
Empirical Methods in Peer Prediction
The Harvard community has made this

article openly available.  Please share  how
this access benefits you. Your story matters

Citation Kim, Richard. 2016. Empirical Methods in Peer Prediction. Master's
thesis, Harvard Extension School.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33797348

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Empirical%20Methods%20in%20Peer%20Prediction&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=de75ae4a528fa79cfb7d0d25e563deca&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33797348
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Empirical Methods in Peer Prediction

Richard Kim

A Thesis in the Field of Information Technology

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

May 2016





Abstract

Human computation system, often popularly referred to as crowdsourcing,

requires the alignment of the incentives of human participants to report truthfully

and an effective mean to deal with noise in the human-generated data. The main

objective of this thesis is to introduce a new class of peer prediction mechanisms

called empirical peer prediction mechanisms that represent an unified approach to

resolving the incentive alignment and noisy-data challenges in human computation

systems.

In the information elicitation literature, existing peer prediction mechanisms

provide theoretical solutions to the incentive alignment problems; however, imple-

menting them in practice has been challenging due to restrictive assumptions. On

the other hand, in the machine learning literature, researchers have proposed models

and algorithms to estimate the error-rates of workers in human computation systems

in an effort to reduce noise in the system; however, these models have largely ig-

nored the incentive problem. While they have developed independently, these two

disciplines ultimately share the same goal of improving human computation systems.

In this thesis, I bring together the mechanisms and the algorithms from these

two disciplines to introduce three new peer prediction mechanisms - the Empirical

Peer Prediction Method, the k-Means Peer Prediction Method, and the Empirical

Scoring Rule Mechanism. I empirically demonstrate that these mechanisms align

the incentives of the self-interested agents such that their utilities are maximized by

reporting their signals truthfully. Moreover, I also show that the three mechanisms

are robust against various reporting strategies including collusion.
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Chapter 1: Introduction

1.1. Background

One of the earliest records of distributing computational tasks to multiple

human workers in scientific research dates back as far as 1758 when the French as-

tronomer Alexis Clairaut employed two other astronomers to compute the returning

time of the Halley’s Comet (Grier, 2005). However, it is in the Twenty-First century

with the emergence of online crowdsourcing platforms such as Amazon Mechanical

Turk and Galaxy Zoo that scientists in many different disciplines have been able to

access a multitude of human workers to analyze data that requires tasks currently

out of reach of computers. The ease of distributing computational work to a vast

number of human workers has ushered in a new paradigm of computational method

called human computation (von Ahn & Dabbish, 2004).

Human computation poses new theoretical and practical challenges: (1) work-

ers come in a wide range of levels of expertise, which are unknown a priori to the

designer of human computation system; (2) some tasks generate multiple versions of

reports by different workers that must be somehow combined to arrive at the actual

estimate of the truth; (3) human workers must be properly incentivized via financial

reward or non-financial means such as fun, rankings, badges, etc.; and (4) some hu-

man workers may participate in the system with the adversarial intent to sabotage

the system.

Addressing the first two challenges, researchers in machine learning and statis-

tics have proposed various innovative methods to model and infer the error-rates of the
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human workers and to recover truth from noisy reports (Ghahramani & Kim, 2003;

Welinder, Brandson, Belongie, & Perona, 2010; Whitehill, Ruvolo, Wu, Bergsma, &

Movellan, 2009).

Interestingly, even before the emergence of online crowdsourcing platforms or

the Internet, Dawid and Skene in 1979 proposed a model, using confusion matrices,

to quantify the error-rates of medical clinicians evaluating their patients. Dawid and

Skene showed that using the Expectation Maximization algorithm (Dempster, Laird,

& Rubin, 1977) they can estimate the confusion matrices of individual clinicians and

also predict the true states of the patients. Recently, their model has gained traction

among human computation researchers whose goal is to quantify the error-rates of the

human workers and also to infer the true labels from the multiple labels submitted

by the error-prone workers (Lakkaraju, Leskovec, Kleinberg, & Mullainathan, 2015;

Liu & Wang, 2012).

Addressing the third and fourth challenges in human computation, researchers

in the information elicitation discipline have proposed a class of innovative mecha-

nisms called peer prediction mechanisms. Peer prediction mechanism exploits corre-

lation between the reports of the participants to determine their payments with the

goal of implementing a payment rule that incentivizes the participants to truthfully

report their signals (i.e. observations).

One of the earliest and most notable peer prediction mechanisms is the Peer

Prediction Method (Miller, Resnick, & Zeckhauser, 2005). The Peer Prediction Method

(PPM) is a truthful peer prediction mechanism, which means that the expected pay-

ment to an agent is strictly maximized when the agent reports her observed signal

truthfully. The truthful property of PPM is attractive for human computation sys-

tems; however, PPM requires the designer to know a priori the state priors (i.e.

distribution of the true states) and the conditional signal probabilities (i.e. the prob-

ability of observing a certain signal given a true state). Moreover, the base model

of PPM requires homogeneity of the agents, which models all agents to share the
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same biases or abilities. In human computation systems, this assumption is akin to

believing that all workers share the same error-rates in computational tasks whether

they be labeling images or translating texts. In reality, empirical results show that

the human workers have varying error-rates (Ipeirotis & Paritosh, 2011; Welinder &

Perona, 2010).

Consequently, while large-scale human computation systems have successfully

adopted and implemented simpler peer prediction mechanisms such as the Output

Agreement mechanism as examplified by the ESP game (von Ahn & Dabbish, 2004),

they have not implemented a theoretically more robust peer prediction mechanism

such as the Peer Prediction Method.

In this thesis, I combine the machine learning-based approach to model and

infer the error-rates of the human workers and the properties of the Peer Prediction

Method to design a new class of peer prediction mechanisms that does not require a

priori knowledge of the state priors and the conditional signal probabilities. These

new peer prediction mechanisms represent an unified approach to addressing the

challenges in human computation.

1.2. Contributions

The main contribution of this thesis can be summarized as introducing an

unified approach to designing incentive scheme in human computation system us-

ing machine learning algorithms and mechanism design. I introduce three new peer

prediction mechanisms : the Empirical Peer Prediction Method, the k-Means Peer

Prediction Method, and the Empirical Scoring Rule Mechanism.

The Empirical Peer Prediction Method (EPPM) and the k-Means Peer Pre-

diction Method (kPPM) can be seen as extensions of the classical Peer Prediction

Method (CPPM) (Miller et al., 2005). These new mechanisms build on CPPM by

addressing two challenges left out by Miller et al.: (1) deriving the probabilistic belief

3



model used to design payment rules, and (2) modeling heterogeneous set of agents.

On the other hand, the Empirical Scoring Rule Mechanism (ESRM) takes a

departure from CPPM. Instead of relying on the peer reports to compute the payment

to an agent, ESRM uses recovered true states and the estimated state posteriors of

the agent to pay the agent based on a strictly proper scoring rule.

As I introduce each mechanism, I progressively relax the assumption of homo-

geneity of the agents in their releveant models. Using simulated data, I demonstrate

empirically that the three mechanisms are truthful peer prediction mechanisms and

are robust against various reporting strategies.

Empirical Peer Prediction Method

The classical Peer Prediction Method is the first minimal-reporting truthful

peer prediction mechanism. The minimal-reporting property refers to the mechanism

requiring the agent to only report her privately observed signals, and the truthful

property describes how the mechanism computes the payment to the agent such that

the expected payment is strictly maximized when the agent truthfully reports her

observed signals.

However, CPPM requires the critically important assumption that the mecha-

nism designer knows a priori the state priors and the conditional signal probabilities

of the model that define the private observation of signals by the agents. For example,

in order to implement CPPM in an image labeling human computation system, the

designer must know in advance the distribution of the different types of images in

the data set; moreover, he must also know in advance the probabilities that a human

worker will observe certain labels given an image.

Miller et al., in their original paper, introduce simple methods to obtain these

probabilities using historical reports submitted by the agents; however, they leave

this topic open as a future research opportunity.

In this thesis, I introduce the CommonBelief model and the Empirical Peer

4



Prediction Method (EPPM) as answers to the challenge left open by Miller et al. Sim-

ilar to the base model of CPPM, the CommonBelief model maintains the assump-

tion of homogeneity of agents. However, EPPM does not require that the designer

know a priori the state priors or the conditional signal probabilities. EPPM estimates

these probabilities from the agents’ reports using the Expectation Maximization al-

gorithm.

Given a sufficiently large number of reports, EPPM accurately infers the state

priors and the conditional signal probabilities, and with these probabilites, EPPM

computes the payment such that an agent’s expected payment is maximized when

she reports her signals truthfully.

In addition, borrowing the idea from market scoring rule (Hanson, 2007), I

introduce a new payment rule for empirical peer prediction mechanisms including

EPPM. This new payment rule, together with the EM algorithm, enables empiri-

cal peer prediction mechanisms to resolve the uninformative equilibria problem that

afflicts many existing peer prediction mechanisms in the academic literature.

I test the mechanism using simulated data in various conditions including dif-

ferent number of world states, different number of agents, and different state priors.

I also test EPPM against various reporting strategies including unilateral random

reporting strategy, unilateral Signal-prior reporting strategy, and collusion strategy

where all agents coordinate to report the same signal repeatedly. I demonstrate em-

pirically that EPPM is robust against all these reporting strategies.

k-means Peer Prediction Method

In the paper that introduced CPPM, Miller et al. briefly discuss settings in

which the agents’ “tastes differ systematically.” Without going into an in-depth dis-

cussion, they state that in such case the designer must model the different agent types

explicitly, but they also leave this topic open as a future research opportunity.

In this thesis, I introduce the GroupBelief model and the k-Means Peer

5



Prediction Method (kPPM) as answers to the challenge left open by Miller et al. The

GroupBelief model relaxes the assumption of homogeneity of agents. It models

every agent as a member of G = {1, ..., G} groups, and that the agents belonging to

the same group share similar error-rates or biases that are pertinent to that group.

I also introduce k-Means-Confusion algorithm, a variation of the k-means--

algorithm (Chawla & Gionis, 2013) that identifies agents’ membership in the agent

groups based on their conditional signal probabilities.

