set is more complex than
the MACHO training set, in the sense that some subclasses of
variability are added to the problem, making the separation
more challenging due to the similarity among some classes.
Our main goal is not to solve the classification problem for all
of the subclasses, but to solve the integration problem using the
provided expert models. Therefore, in cases where the
respective experts do not classify some subclasses well, the
meta-model will probably not be able to classify those classes
well either. We used six model experts, each one trained on a
specific problem, with a specific set of features. Table 7 shows
the features used on each model, the available classes each
model can predict and the average cost per light curve that the
model takes to perform classification.
Table 8 shows the precision, recall, and f-score of each of the

classes per model. As we can see, in some cases, the experts
failed to classify some of the classes. For example, M3 it not
able to successfully classify T2 Cepheids and also the f-score
for Cepheids 1O 2O is lower than the average score of the other
models and classes. This setup, in particular, shows us that
some of the variability classes cannot be automatically
classified by the expert, making the meta-model learning
process harder than the setup with MACHO data set.
Figure 7 shows the resulting meta-model for the EROS

training set. We can see that at the root level, the meta-model
asks M4 for a classification, in cases where M4 predicts LPV
SRV AGB C, LPV Mira AGB C, LPV Mira AGB O, and LPV
SRV AGB O, the meta-model believes M4. In other cases, it
asks for other predictions. This makes sense because M4 is the
only model trained to separate the subclasses of LPVs. In some
cases, the meta-model wants to be more confident about the
prediction of some of the LPV subclasses, asking other models
and predicting the LPV subclasses again when most of the
other models predict “Others.” When M4 predicts LPV
OSARG RGB O, the meta-model asks for more information
before making a final decision. For example, asking M0, and in
cases where M0 is not so confident about one of its classes and
predicts “Others,” the meta-model predicts according to M4.
Another model that contributes extra information about the
LPV stars is M1, which can predict between “LPV” or “Not-
LPV.” We can see from the tree that, in some cases, the meta-
model ends up predicting a subclass of LPVs after most of the
models predict “Others” and M1 predicts an LPV. It is
interesting to see how the meta-model takes advantage of
having more experts trained to classify RR Lyrae stars. For
example, after M4 predicts “Others,” the meta-models ask for
M3, and when M3 predicts an RR Lyrae, instead of
immediately believing it, the meta-model asks M2, and again
if M2 predicts an RR Lyrae, the meta-model also predicts RR
Lyrae. More interesting is when M4 says “Others” and M3 also
says “Others.” If M2 predicts an RR Lyrae, the meta-model
asks for a prediction from M5 instead of immediately believing
M2, and if M5 confirms that it is an RR Lyrae, then the meta-
model also predicts an RR Lyrae.

Table 8
Accuracy Indicators per Class on Each of the Model Problems

in the EROS Data Set

Model Class Precision Recall F-score

M5 RRL 0.960 0.938 0.949
OTHERS 0.985 0.991 0.988
CEPHEID 0.962 0.952 0.957

M1 LPV 0.992 0.996 0.994
Non-LPV 0.994 0.988 0.991

M0 RRL 0.965 0.937 0.951
CEPHEID 0.957 0.957 0.957
OTHERS 0.992 0.995 0.993

EB 0.939 0.954 0.946

M3 RRL 0.957 0.938 0.947
T2CEPH 0.944 0.545 0.691

Ceph 1O 2O 0.758 0.676 0.714
Ceph 1O 0.926 0.860 0.892
Ceph F 0.965 0.965 0.965
OTHERS 0.984 0.991 0.988

M2 RRL 0.966 0.938 0.952
CEPH T2CEPH 0.988 0.948 0.968

OTHERS 0.992 0.997 0.994
EB 0.940 0.956 0.948

M4 LPV Mira AGB C 0.872 0.867 0.869
LPV SRV AGB C 0.947 0.921 0.934

LPV OSARG RGB O 0.974 0.989 0.982
LPV SRV AGB O 0.901 0.863 0.882

OTHERS 0.994 0.989 0.992
LPV Mira AGB O 0.904 0.794 0.845
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To show that the meta-model does not sacrifice performance
after the integration, Table 9 shows recall, precision, and f-
score of the final meta-model. In Figure 8, we can see the
confusion matrix of the meta-classifier. Most of the recall,
precision, and f-score values are maintained in the meta-
classifier.

As we did in the MACHO experiment, in EROS, we also run
the same experiment without considering the cost of each
model. The resulting meta-model is shown in Figure 9.
Similarly to that in the MACHO case, the meta-model asks
many times for a prediction from most of the models, trying to

maximize the confidence about the prediction instead of
counting how expensive the process is. The meta-model
basically asks all of the models that can contribute some
information about certain classifications, maximizing the

Figure 7. Big picture of the Meta-model learned from the EROS training set.