Using the k-Means-Confusion algorithm and the EM algorithm, kPPM iden-

tifies the group membership of an agent and computes her payment according to her

group peer reports.

I test kPPM under varying conditions including different number of world

states and different number of agents using simulated data. I test kPPM against

various reporting strategies including unilateral random reporting strategy, unilateral

Signal-prior reporting strategy, and collusion strategy. I demonstrate empirically that

kPPM is also robust against all the strategies.

Moreover, I show that the GroupConfusion model and kPPM provide a

natural approach to inducing effort from the agents by rewarding the group of agents

with lower error-rates with higher payments.

Empirical Scoring Rule Mechanism

I introduce the PrivateBelief model and the Empirical Scoring Rule Mech-

anism (ESRM). The PrivateBelief model assumes heterogeneous population of

agents, which gives the designer the flexibility to assume that every agent is an unique

individual with her own error-rates or biases. However, the heterogeneity assumption

also makes implementation of peer prediction mechanisms problematic (Radanovic &

Faltings, 2015).

As a radical departure from the existing peer prediction mechanisms, ESRM

provides a solution to the heterogeneous agent problem by not requiring a reference
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peer to determine the payment for an agent. After using the EM algorithm to recover

the true states and estimate the state posteriors of the agent, ESRM pays the agent

based on the agent’s report alone. Nevertheless, ESRM may still be considered a peer

prediction mechanism due the mechanism’s reliance on the reports of many agents to

recover the true states.

I test ESRM in various conditions including different number of world states

and different number of agents. I also test ESRM against various reporting strategies

including the collusion strategy to show that the mechanism is robust against all

strategic reporting.

Although ESRM is introduced in conjunction with the PrivateBelief model,

ESRM is also applicable in other models such as the CommonBelief model and the

GroupBelief model. In addition to testing the mechanism accuracy and robustness

in the PrivateBelief model, I compare the expected payments of ESRM against

EPPM and kPPM in the CommonBelief model and the GroupBelief model,

respectively, and show that ESRM is also applicable in these models as a truthful

peer prediction mechanism.
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Summary of the Contributions

• Proposes an unified approach that combines machine learning algorithm and

mechanism design to design new peer prediction mechanisms that identify the

error-rates and align the incentives of self-interested, error-prone workers in

human computation system.

• Introduces a new class of minimal-reporting, truthful peer prediction mech-

anisms that do not require the mechanism designer to know in advance the

probabilistic belief model.

• Introduces a new minimal-reporting peer prediction mechanism that models the

systematic differences in the capabilities or biases of the agents.

• Introduces a variant of k-Means algorithm that identifies group membership of

the human workers in human computation system based on their error-rates.

• Designs a new minimal-reporting truthful peer prediction mechanism for a

model with heterogeneous population of agents.

• Introduces a new payment rule that, combined with the EM algorithm to es-

timate the model probabilities, helps to resolve the uninformative equilibria

problem.

• Designs a new class of peer prediction mechanisms that are robust against col-

lusion of agents thereby resolving the uninformative equilibria problem that is

problematic in many previously proposed peer prediction mechanisms.
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1.3. Outline

In Chapter 2, we take a brief survey over the information elicitation methods

starting with the setting where truth is verifiable. We discuss strictly proper scoring

rules, which serve as building blocks for the classical Peer Prediction Method and

empirical peer prediction mechanisms. Then, in Section 2.2, we shift our discussion

to the information elicitation methods where truth is not verifiable. We introduce

two notable peer prediction mechanisms — the Output Agreement mechanism and

the Peer Prediction Method — and discuss each mechanism’s required assumptions

and the challenges of its implementation in practice.

In Chapter 3, we turn our attention to machine learning-based models and

algorithms to quantify error-rates of workers in human computation systems. We re-

view the Expectation Maximization algorithm and discuss two existing models in the

machine learning literature - the CommonConfusion model and the PrivateCon-

fusion model. In Section 3.4, I introduce a new model called the GroupConfusion

model and the k-Means-Confusion algorithm.

At the heart of this thesis is Chapter 4, where I introduce the empirical meth-

ods in peer prediction. First, in Section 4.1.1, I present the Empirical Peer Prediction

Method, an empirical peer prediction mechanism for the CommonBelief model. In

Section 4.2.1, I present the k-Means Peer Prediction Method, which is an empirical

peer prediction mechanism for the GroupBelief model. Finally, in Section 4.3.1, I

introduce the Empirical Scoring Rule Mechanism, which is an empirical peer predic-

tion mechanism for the PrivateBelief Model.

Finally, we conclude this thesis in Chapter 5 with the summary of the lessons

learned and a brief discussion on interesting future directions for the empirical meth-

ods in peer prediction.
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Chapter 2: Information Elicitation

Online recommendation systems, such as those used by popular websites such

as Amazon, eBay, and Yelp, elicit reviews and ratings from the visitors. Reviews and

ratings inform other visitors and businesses that uses these websites as marketing

platforms; moreover, helpful and informative reviews are also beneficial for those

websites because they help boost more traffic. As a result, there is a significant

financial incentive for these systems to elicit honest reviews from its visitors.

Some visitors share their opinions out of goodwill. However, eliciting informa-

tive reviews poses two major challenges in general:

• “Underprovision” — writing a review takes time and effort, and these invest-

ments do not directly benefit the reviewer, but only those who receive the

information.

• “Honesty” — reviewer does not have an incentive to be honest about his or her

opinion. For example, a reviewer who had a negative experience with a business

may refrain from sharing her opinion out of fear of retaliation from the business.

Addressing these challenges is the concern for researchers of information eli-

ciation, an academic discipline that is focussed on the study and design of methods

to elicit honest report of private belief from self-interested human agents (Parkes &

Seuken, 2017). In this chapter, we review various incentive schemes that have been

proposed in the information eliciation literature. These schemes serve as important

building blocks for new incentive schemes that I introduce in Chapter 4.
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We start with a brief discussion about information elicitation methods in the

setting where underlying truth is verifiable. For instance, consider a setting in which a

pollster asks a weather forecaster to predict the probability that the weather tomorrow

is sunny. The pollster can wait to observe the weather tomorrow and reward the

forecaster for her prediction based on the outcome. In Section 2.1, I present scoring

rules as solutions in such a setting.

Because the research in scoring rules is a mature field there is an increased

interest in the study of information eliciation in settings where underlying truth is

not verifiable (Waggoner & Chen, 2013). For instance, consider an online recommen-

dation system such as Yelp that elicits reviews from its visitors about the quality of

a restaurant’s service. There is no objective standard that one can use to verify the

“true” qualify of a restaurant’s service. In such a setting, direct implementation of

scoring rule is infeasible.

In Section 2.2, I introduce the idea of peer prediction, which uses the correlation

between the reports of human agents to design reward payments. I introduce the base

model of the peer prediction in Section 2.2.1. In Section 2.2.3, I present the simplest

peer prediction mechanism, the Output Agreement mechanism. In Section 2.2.4, I

present the classical Peer Prediction Method, the first minimal-reporting truthful peer

prediction mechanism. For each mechanism, I discuss the required assumptions and

describe the challenges in implementing it in a human computation system.

In Section 2.3, we briefly go over other noteworthy peer prediction mechanisms

that have been proposed in the information eliciation literature. We conclude this

chapter with a short discussion about the shortcomings of implementing the classical

Peer Prediction Method and how those shortcomings relate to the empirical peer

prediction mechanisms that I introduce in Chapter 4.
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2.1. Scoring Rules

Let us consider a scenario in which an investment manager seeks an accurate

prediction of the next quarter’s earnings of Apple, Inc. from a research analyst.

The investment managers wants to know the probability that Apple’s next quarterly

earning will be up from the last quarter’s earning. With a lot of money at stake in

this prediction, the investment manager decides to reward the analyst with a bonus

payment at the end of the quarter if the analyst correctly predicts the outcome. The

investment manager must design a payment scheme that will incentivize the analyst to

make an effort to accurately predict the outcome and honestly report her prediction

to the manager. What payment scheme should the investment manager adopt to

incentivize the analyst to report truthfully?

This example describes a setting that we describe as information elicitation

with verifiable truth. The outcome of the prediction is verifiable because it is realized

after a period of uncertainty, and typically, the payment is withheld until the the

outcome is verified.

In this section, we briefly discuss the properties of strictly proper scoring rule

and introduce two such scoring rules — the logarithmic scoring rule and the quadratic

scoring rule. Strictly proper scoring rules serve as important building blocks in de-

signing truthful peer prediction mechanisms, which we discuss in detail in Section

2.2.

2.1.1 Scoring Rules

Scoring rules provide solutions to the incentive challenge in the information

eliciation problem with verifiable truth.

Definition 2.1.1 (Scoring Rule). Given Ω = {1, ...,m} possible outcomes and a

report p = (p1, ..., pm) ∈ P that defines the probability distribution over Ω, scoring

rule is a function R : P × Ω→ R ∪ {±∞}.
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Let us consider a simple scoring rule, the linear scoring rule. The linear scoring

rule receives a report of an agent’s subjective belief about the probabilities of the

outcomes, and it pays the agent a payment equivalent to the probability that the

agent assigns to the realized outcome.

Definition 2.1.2 (Linear Scoring Rule). The linear scoring rule is a function defined

as

RS(p, ω) = pω (2.1)

for reported belief p and outcome ω, and where RS(p, ω) ∈ [0, 1], ∀p ∈ P , ω ∈ Ω

It is easy to see that the linear scoring rule does not correctly incentivize

the agent to truthfully report her subjective beliefs about the probabilities of the

outcomes. We demonstrate this property with an example.

Example 1. It is March 2016, in middle of the US Presidential Election Primaries.

In the Democratic party, two candidates competing for the nomination of the party

are Hillary Clinton and Bernie Sanders. There are only two possible outcomes, Ω =

{“Hillary wins” , “Bernie wins”}.

A polling organization requests a political pundit to submit her subjective belief

about the probability that Hillary Clinton wins the nomination. At the end of the

primaries when an outcome is realized, the polling organization will reward the pundit

with a score based on the linear scoring rule.

The pundit believes P (ω1 = “Hillary wins”) = 0.6 and P (ω2 = “Bernie wins”) =

0.4. Let p̃ ∈ [0, 1] represent her reported belief about P (ω1 = “Hillary wins”). If her

report is scored on the linear scoring rule, her expected score with respect to her report

p̃ is

E[RS(p̃, ω)] = P (ω1) · p̃+ P (ω2) · (1− p̃)

= 0.6 · p̃+ 0.4 · (1− p̃)

= 0.4 + 0.2 · p̃

(2.2)
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From equation 2.2, the pundit realizes that her expected score is optimized if she

reports p̃ = 1 instead of truthfully reporting her belief, p̃ = 0.6. Therefore, the pundit

exaggerates her belief about Hillary Clinton’s chance of winning the nomination.

In general, the expected payment of the linear scoring rule is optimized when

the agent puts all the weight on the outcome that she believes to be most likely

(Parkes & Seuken, 2017). Therefore, the linear scoring rule is an example of scoring

rule that is not strictly proper.

Definition 2.1.3 (Strictly Proper Scoring Rule). A scoring rule R is proper if an

agent’s expected score is maximized, with respect to an agent’s beliefs p ∈ P, by

reporting truthfully, and is strictly proper if the truthful report is the only report that

maximizes the agent’s expected score.

Strictly proper scoring rule is a type of scoring rule that correctly incentivizes

the participating agents to report truthfully. In the following sections, we introduce

two strictly proper scoring rules.

2.1.2 Logarithmic Scoring Rule

The logarithmic scoring rule is an example of strictly proper scoring rule.

Definition 2.1.4 (Logarithmic Scoring Rule). The logarithmic scoring rule is a func-

tion defined as

RL(p, ω) = ln(pω) (2.3)

for reported belief p and outcome ω where RL(p, ω) ∈ R− ∪ {−∞} for all p ∈ P and

ω ∈ Ω.

Theorem 2.1.1. Logarithmic scoring rule is a strictly proper scoring rule.

Proof. Consider a set of outcomes Ω = {1, ...,m}. An agent holds a subjective belief

about the probabilities of the outcomes, which we denote as p = (p1, ..., pm) ∈ P
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where pω ∈ [0, 1], ∀ω ∈ Ω, and
∑m

i=1 pi = 1. The agent’s expected score given her

report p̃ is,

E[RL(p̃, ω)] =
m∑
i=1

pi · ln(p̃i) (2.4)

We find the optimal report by solving the first order derivative of the expected score

with respect to p̃i.

∂

∂p̃i
(
m∑
j=1

pj · ln(p̃j)) = 0

⇔ pi
p̃i

= 0

⇔ pi = p̃i

(2.5)

Checking the second order derivate,

∂

∂p̃i

pi
p̃i

= −pi · p̃2
i < 0, because pi > 0 (2.6)

Therefore, we prove that agent’s score is maximized if she reports p̃i = pi for all

outcomes.

Example 1 (continued). Let us come back to the example of the political pundit who

must report her belief about P (ω1 = “Hillary wins”). The scoring rule of the poll has

changed to the logarithmic scoring rule. Now the pundit’s expected score with respect

to her report p̃ is

E[RL(p̃, ω)] = P (ω1) · ln(p̃) + P (ω2) · ln(1− p̃)

= 0.6 · ln(p̃) + 0.4 · ln(1− p̃)
(2.7)

She finds the report that maximizes her expected score by taking the first order deriva-
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tive with respect to p̃,

∂

∂p̃
(0.6 · ln(p̃) + 0.4 · ln(1− p̃)) = 0

⇔ 0.6

p̃
− 0.4

1− p̃
= 0

⇔ 0.6 · (1− p̃) = 0.4 · p̃

⇔ 0.6 = p̃

(2.8)

Her expected score is maximized when she reports truthfully, p̃ = P (ω1).

While the logarithmic scoring rule is a strictly proper scoring rule, there are

challenges to its implementation in practice. By the nature of logarithmic functions,

the logarithmic scoring rule will yield −∞ score; for example, the expected score

for an agent is −∞ if she believes one of the outcome is improbable with pi = 0.

One can offset the zero probability with a very small number ε > 0 to prevent it

from computing −∞; however, this practice distorts the computation of the expected

score.

Moreover, the logarithmic scoring rule suffers from hypersensitivity, which

roughly describes a property that the expected score reacts very strongly to dif-

ferences in small probabilites (Selten, 1998).

2.1.3 Quadratic Scoring Rule

The quadratic scoring rule is another strictly proper scoring rule that is an

alternative to the logarithmic scoring rule.

Definition 2.1.5 (Quadratic Scoring Rule). The quadratic scoring rule is a function

defined as

RQ(p, ω) = 2 · pω −
m∑
i=1

p2
i (2.9)

for reported belief p and outcome ω where RQ(p, ω) ∈ R for all p ∈ P and ω ∈ Ω.
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Theorem 2.1.2. Quadratic scoring rule is a strictly proper scoring rule.

Proof. Consider a set of outcomes Ω = {1, ...,m} and an agent’s subjective belief

about the probabilities of the outcomes, p = (p1, ..., pm) ∈ P where pω ∈ [0, 1], ∀ω ∈

Ω, and
∑m

i=1 pi = 1. The agent’s expected score given her report p̃ is,

E[RQ(p̃, ω)] =
m∑
i=1

pi · (2p̃i −
m∑
j=1

p̃2
j)

= 2
∑
i=1

pi · p̃j −
m∑
h=1

p̃2
m

=
∑
i=1

p2
i −

∑
j=1

(pj − p̃j)2

(2.10)

Solving for the first order derivative of the expected score with respect to p̃i,

∂

∂p̃i
(
∑
i=1

p2
i −

∑
j=1

(pj − p̃j)2) = 0

⇔2(pi − p̃i) = 0

⇔pi = p̃i

(2.11)

Checking the second order derivative,

∂

∂p̃i
2(pi − p̃i) = −2 (2.12)

This is true for all p̃i; therefore, we prove that agent’s score is maximized if she reports

p̃i = pi for all outcomes.

Example 1 (continued). Coming back to the political pundit example, the poll will

now use the quadratic soring rule. The pundit’s expected score with respect to her
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Figure 2.1: Example 1 Summary of Expected Scores

report p̃ is

E[RS(p̃, ω)] = P (ω1) · (2 · p̃− p̃2 − (1− p̃)2) + P (ω2) · (2 · (1− p̃)− (1− p̃)2 − p̃2)

= 0.6 · (4p̃− 2p̃2 − 1) + 0.4 · (1− 2p̃2)

= 2.4p̃− 2p̃2 − 0.2

(2.13)

She finds the report that maximizes her expected score by taking the first-order deriva-

tive with respect to p̃,

∂

∂p̃
(2.4p̃− 2p̃2 − 0.2) = 0

⇔ 2.4− 4p̃ = 0

⇔ 2.4 = 4p̃

⇔ p̃ = 0.6

(2.14)

18



Her expected score is maximized when she reports truthfully, p̃ = P (ω1).

Figure 2.1 summarizes the expected scores of the pundit given her belief P (ω1) =

0.6 for each scoring rule introduced in this section.

We should note that for the logarithmic scoring rule the scores are always below

zero for all reports and outcomes; the quadratic scoring rule may also compute scores

below zero. In terms of payment to the agents, it is not intuitive how to interpret

the negative payments. This problem may be partially alleviated by a positive affine

transformation of the strictly proper scoring rules.

Proposition 2.1.3. If a scoring rule R is a strictly proper scoring rule, then scoring

rule,

R
′
(p, ω) = α + β ·R(p, ω)

derived from positive affine transformation, with β > 0 and α ∈ R, is also a strictly

proper scoring rule (Parkes & Seuken, 2017).

Nevertheless, positive affine transformation does not resolve the problems that

arise from −∞ score in the logarithmic scoring rule.

2.2. Peer Prediction Mechanisms

An entertainment news website aggregates movie ratings of several movie crit-

ics nationwide for an upcoming summer blockbuster movie. The website editor re-

quests approximately 50 movie critics to submit their ratings of the blockbuster movie

in the scale of 1 to 5. Because many online visitors rely on the website to provide help-

ful advice about what upcoming movies to watch, the editor considers it important

to receive a helpful and honest rating from each movie critic. In order to incentivize

effort, the editor decides to pay each critic a payment for his or her rating; unfortu-

nately, unlike the investment scenario in Section 2.1, the editor has no objective and

definitive outcome to score the movie critic’s rating. Therefore, scoring rule is not
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a viable option. What incentive scheme should the editor adopt to entice the movie

critics to report their ratings truthfully?

The above situation is an example of information elicitation without verifiable

truth. In these settings, one can adopt a peer prediction mechanism, which uses the

correlation between the reports of the participating agent in order design a payment

rule that correctly aligns the incentives of the agents.

In Section 2.2.1, we discuss the base model of peer prediction. In Section

2.2.2, I present an example of a human computation system in which peer prediction

mechanism can play a crucial role. I use this example to demonstrate the properties

of different peer prediction mechanisms introduced in the rest of this thesis.

We review two notable peer prediction mechanisms, the Output Agreement

mechanism and the Peer Prediction Method, in Section 2.2.3 and Section 2.2.4, re-

spectively. We go over the required assumptions and the challeneges in their imple-

mentations in large-scale human computation systems.

We conclude the chapter with a brief discussion about other peer prediction

mechanisms that have been introduced in the information elicitation literature and

the different drawbacks in implementing them in human computation systems.

2.2.1 Base Model

A world state is represented by a random variable T that can take on a possible

value m ∈ T = {1, ...,M}. The probability that T takes on value m is the state prior

denoted as P (T = m). We assume that every value m ∈ T has P (T = m) > 0,

because any value m that has P (T = m) = 0 may be eliminated from the model

without affecting the behavior of the mechanism.