Table 9
Accuracy Indicators per Class for the Meta-model in the EROS Training Set

Class Precision Recall F-Score

Ceph 1O 0.901 0.878 0.889
Ceph 1O 2O 0.758 0.676 0.714
Ceph F 0.965 0.965 0.965
EB 0.938 0.954 0.946
LPV Mira AGB C 0.872 0.867 0.869
LPV Mira AGB O 0.904 0.794 0.845
LPV OSARG RGB O 0.974 0.990 0.982
LPV SRV AGB C 0.947 0.921 0.934
LPV SRV AGB O 0.901 0.863 0.882
RRL 0.965 0.938 0.951
T2CEPH 0.893 0.545 0.677

Figure 8. Confusion matrix for the meta-model learned from the EROS
training set.
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confidence without restriction on the number of questions it
asks. We can see, for example, that models M3 and M5 are the
most expensive models (Table 7), so the meta-model that takes
into account the cost, does not call to M3 and M5 as much as
the meta-model that does not consider cost. From Table 10 and
the confusion matrix in Figure 10, we can see that there is no
significant improvement in f-score in the meta-model that does
not consider the cost. Calculating the total training cost for the
meta-classifier in both cases (with and without considering the

cost of the expert models), when the meta-model does not take
into account the cost, the training process takes about 80%
longer than in the case when the meta-classifier takes into
account the cost of the model experts.

Figure 9. Meta-model learned from the EROS training set without considering the cost of the models.

Table 10
Accuracy Indicators per eClass for the Meta-model without Considering

the Cost of Models in the EROS Training Set

Class Precision Recall F-Score

Ceph 1O 0.910 0.876 0.893
Ceph 1O 2O 0.758 0.676 0.714
Ceph F 0.962 0.965 0.963
EB 0.936 0.955 0.945
LPV Mira AGB C 0.872 0.866 0.869
LPV Mira AGB O 0.904 0.794 0.845
LPV OSARG RGB O 0.973 0.990 0.982
LPV SRV AGB C 0.947 0.921 0.934
LPV SRV AGB O 0.901 0.863 0.882
RRL 0.966 0.936 0.951
T2CEPH 0.931 0.545 0.687

Figure 10. Confusion matrix for the meta-model without considering the cost
of the experts, learned from the EROS training set.
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5. CONCLUSIONS

We present a novel algorithm that allows astronomers to solve
new classification problems by reusing previously trained
classifiers. These kinds of solutions facilitate a faster develop-
ment of automated classification methodologies, avoiding the
need to retrain new models from scratch. Upcoming surveys
such as LSST (Ivezic et al. 2008) will demand this kind of
solution since the amount of data will not allow scientists to
waste time recalibrating models every time new scientific
problems appear. Our intuition is that when a new variable star
classification problem arises, if there are classes of stars and
features already involved in previous problems, we should be
able to use those models in the building process of the new
solution. So far, most of the research done in the field of
automatic classification of variable stars shows strong relation-
ships among the classes studied and the features used. Any of
those classifiers could be plugged into our meta algorithm and be
used to build a new solution. An important contribution of this
work lies in the possibility of working with different contexts,
something that is very natural when model integration occurs;
every model has to deal with its own classes and its own data
representation, which makes the integration more challenging.
So far, we have very promising results. The accuracy of the
meta-model was as good as the accuracy of the model experts,
which is the first goal that an integration model must achieve.

Another important contribution is that the meta-model is
human readable. We can easily observe the meta-model
structure, directly inferring how the meta-model acts on every
possible situation, making the meta-model more trustable for
scientists. In future research, we aim to work on the integration
of data coming from different kinds of telescopes. This creates
new challenges to overcome, such as the identification of
hidden patterns that come from instrumental differences, and
the application of those patterns to the classification models to
make them able to work on heterogeneous data. We strongly
believe that making efforts in that direction will have a huge
impact in the astronomical community. An issue that is not
addressed in this work is the fact that the training sets are
unbalanced and not properly evaluated. Analyzing and
generating better training sets is a future research direction.
As a matter of fact, there are no good descriptions on how most
of the training sets were generated in the first place. For this
work, we assume the training sets are given. Fortunately, from
the results, we can see that Random Forest classifier can deal
with unbalanced training sets. The k-fold cross-validation
process we use is stratified, ensuring that the testing and
training sets are created with the same proportions of stars as
the initial variability classes.
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