There are I ≥ 2 self-interested and risk-neutral agents. Each agent i ∈ I =

{1, ..., I} privately observes a signal, which is denoted by random variable Si with

possible realization of k ∈ S = {1, ..., K}. Each agent’s observed signal is identically

and independently distributed conditioned on a state, and it’s probability of realiza-
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tion, the conditional signal probability, is represented as P (Si = k|T = m), ∀k ∈

S, ∀m ∈ T .

The state priors and conditional signal probabilities are collectively called the

belief model of peer prediction because they form the agent’s probabilistic belief about

the privately observed signal of another agent, which we call signal posterior. The

signal posterior, which we compute as follows,

P (Sj = s
′ |Si = s) =

M∑
h=1

P (Sj = s
′ |T = h)P (T = h|Si = s) (2.15)

where P (T = h|Si = s) =
P (Si = s|T = h)P (T = t)

P (Si = s)
(2.16)

represents agent i’s belief about the probability of her peer j ∈ I observing signal s
′

given that agent i observed signal s. The signal prior P (Si = s), the denominator in

equation 2.16, is

P (Si = s) =
M∑
h=1

P (Si = s|T = h)P (T = h) (2.17)

In the base model, we assume that every agent shares the same belief model and that

the mechanism designer is also aware of this belief model. Also, because all agents

share the same belief model, it holds that P (Sj = s
′ |Si = s) = P (Si = s

′ |Sj = s) for

all signals s, s
′ ∈ S and all agents i, j ∈ I. In Chapter 4, we relax these assumptions

and explore models in which the mechanism designer has no knowledge of the belief

model and also a model with heterogeneous population of agents.

Based on her privately observed signal Si, agent i reports ri ∈ S to the mech-

anism. Conditioned on her signal, agent i reports according to her strategy, which is

a function σi : S → S.

Definition 2.2.1 (Truthful Reporting Strategy). Agent i that adopts the truthful

reporting strategy reports signal σi(si) = si for every signal si ∈ S.
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Given a model, the goal of a peer prediction mechanism is to elicit agent’s

signals by designing a payment rule, x, such that the agent’s utility is maximized

when she truthfully reports her observed signal to the mechanism.

Definition 2.2.2 (Peer Prediction Mechanism). A peer prediction mechanism is a

mechanism that collects reports ri from every agent i ∈ I and pays x(ri, r−i) ∈ R to

agent i according to the payment rule x and the reports of the other agents r−i.

Assuming that agent i’s peers {−i} all report truthfully, the truthful reporting

strategy by agent i is a strict, correlated equilibrium of a peer prediction mechanism

if

Es−i [xi(si, s−i)] > Es−i [xi(ri, s−i)], ∀ri 6= si, ∀ri ∈ S (2.18)

In words, the truthful reporting strategy strictly maximizes the expected payment of

agent i.

Definition 2.2.3 (Truthful Peer Prediction Mechanism). A peer prediction mecha-

nism is truthful if the truthful reporting strategy is the strict, correlated equilibrium

for all agents in the mechanism.

All truthful peer prediction mechanism requires the crucial assumption of Stochas-

tic Relevance in the belief model (Johnson, Miller, Pratt, & Zeckhauser, 2002).

Definition 2.2.4 (Stochastic Relevance). Signal Si for agent i is said to be Stochas-

tically Relevant for signal Sj for agent j if for every pair of signal realizations s
′
, s
′′

of Si, there exists some realization s of Sj such that

P (Sj = s|Si = s
′
) 6= P (Sj = s|Si = s

′′
), ∀s ∈ S

2.2.2 Example

Here, I present an example of human computation system that may benefit

from adopting a truthful peer prediction mechanism. I use this example throughout

the rest of this thesis to illustrate various peer prediction mechanisms.

22



Suppose a computer scientist is engaged in research in image processing. He

devises a new revolutionary machine learning algorithm that can be considered a

great advancement in the field of machine learning-based image processing. However,

this algorithm requires an extremely large training data set. Fortunately, a colleague

donates a large collection of one million images of cats and dogs; unfortunately, none

of the images are labeled.

Instead of attempting to label all the images himself, the computer scientist

decides to tap into the power of the crowd by hiring human workers on the Amazon

Mechanical Turk, a popular crowdsourcing website.

Initially, he decides to pay the workers a fixed payment of $0.01 per image;

however, he soon realizes that the labels submitted by the workers contain many

mistakes and are overall unreliable. Labeling an image takes a certain amount of

effort and time investment; however, because he is paying the workers a fixed payment

per image, they are incentivized to quickly label as many images as possible, which

leads to some workers making many mistakes and some workers even intentionally

labelling all the images as ‘dog’ regardless what they observe in the image.

At this time, the computer scientist decides to verify each label submitted by

a worker before he pays the worker the fixed payment. While the quality of the labels

have certainly improved, the verification process has led to a significant slowdown

in the speed of the project. He is now looking at each individual image to verify

the labels, and this process is no quicker than looking at the images and labeling

them himself. His verfication process has become a bottleneck that prevents the

crowdsourcing project from becoming scalable.

The computer scientist wishes to design the crowdsourcing project such that

it rewards the workers to put in the effort and honestly report what they observe;

nevertheless, he also wants to do away with the verification process that can prevent

the project from scaling. A truthful peer prediction mechanism may provide a solution

to this challenge.
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Example 2. An image represents a world with two possible states T = 0 (‘dog’) or

T = 1 (‘cat’). The two states are mutually exclusive; in other words, there are no

images that contain both a cat and a dog together. Likewise, there are two possible

signals S = 0 and S = 1, which represent a ‘dog’ and a ‘cat’, respectively.

Based on a cursory observation of the collection, the computer scientist con-

cludes that the distribution of the images of cats and dogs are approximately 50/50;

therefore, he estimates the state priors as

P (T = 0) = P (T = 1) = 0.5 (2.19)

Furthermore, based on his past experience with the human workers, the computer

scientist assumes the following conditional signal probabilities for all workers,

P (S = 0|T = 0) = 0.7 (2.20)

P (S = 1|T = 1) = 0.8 (2.21)

In other words, a worker correctly observes images of dogs 70% of the time and

correctly observes images of cats 80% of the time. Moreover, the computer scientist

assumes that all workers share the same conditional signal probabilities. Thus, given

this belief model, he computes the joint probabilities of the signals P (Sj, Si), ∀i, j ∈ I,

HH
HHHHSi

Sj 0 1

0 0.265 0.185

1 0.185 0.365

Table 2.1: Example 2 Joint Signal Probabilities

From the state priors and the conditional signal probabilities he also computes

the signal priors; for example, he estimates the probability that a worker observes a
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dog in any given image in the collection to be

P (S = 0) = P (S = 0|T = 0) · P (T = 0) + P (S = 0|T = 1) · P (T = 1)

= 0.7 · 0.5 + 0.2 · 0.5

= 0.45

(2.22)

From the signal prior and the joint probabilities of the signals, he computes the signal

posteriors. For example, the probability that a worker j observes a dog in an image

if worker i observed a dog in the same image is

P (Sj = 0|Si = 0) =
P (Sj = 0, Si = 0)

P (Si = 0)

=
0.265

0.45

≈ 0.589

(2.23)

Likewise, the signal posterior of worker j observing a dog if worker i observed a cat

is

P (Sj = 0|Si = 1) =
P (Sj = 0, Si = 1)

P (Si = 1)

=
0.185

0.55

≈ 0.331

(2.24)

Computing the rest of the signal posteriors, we note that this belief model satisfies

Stochastic Relevance. For any agent i, j ∈ I,

P (Sj = 0|Si = 0) ≈ 0.589 6= 0.331 ≈ P (Sj = 0|Si = 1) (2.25)

P (Sj = 1|Si = 1) ≈ 0.664 6= 0.411 ≈ P (Sj = 1|Si = 0) (2.26)

We should also note that P (Sj = 0|Si = 0) > P (Sj = 1|Si = 0) and P (Sj =

1|Si = 1) > P (Sj = 0|Si = 1), which intuitively suggest that worker i believes that
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her peer j is more likely to observe the signal that she observed than any other signal.

2.2.3 Output Agreement

We begin our discussion on peer prediction mechanisms with the simplest

mechanism, the Output Agreement (OA) mechanism.

Mechanism 2.2.1 (Output Agreement). The Output Agreement mechanism is

defined as:

1. Mechanism receives reports ri ∈ S from every agent i ∈ I.

2. Pays every agent i ∈ I a fixed payment of τ if ri = rj, where rj is a report from

a reference agent j selected from the set of peer agents {−i}.

For binary signals, the payment rule of OA can be summarized as follows,

HHHH
HHri

rj 0 1

0 τ 0

1 0 τ

Table 2.2: Binary Payment Rule of Output Agreement

In order for OA to be a truthful peer prediction mechanism, the signal poste-

riors of the common belief model must satisfy the Diagonalization Property.

Definition 2.2.5 (Diagonalization Property). Signal posteriors of the belief model

satisfies the Diagonalization Property if for every agent i and j,

P (Sj = s|Si = s) > P (Sj = s
′ |Si = s), ∀s, s′ ∈ S and s

′ 6= s (2.27)

Intuitively, the Diagonalization Property describes the setting in which if an

agent observes a certain signal, then her peer is most likely to also observe that same

signal.
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Theorem 2.2.1. The Output Agreement mechanism is a truthful peer prediction

mechanism if and only if the Diagonalization Property holds true for the belief model.

Proof. The proof begins with the definition of the truthful peer prediction mechanism,

Esj [xi(si, sj)|Si = si] > Esj [xi(ri, sj)|Si = si], ∀si, sj ∈ S, si 6= ri

⇔ P (Sj = si|Si = si) · τ > P (Sj = ri|Si = si) · τ

⇔ P (Sj = si|Si = si) > P (Sj = ri|Si = si)

(2.28)

The last inequality of 2.28 is the definition of the Diagonalization Property.

Example 2 (continued). The computer scientist confirms that the belief model sat-

isfies the Diagonalization Property.

P (Sj = 0|Si = 0) ≈ 0.589 > 0.411 ≈ P (Sj = 1|Si = 0)

P (Sj = 1|Si = 1) ≈ 0.664 > 0.336 ≈ P (Sj = 0|Si = 1)

Therefore, he can safely assume that OA is a truthful peer prediction mechanism in

this setting, and that if implemented in his project, OA will correctly incentivize the

workers to label the images truthfully.

However, let us consider an example of belief model where the Diagonalization

Property does not hold.

Example 3. The computer scientist learns that although his estimate of the condi-

tional signal probabilities were correct, he made a crucial error in estimating the state

priors. In fact, the data set contains far more images of cats than dogs. As such, the

computer scientist adjusts the state priors as follows

P (T = 0) = 0.3 and P (T = 1) = 0.7 (2.29)

From the same conditional signal probabilities, he computes the new joint probabilities
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of the signals,

H
HHH

HHSi

Sj 0 1

0 0.13 0.17

1 0.17 0.53

Table 2.3: Example 3 Joint Signal Probabilities

Given the new belief model, the computer scientist observes that the Diagonal-

ization Property no longer holds for the model. For example,

P (Sj = 0|Si = 0) =
0.13

0.3
≈ 0.43 ≯ 0.57 ≈ 0.17

0.3
= P (Sj = 1|Si = 0) (2.30)

Consequently, when a worker observes an image of a ‘dog’ because she believes that

she has a higher chance of being matched with another worker who reported the same

image as a ‘cat’, she lies by reporting it as ‘cat’ in order to maximize her expected

payment.

OA is not a truthful peer prediction mechanism where an agent holds the

minority opinion or observation. Nevertheless, because the Diagonalization Property

is a reasonable assumption in many circumstances, OA has been successfully adopted

and implemented in large scale human computation systems such as the ESP game

(von Ahn & Dabbish, 2004).

2.2.4 Peer Prediction Method

The classical Peer Prediction Method (CPPM) is the first minimal-reporting

truthful peer prediction mechanism (Miller et al., 2005). The mechanism uses the

signal posteriors and a strictly proper scoring rule to design a payment rule that

correctly aligns the incentive of the agents such that truthful reporting strategy is a

strict, correlated equilibrium for all agents.
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Mechanism 2.2.2 (Peer Prediction Method). The Peer Prediction Method is

defined as:

1 Mechanism receives reports ri ∈ S from every agent i ∈ I.

2 Pays agent i a payment based on a strictly proper scoring rule, xi(ri, rj) =

R(P (Sj|Si = ri), rj), where rj is the report from a reference agent j and P (Sj|Si =

ri) is the signal posteriors of agent j given agent i’s report.

For binary signals, the payment rule of CPPM can be summarized as,

HH
HHHHri

rj 0 1

0 R(P (Sj|Si = 0), 0) R(P (Sj|Si = 0), 1)

1 R(P (Sj|Si = 1), 0) R(P (Sj|Si = 1), 1)

Table 2.4: Binary Payment Rule of CPPM

Theorem 2.2.2. Given that the belief model satisfies Stochastic Relevance, the Peer

Prediction Method is a truthful peer prediction mechanism for any strictly proper

scoring rule.

Proof. Assume that all peer agents {−i} report truthfully. For every reference agent

j ∈ {−i}, her report sj is distributed according to the signal posterior P (Sj = sj|Si =

si) of the belief model such that

Esj [R(P (Sj|Si = si), sj)|Si = si] > Esj [R(P (Sj|Si = ri), sj)|Si = si] (2.31)

for all si, sj ∈ S and all reports ri 6= si because R is a strictly poper scoring rule and

P (Sj = sj|Si = si) 6= P (Sj = sj|Si = ri) due to the Stochastic Relevance.

Note that the left hand side of equation 2.31 denotes the expected payment

to agent i if she reports her beliefs about the signal posteriors P (Sj|Si = si) to a

strictly proper scoring rule. The right hand side denotes the expected payment to

agent i if she reports her beliefs about the signal posteriors P (Sj|Si = ri). If the two
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probabilities are different, then it follows that the left hand side is greater due to the

strictly proper property of R.

Example 3 (continued). Let us return to the example in which OA failed to be a

truthful peer prediction mechanism. The computer scientist decides to adopt the clas-

sical Peer Prediction Method with the quadratic scoring rule. He designs a payment

schedule shown in Table 2.5.

HH
HHHHri

rj 0 1

0 0.35 0.63

1 −0.16 0.88

Table 2.5: Example 3 CPPM Payment Matrix

Assume that worker i observes a dog in an image. If she reports truthfully,

her expected payment is

P (Sj = 0|Si = 0) · 0.35 + P (Sj = 1|Si = 0) · 0.63

= 0.43 · 0.35 + 0.57 · 0.63

≈ 0.6601

In contrast, if she reports ‘cat’ instead,

P (Sj = 0|Si = 0) · −0.16 + P (Sj = 1|Si = 0) · 0.88

= 0.43 · −0.16 + 0.57 · 0.88

≈ 0.4328

The worker i who observes a dog in an image is better off reporting it as ‘dog’ to the

mechanism. Suppose that the worker i observes a cat instead; if she reports truthfully,
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then her expected payment is

P (Sj = 0|Si = 1) · −0.16 + P (Sj = 1|Si = 1) · 0.88

= 0.24 · −0.16 + 0.76 · 0.88

≈ 0.6304

In contrast, if the worker reports a ‘dog’, her expected payment is

P (Sj = 0|Si = 1) · 0.35 + P (Sj = 1|Si = 1) · 0.63

= 0.24 · 0.35 + 0.76 · 0.63

≈ 0.5628

We confirm that the worker is better off by reporting truthfully for both observations.

In contrast to OA, CPPM does not require the assumption that the common

belief model satisfies the Diagonalization Property. It assumes that the belief model

satisfies Stochastic Relevance, which is a less restrictive assumption. On the other

hand, CPPM also has three notable shortcomings that makes implementation of it in

practice challenging.

• A priori knowledge of the belief model — CPPM requires that the designer

knows in advance the state priors and conditional signal probabilities. Miller et

al., in the original paper that introduces CPPM, suggest that the designer esti-

mate these probabilities from historical reports of the agents; however, they do

not go into detail how the mechanism designer should acquire reliable historical

reports before implementing the mechanism or how to compute the probabilities

from the historical reports.

• Homogeneity of agents — CPPM requires that all agents share the same be-

lief model. In human computation systems, this requirement is equivalent to

modeling all human workers as equally proficient in their tasks. In reality, some
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workers exhibit higher error-rates than others. Miller et al. suggest that the

designer model different types of agents if one suspects there are systematic dif-

ferences within the population of agents; however, they do not discuss in detail

how the designer should model the different type of agents or how the designer

should identify the different types of agents.

• Uninformative equilibria - In addition to the truthful strategy, CPPM has Nash

equilibria that yields no information to the mechanism designer.

Definition 2.2.6 (Uninformative Equilibria). A strategy σi is uninformative for

agent i if for every signal s and s
′
, σi(s) = σi(s

′
). A Nash equilibrium σ = {σ1(s1), ..., σI(sI)}

is uninformative if σi is uninformative for every agent i ∈ I.

Uninformative equilibria are problematic in peer prediction mechanisms be-

cause they reveal no information about the observed signals of the agents. An example

of uninformative equilibrium is a strategy profile in which all agents collude to re-

port the same signal. The problem that arises from the uninformative equilibria is

demonstrated in the following example.

Example 3 (continued). Given the joint signal distribution in Table 2.3 and the

payment schedule in Table 2.5, the expected payment to a worker for truthful reporting

strategy, is

0.13 · 0.35 + 0.17 · 0.63 + 0.17 · −0.16 + 0.53 · 0.88 ≈ 0.5918

However, this payment schedule also has other Nash equilibria. Consider the

joint payment matrix in Table 2.6. Note that strategically coordinating all workers

to always report 0 or 1 are pure-strategy Nash-equilibria. What’s more problematic

is that all workers strategically always reporting 1 has greater expected payment (i.e.

0.88) than the truthful reporting strategy.

The computer scientist realizes that all the labels coming in from the workers

only contain the label ‘cat.’ Apparently, a word has gotten around among the workers
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HHH
HHHri

rj 0 1

0 (0.35, 0.35) (0.63,−0.16)

1 (−0.16, 0.63) (0.88, 0.88)

Table 2.6: Example 3 CPPM Joint Payment Matrix

that if they coordinate to label all images as ‘cat,’ they can increase their expected

payments.

Many existing peer prediction mechanisms including CPPM are vulnerable

to the uninformative equilibria problem (Waggoner & Chen, 2013). Some possible

solutions suggested in the literature include verifying a small percentage of the reports

(Waggoner & Chen, 2013). Another solution is to introduce a truthful agent (or

agents) into the mix (Jurca & Faltings, 2005). Finally, recently introduced Multi-task

01-Mechanism (Shnayder, Agarwal, Frongillo, & Parkes, 2016) is shown to be strictly

proper against uninformative equilibria but proper against other reporting strategies.

2.3. Other Mechanisms

In this chapter, we only discussed minimal-reporting peer prediction mecha-

nisms, the Output Agreement mechanism and the classical Peer Prediction Method.

The minimal-reporting property refers to the mechanism’s requirement that it only

receives the signal reports from the agents. However, in the information elicitation lit-

erature, there are many variations of peer prediction mechanism, and in this section,

we briefly present the most notable variants.

A noteworthy variation of OA is the 1 / Prior Mechanism (Jurca & Faltings,

2009, 2011). The 1 / Prior Mechanism has been noted as a “fix” of OA by altering

the fixed payment τ with the signal priors. For binary signals, the payment rule of

the 1 / Prior Mechanism can be summarized in Table 2.7.

Similar to OA, the mechanism designer of 1 / Prior Mechanism must assume

that that the belief model satisfies the Fractional Diagonalization Property. Also,
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HHH
HHHri

rj 0 1

0 τ
P (S=0) 0

1 0 τ
P (S=1)

Table 2.7: Binary Payment Rule of 1 / Prior mechanism

the mechanism does not require that the designer know the full belief model; it only

requires the designer to know the signal priors.

The Empirical Shadowing Method (Witkowski & Parkes, 2012) is a minimal-

reporting peer prediction mechanism that does not require the agents to share the

same belief model and also does not require the designer to know in advance the

individual belief models of the agents.

There are also a class of peer prediction mechanisms that do not exhibit

the minimal-reporting property. These mechanisms require the agents to make at

least two reports. The most notable and earliest example of such mechanism is the

Bayesian Truth Serum (BTS) (Prelec, 2004). This mechanism requires that an agent

make two reports : (1) signal report and (2) prediction report — belief about the sig-

nal posteriors. Also, BTS requires “sufficiently large” or countably infinite population

of agents.

Building on BTS, another dual-reporting mechanism is the Robust Bayesian

Truth Serum (RBTS) (Witkowski & Parkes, 2012), which relaxes the large population

requirement of BTS. The 1 / Posterior Bayesian Truth Serum (Radanovic & Falt-

ings, 2013) generalizes RBTS to multi-signal setting. Finally, one of the latest peer

prediction mechanisms is the Knowledge Free Peer Prediction Mechanism (Zhang &

Chen, 2014), which takes iterative steps (two rounds) to receive signal reports from

the agents in round one, which then are shared to all agents in round two to elicit

prediction reports.

While these dual-reporting peer prediction mechanisms are truthful peer pre-

diction mechanisms, they are difficult to implement in a large scale human compu-

34



tation system in practice because they require that the agents compute and report

the signal posteriors, which is a task that is likely to be cognitively costly for human

agents.

2.4. Conclusion

In this chapter, I presented the major concepts in the information eliciation lit-

erature. We examined strictly proper scoring rules for the information eliciation with

verifiable truth. We also examined peer prediction mechanisms for the information

elicitation without the verifiable truth.

We discussed that while CPPM correctly aligns the incentives of the participat-

ing agents, implementing it in a large scale human computation system is challenging

due to three factors: (1) a priori knowledge of the belief model, (2) requiring the

same belief model for all agents, and (3) the uninformative equilibria. Factors (1)

and (2) are model specific issues of CPPM, and factor (3) is a challenge shared by

many other peer prediction mechanisms.

In Chapter 4, I introduce a new class of peer prediction mechanisms called the

empirical peer prediction mechanisms that directly address these concerns. However,

before I introduce the empirical peer prediction mechanisms, we examine machine

learning-based models and algorithms to infer the error-rates of human workers in

human computation systems.

35



Chapter 3: Latent Confusion Matrix and The EM

Algorithms

Facilitated by the rise in popularity of crowdsourcing platforms, human com-

putation has emerged as a powerful method for processing large volume of data that

cannot be processed by traditional computing methods. Scientists have particularly

benefitted from human computation systems, with one of the most notable success

story being Galaxy Zoo, a crowdsourced astronomical image labeling platform.

Human computation systems have garnered special interest among computer

scientists as they have relied on the systems to build large datasets that are used in

training and testing of machine learning algorithms in various applications (Ipeirotis

& Paritosh, 2011). For example, the ESP game (von Ahn & Dabbish, 2004) tapped

into human workers to label images, which is an easy task for a typical human being

but difficult for any machine learning-based image processing system even in 2016. In

turn, these human-generated labels from the ESP game, and others, have contributed

to the advancement of machine learning-based image processing systems by serving

as training and testing data set (Welinder et al., 2010).

However, the labels submitted by the human workers are also prone to errors.

For this reason, researchers have had keen interest in finding methods to improve

the human computation systems by identifying those workers who exhibit high error-

rates or who may even have malicious intent to sabotage human computation systems

(Joglekar, Garcia-Molina, & Parameswaran, 2013; Welinder et al., 2010; Whitehill et

al., 2009).
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Interestingly, the method that has recently gained a broad interest among

the machine learning researchers in quantifying the error-rates of the human workers

is a method that was introduced before the emergence of the human computation

systems or even the Internet. In 1979, Dawid and Skene introduced a model that

uses confusion matrices to quanitify the error-rates of medical clinicians diagnosing

patients. They used the Expectation Maximization algorithm (Dempster et al., 1977)

to estimate the error-rates of the clinicians and also infer the true diagnoses of the

patients. Many researchers in computer science and statistics have adopted their

model and have introduce other models and algorithms that build on it (Ghahramani

& Kim, 2003; Lakkaraju et al., 2015; Liu & Wang, 2012).

In Section 3.1, we briefly discuss the general concept behind the Expectation

Maximization algorithm. The EM algorithm computes the maximum likelihood es-

timate (MLE) of the confusion matrices for the probabilistic models introduced in

the later sections of this chapter. It also serves as a crucial step in empirical peer

prediction mechanisms that I introduce in Chapter 4.

In Section 3.2, we discuss the CommonConfusion model (Liu & Wang, 2012)

in which all agents share the same confusion matrix. Then, in Section 3.3, we review

the PrivateConfusion model (Dawid & Skene, 1979) in which every agent has her

own unique confusion matrix. For each model, I describe the EM algorithm that

computes the confusion matrices and recovers the true states based on the reports of

the agents.

In Section 3.4, I introduce the GroupConfusion model which models the

individual agent as a member of a group that shares similar confusion matrices. I

also propose k-Means-Confusion, a variant of k-means-- algorithm (Chawla & Gionis,

2013), which indentifies the group membership of the agents and finds the central

confusion matrices of the groups.

Finally, in Section 3.5, we conclude this chapter with a brief discussion about

extensions of the PrivateConfusion model in the machine learning literature.
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3.1. Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm (Dempster et al., 1977) is an

unsupervised learning algorithm frequently used in data clustering. The EM algo-

rithm finds the local maximum likelihood estimate (MLE) of parameters of a statis-

tical model involving latent variables. In this section, we briefly discuss the general

concept behind the EM algorithm . We adopt the notation and description of the

EM algorithm from Bishop (2006).

3.1.1 General EM Algorithm

Consider a probabilistic model in which we denote the set of observable vari-

ables by X and the set of unobservable, latent variables by Z. We describe {X,Z}

as the complete data set and the observed data X as incomplete data. The joint

distribution of the complete data P (X,Z|θ) is parameterized by a set of parameters

denoted by θ. Suppose that given the complete data {X,Z}, finding the MLE of

the log-likelihood of the complete data set lnP (X,Z|θ) is easy. However, we do not

observe Z, and suppose that finding the MLE of the log-likelihood of incomplete data

lnP (X|θ) is difficult.

The goal of the EM algorithm is to find the the maximum likelihood estimate

(MLE) of the parameters θ given the a likelihood function of the observed data X.

In summary,

θMLE = arg max
θ

lnP (X|θ) (3.1)

where lnP (X|θ) = ln(
∑
Z

P (X,Z|θ)) (3.2)

While we do not have the values of the latent variables Z, we can compute

the posterior distribution P (Z|X, θ) given the observed data X and the estimate for

the set of parameters θ0. Using the posterior distribution of latent values given by

P (Z|X, θ), we can find the expectation of the log-likelihood of P (X,Z|θ), which we
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denote as Q(θ, θ0):

Q(θ, θ0) = E[lnP (X,Z|θ)] =
∑
Z

P (Z|X, θ0) lnP (X,Z|θ) (3.3)

From the expectation of the log-likelihood Q(θ, θ0), we find a new estimate of the

parameter of model,

θ̂ = arg max
θ

Q(θ, θ0) (3.4)

The EM algorithm takes iterative steps to solve for θMLE. The algorithm begins by

setting initial values for θ0. In the E-step, which is the step that finds the expectation

of the log-likelihood Q(θ, θ0), the algorithm computes the posterior distribution of the

latent variable P (Z|X, θ). In the M-step, the algorithm finds the MLE values of the

parameters θ from Q(θ, θ0). The EM algorithm alternates between the E-step and the

M-step repeatedly until there is convergence of the estimates of θ between iterations.

We describe the general EM algorithm below.

Algorithm 3.1.1 (The General Expectation Maximization Algorithm).

1. Choose initial values for the estimate of parameters θ0.

2. Iterate until convergence:

1 E-Step: Compute P (Z|X, θ0).

2 M-Step: Compute θ̂ = arg maxθQ(θ, θ0).

3 Check for convergence in P (X|θ) (or, θ). If no convergence, continue the

iteration after

θ0 ← θ̂

3. Return θ̂.

We should note that the likelihood function may have multiple maxima. While

the EM algorithm is guaranteed to converge toward a maximum of the likelihood

function, this maximum may not be the global maximum (Bishop, 2006).
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In the following sections, we examine applications of the EM algorithm in

finding the MLE of the confusion matrices and the state priors in the models.

3.2. CommonConfusion Model

We begin with a simple model, the CommonConfusion model, in which all

agents in a human computation system share the same confusion matrix. The Com-

monConfusion model was introduced by Liu and Wang (2012) as a simplification

of the PrivateConfusion model, which we discuss in Section 3.3.

3.2.1 Model

rn,iΘ

tnρ

N

I

Figure 3.1: CommonConfusion Model

We adopt some notations from the base model of peer prediction mechanism

presented in Chapter 2 Section 2.2.1. However, instead of one world, there are N

different worlds (or, items) where Tn represents the state of the n-th item. Each item

is independently and identically distributed according to a Multinomial distribution

40



parameterized by state priors ρ:

tn ∼Multinomial(ρ)

where ρ =
[
ρ1 . . . ρM

]
is a probability vector such that

∑M
h=1 ρh = 1.

Collectively, t = {t1, ..., tN} represents the set of true states of all N items. The

true states are not observable to the system designer. As noted in the beginning of

Chapter 2, this may be due to the fact that in some settings, such as movie reviews,

there is no objective standard to identify the true state or in a large-scale human

computation system, it may not be feasible for the designer to know the true state of

every item in a very large data set.

The M ×K confusion matrix Θ represents the shared error-rates of the agents

for every state m ∈ T ,

Θ =


θ1

...

θM

 (3.5)

where the m-th row of the confusion matrix, θm =
[
θm,1 . . . θm,K

]
, is a probability

vector where
∑K

g=1 θm,g = 1. Moreover, θm,k, which is the value in the m-th row and

the k-th column of Θ, represents the probability that a agent will report signal k

conditioned on the true state m, P (rn,i = k|Tn = m), for any item n ∈ (1, ..., N).

For each item n ∈ (1, ..., N), every agent i ∈ I reports her observation of

the true state tn, which we denote as rn,i. The report can take on any value of

k ∈ S = {1, ..., K}, and it is distributed according to a Multinomial distribution

parameterized by θm if tn = m,

rn,i ∼Multinomial(θm)

We denote all reports by every agent for every item as r = {rn : n ∈ (1, ..., N)} where

rn = {rn,i : i ∈ (1, ..., I)}.
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Unlike the base model of peer prediction, the CommonConfusion model

does not include agent’s strategy σ. In the machine learning literature, researchers

are primarily interested in inferring the error-rates of the human agents, and they

model the reporting strategy as a factor that is conveyed in the error-rates.

The graphical model representation in Figure 3.1 summarizes the Common-

Confusion model. Arrows indicate conditional dependence. For example, the true

state tn of item n is conditionally dependent on the state priors ρ. Shaded node

indicates that that the corresponding variable is an observed variable. Finally, the

blue box with label N is a shorthand method to represent N number of tn variables.

For the reports rn,i, the number of reports N × I is represented by including the node

rn,i inside both boxes N and I.

3.2.2 Algorithm

We review the EM algorithm to find the maximum likelihood estimate of two

parameters Θ and ρ given the observed reports r. Formally, given P (r|Θ,ρ), the

likelihood function that models the observed data, the goal of the EM algorithm is

to compute

ΘMLE = arg max
Θ

P (r|Θ,ρ) (3.6)

ρMLE = arg max
ρ

P (r|Θ,ρ) (3.7)

Consider item n and agent i, the combined likelihood of the report rn,i and

true label tn = h, given the common confusion matrix Θ is

P (rn,i, tn = h|Θ) =
K∏
g=1

Θ
I(rn,i=g)
h,g (3.8)

Since all agents observe their signals independently, the likelihood of the collective

42



reports of all I agents for item n is

P (rn, tn = h|Θ) =
K∏
g=1

Θ
∑I
i=1 I(rn,i=g)

h,g (3.9)

and unconditioned on tn = h and where ρ is known,

P (rn, tn|ρ,Θ) =
M∏
h=1

{ρh ·
K∏
g=1

Θ
∑I
i=1 I(rn,i=g)

h,g }I(tn=h) (3.10)

Finally, since each item is independently distributed,

P (r, t|ρ,Θ) =
N∏
n=1

M∏
h=1

{ρh ·
K∏
g=1

Θ
∑I
i=1 I(rn,i=g)

h,g }I(tn=h) (3.11)

If we know the true states of N items, t, we can find the MLE of Θ and ρ by solving

the following,

Θ̂m,k =

∑N
n=1

∑I
i=1 I(tn = m) · I(rn,i = k)∑K

g=1

∑N
n=1

∑I
i=1 I(tn = m) · I(rn,i = g)

, ∀m ∈ T , ∀k ∈ S (3.12)

ρ̂m =

∑N
n=1 I(tn = m)∑M

h=1

∑N
n=1 I(tn = h)

, ∀m ∈ T (3.13)

If the parameters of the likelihood Θ and ρ are known, but the true states t are

unknown, we can use the Bayes rule to compute the posterior probabilities of the

true states as well.

P (tn = m|rn,ρ,Θ) =
P (rn,Θ|tn = m) · P (tn = m|ρ)∑M

j=1 P (rn,Θ|tn = j)

where prior, P (tn = m|ρ) = ρm

=
ρm

∏K
g=1 Θ

∑I
i=1 I(rn,i=g)

m,g∑M
j=1 ρj

∏K
g=1 Θ

∑I
i=1 I(rn,i=g)

j,g

(3.14)

However, the system designer does not have knowledge of the true states t, the dis-
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tribution of the states ρ, or the confusion matrix Θ. This is where the EM algorithm

is used.

First, we find the expectation of the likelihood function,

Q(Θ,ρ,Θ0,ρ0) = E[P (rn, tn|Θ,ρ)]

=
M∑
g=1

P (tn = g|rn,Θ0,ρ0) · P (rn, tn = g|Θ,ρ)

=
M∑
g=1

ρm
∏K

g=1 Θ
∑I
i=1 I((rn,i=g)

m,g∑M
j=1 ρj

∏K
g=1 Θ

∑I
i=1 I((rn,i=g)

j,g

· {ρh ·
K∏
g=1

Θ
∑I
i=1 I(rn,i=g)

h,g }I(tn=g)

=
M∑
g=1

ρm

K∏
g=1

Θ
∑I
i=1 I(rn,i=g)

m,g

(3.15)

We denote the posterior of the true states Zn,m = P (tn = m|rn,Θ0,ρ0) and

use it to compute the MLE of Θ and ρ in place of I(tn = m),

Θ̂ = arg max
Θ

Q(Θ,ρ,Θ0,ρ0) (3.16)

⇒ Θ̂m,k =

∑I
i=1

∑N
n=1 Zn,m · I(rn,i = k)∑K

j=1

∑I
i=1

∑N
n=1 Zn,m · I(rn,i = j)

, ∀m ∈ T , ∀k ∈ S (3.17)

ρ̂ = arg max
ρ

Q(Θ,ρ,Θ0,ρ0) (3.18)

⇒ ρ̂m =

∑N
n=1 Zn,m∑M

h=1

∑N
n=1 Zn,h

, ∀m ∈ T (3.19)

Since computing the posteriors of the states Zn,m depend on the estimates of

Θ and ρ and estimating Θ and ρ depend on the posteriors Zn,m, we take an iterative

approach using the EM algorithm. We summarize the full EM algorithm for the

CommonConfusion model below:

Algorithm 3.2.1 (EM Algorithm for CommonConfusion Model).
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Given r and parameter λ,

1. Initialize:

ρ̂m =
1

M

Θ̂h,g =


λ

λ+K
if h = g,

1
λ+K

otherwise

2. Iterate until convergence:

1 E-Step:

Compute P (Tn = m|rn,Θ,ρ), ∀m ∈ T , ∀n ∈ (1, ..., N),

Zn,m = P (Tn = m|rn,Θ,ρ) =
ρm

∏K
k=1 Θ

∑I
i=1 I(rn,i=k)

m,k∑M
j=1 ρj

∏K
k=1 Θ

∑I
i=1 I(rn,i=k)

j,k

(3.20)

2 M-Step:

Compute Θ̂ = arg maxΘ Q(Θ,ρ,Θ0,ρ0)

Θ̂m,k =

∑I
i=1

∑N
n=1 Zn,m · I(rn,i = k)∑K

j=1

∑I
i=1

∑N
n=1 Zn,m · I(rn,i = j)

, ∀m ∈ T , ∀k ∈ S (3.21)

Compute ρ̂ = arg maxρQ(Θ,ρ,Θ0,ρ0)

ρ̂m =

∑N
n=1 Zn,m∑M

h=1

∑N
n=1 Zn,h

, ∀m ∈ T (3.22)

3. Compute:

t̂n = arg max
m∈(1,...,M)

Zn,m, ∀n ∈ (1, ..., N) (3.23)

4. Return: Θ̂, ρ̂, and t̂

In order to demonstrate how the EM algorithm solves for the parameters ρ

and Θ in the CommonConfusion model, we create five synthetic agents with the
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following common confusion matrix,

Θ =


0.7 0.2 0.1

0.2 0.7 0.1

0.15 0.15 0.7


We generate N = 1000 states from the following state priors,

ρ =
[
0.7 0.2 0.1

]
From the true states and the confusion matrix, we sample reports r = {rn,i| n ∈

(1, ..., 1000), i ∈ (1, ..., 5)} according to the generative model described in Section

3.2.1. Setting parameter λ = 3, we run the EM algorithm to compute Θ̂ and ρ̂. The

steps of the EM algorithm in regards to Θ are as follows,

Θ̂(0) =


0.500 0.167 0.167

0.167 0.500 0.167

0.167 0.167 0.500

⇒Θ̂(1) =


0.726 0.185 0.089

0.267 0.625 0.109

0.242 0.202 0.556

⇒ . . .

⇒Θ̂(31) =


0.691 0.214 0.095

0.198 0.697 0.104

0.140 0.178 0.681

⇒ . . .

⇒Θ̂(61) =


0.691 0.214 0.095

0.197 0.699 0.104

0.140 0.178 0.681


We observe that the estimate of the confusion matrix after the first iteration of the

EM algorithm, Θ̂(1), already appears closer to the true Θ than Θ̂(0). We see the

convergence of the algorithm at the 31st iteration where Θ̂(31) appears close to the

46



final value, Θ̂(61). We also observe the steps of the algorithm in regards to ρ̂:

ρ̂(0) =
[
0.333 0.333 0.333

]
⇒ρ̂(1) =

[
0.581 0.278 0.141

]
⇒ . . .

⇒ρ̂(31) =
[
0.686 0.206 0.107

]
⇒ . . .

⇒ρ̂(61) =
[
0.687 0.206 0.108

]
By the first iteration, we see that the estimate of the state priors is moving toward

the true state prior. By the time the algorithm terminates after the 61st iteration,

ρ̂(61) closely reflects the true state priors.

3.2.3 Analysis

We use synthetic data to examine the accuracy of the EM algorithm in the

CommonConfusion model under different environments. We fix the set of states as

T = {1, 2, 3} and the set of signals as S = {1, 2, 3}. We define the confusion matrix

to be:

Θ =


0.7 0.2 0.1

0.2 0.7 0.1

0.15 0.15 0.7


We vary the number of items, N = (10, 100, 1000, 10000), and the number of agents,

I = (2, 5, 10, 25, 100). For each permutation (N × I), we experiment on three

different state priors — ρ1 =
[
1/3 1/3 1/3

]
, ρ2 =

[
0.7 0.2 0.1

]
, and ρ3 =[

0.95 0.025 0.025
]

— by generating the states and reports synthetically from the

parameters. We run 100 simulations per each permutation and state priors and report

the average numbers.

We measure the accuracy in recovering the confusion matrix with the mean

absolute error (MAE),

MAE (Θ̂,Θ) =
1

M ·K

M∑
h=1

K∑
g=1

|Θ̂h,g −Θh,g| (3.24)
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We also measure the accuracy in recovering the true labels using the EM

algorithm and compare it against the accuracy of the majority vote, which is a simple

algorithm that selects the mode signal of the item reports rn for every item n ∈

(1, ..., N).

(a) Mean Absolute Errors of Θ̂ (b) Accuracy Score of t̂

Figure 3.2: CommonConfusion Model: EM Performance

Figure 3.2 summarizes the accuracy in recovering the confusion matrix and the

true labels. As the number of data points (N × I) declines, the error of the recovered

confusion matrix, as measured by MAE, increases.

We see in Figure 3.2a that the MAE is more sensitive to the number of agents

than the number of items. The algorithm performs significantly worse, as measured

by MAE, in (10000×2) than in (1000×5) even though the former has 15000 more data

points. This is also true when we compare the algorithm’s performance in (1000× 2)

and in (100× 5).

The accuracy of the recovered labels as shown in Figure 3.2b shows a similar

trend where the decline in the number of agents lead to deterioration in the EM algo-

rithm’s performance. We also find that the EM algorithm outperforms the majority

vote method consistently until N is 100 and below. We should note the troubling

trend where N = 10; the EM algorithm performs quite poorly against the major-
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ity vote in these environments. Where the number of items is quite small, the EM

algorithm may not be well suited for the CommonConfusion model.

3.3. PrivateConfusion Model

In 1979, Dawid and Skene introduced a model that uses the confusion matri-

ces to quantify the individual error-rates of medical clinicians evaluating the patients.

Recently, this model, which we call the PrivateConfusion model, has gained trac-

tion among researchers in machine learning and statistics (Ghahramani & Kim, 2003;

Lakkaraju et al., 2015; Liu & Wang, 2012) to model the error-rates of workers in

the human computation systems. We review the PrivateConfusion model in this

section.

3.3.1 Model

rn,iΘi

tnρ

N

I

Figure 3.3: PrivateConfusion Model

In the PrivateConfusion model, every agent i ∈ I has her own unique
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confusion matrix Θi. We denote Θ as a set of confusion matrices:

Θ = {Θ1, ...,ΘI}

The reports by agent i on the n-th item is distributed according to Θi, agent i’s

unique individual confusion matrix, and the true state tn = m:

rn,i ∼Multinomial(θim)

where θim represents the m-th row of the confusion matrix Θi and a probability vector

θim =
[
θim,1 . . . θim,K

]
such that

∑K
g=1 θ

i
m,g = 1.

The graphical model representation in Figure 3.3 summarizes the Private-

Confusion model.

3.3.2 Algorithm

The EM algorithm to compute the MLE of the P (r|Θ,ρ) in the Private-

Confusion model is similar to that of the CommonConfusion model discussed

in Section 3.2. The posteriors of the true states now account for multiple unique

confusion matrices.

Zn,m = P (Tn = m|Θ,ρ) =
ρm

∏I
i=1

∏K
k=1(Θi

m,k)
I(rn,i=k)∑M

j=1 ρj
∏I

i=1

∏K
k=1(Θi

j,k)
I(rn,i=k)

(3.25)

We summarize the full EM algorithm for the PrivateConfusion model below:

Algorithm 3.3.1 (EM Algorithm for PrivateConfusion Model).

Given r and parameter λ,

1. Initialize:

ρ̂m =
1

M
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Θ̂i
h,g =


λ

λ+K
if h = g,

1
λ+K

otherwise

2. Iterate until convergence:

1 E-Step:

Compute P (Tn = m|Θ, ρ), ∀m ∈ T , ∀n ∈ (1, ..., N),

Zn,m = P (Tn = m|Θ,ρ) =
ρm

∏I
i=1

∏K
k=1(Θi

m,k)
I(rn,i=k)∑M

j=1 ρj
∏I

i=1

∏K
k=1(Θi

j,k)
I(rn,i=k)

(3.26)

2 M-Step:

Compute Θ̂ = arg maxΘ Q(Θ,ρ,Θ0,ρ0)

Θ̂m,k =

∑I
i=1

∑N
n=1 Zn,m · I(rn,i = k)∑K

j=1

∑I
i=1

∑N
n=1 Zn,m · I(rn,i = j)

, ∀m ∈ T , ∀k ∈ S (3.27)

Compute ρ̂ = arg maxρQ(Θ,ρ,Θ0,ρ0)

ρ̂m =

∑N
n=1 Zn,m∑M

h=1

∑N
n=1 Zn,h

, ∀m ∈ T (3.28)

3. Compute:

t̂n = arg max
m∈(1,...,M)

Zn,m, ∀n ∈ (1, ..., N)

4. Return: Θ̂, ρ̂, and t̂

3.3.3 Analysis

Similar to the experiment for the CommonConfusion model in Section 3.2.3,

we use synthetic data to examine the accuracy of the EM algorithm in the Private-

Confusion model under different environments.

We define the set of states as T = {1, 2, 3} and the set of signals as S =

51



{1, 2, 3}. We vary the number of items, N = (10, 100, 1000, 10000), and the number

of agents, I = (2, 5, 10, 25, 100). For each permutation of (N × I), we experiment

on three different state priors — ρ1 =
[
1/3 1/3 1/3

]
, ρ2 =

[
0.7 0.2 0.1

]
, and

ρ3 =
[
0.95 0.025 0.025

]
. We synthesize our data for each permutation of (N × I)

and state priors for each run, and we report the average number and standard error

of 100 runs.

For each run, we sample a unique confusion matrix for agent i, by sampling it

from a hyperparameter:

Λ =


10 1 1

1 10 1

1 1 10


The m-th row of Θi, which is denoted as θim, is sampled from a Dirichlet distribution,

θim ∼ Dirichlet(λm)

where λm denotes the m-th row of Λ. This generates I unique confusion matrices for

each run.

(a) Mean Absolute Errors of Θ̂ (b) Accuracy Score of t̂

Figure 3.4: PrivateConfusion Model: EM Performance

Figure 3.4 summarizes the accuracy of recovering the confusion matrices and
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the true states using the EM algorithm in the PrivateConfusion model. In Figure

3.4a, similar to the outcome for the EM algorithm in the CommonConfusion model,

we note the deterioration in performance of the EM algorithm in estimating the

confusion matrices, as measured by MAE, along with the number of data points (N×

I). Also, similar to the outcome in the CommonConfusion model, the algorithm’s

performance is apparently more sensitive to the number of agents than the number

of items.

In Figure 3.4, we observe the strong performance advantage in recovering the

states using the EM algorithm versus the majority vote method. However, when

the number of items declines to 10, the majority vote method outperforms the EM

algorithm.

3.4. GroupConfusion Model

Consider a scenario where a computer scientist engaged in research in machine

translation aims to build Japanese-English bilingual corpora via a human computa-

tion system with bilingual translators who are proficient in Japanese and English.

The computer scientist suspects that there are three different type of translators —

“Advanced”, “Intermediate”, and “Novice”. He is interested in classifying each trans-

lator into one of the three types based on their error-rates and study the correlated

attributes of the translators in each group.

In another example, let us consider a Massive Open Online Course (MOOC) in

machine learning that is taken primarily by statistics and computer science students.

We could imagine a student with the computer science background to generally per-

form better than those with statistics background in problems related to algorithms

and data structures. We could also imagine that a student with statistics background

to perform better than those with the computer science background in problems

about Bayesian statistical models. We are interested in identifing the students’ back-

grounds based on the error-rates of the students and study correlated attributes such
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as gender, race, age, and so forth within each group.

In this section, I introduce the GroupConfusion model. In this new model,

an individual agent is a member of a group that shares similar confusion matrices. In

Section 3.4.2, we introduce k-Means-Confusion, a variation of k-Means-- algorithm

(Chawla & Gionis, 2013), to cluster the agents based on their confusion matrices.

3.4.1 Model

rn,iΘi

tnρ

Λg

α

N

IG

Figure 3.5: GroupConfusion Model

The GroupConfusion model is an extension of the PrivateConfusion

model. There are G groups, and every agent i ∈ I belongs to a group g ∈ G =

{1, ..., G}. The group membership of agent i, which we denote as γi = g is dis-

tributed according to a Multinomial distribution parameterized by hyperparameter

α =
[
α1 . . . αG

]
, where

∑G
g=1 αg = 1:

γi ∼Multinomial(α)
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Collectively, Γ = {γ1, ..., γI}, represents a set that denotes the membership of every

agent i ∈ I.

Θ2
µΘ1

µ

Θ3
µΘ1

Θ2

Θ3

Θ4

Θ5

Θ6

Θ7

Θ8

Θ9

Θ10

Θ11

Θ12

δmax

Figure 3.6: An Example of Agent Groups and Confusion Matrices

The confusion matrix of agent i belonging to group g is sampled from hyper-

parameter:

Λg =


λg1
...

λgM

 (3.29)

where λgm =
[
λg1 . . . λgK

]
and

K∑
j=1

λgj = 1 (3.30)

such that the m-th row of confusion matrix Θi, denoted as θim is generated from a
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Dirichlet distribution parameterized by λgm,

θim ∼ Dirichlet(λgm)

For each group g ∈ G, the agents’ individual confusion matrices are clustered

around the central confusion matrix Θg
µ. Collectively, Θµ = {Θ1

µ, ...,Θ
G
µ } denotes a

set of central confusion matrices for all groups. Figure 3.6 depicts an example of three

groups of agents and the individual confusion matrices clustered around three central

confusion matrices.

The graphical model representation in Figure 3.5 summarizes the Group-

Confusion model.

3.4.2 Algorithm

In this section, we introduce the k-Means-Confusion (kMC) algorithm, a vari-

ant of the k-means-- algorithm (Chawla & Gionis, 2013), for clustering the agents

in human computation systems using their confusion matrices. Given a set of con-

fusion matrices Θ = {Θ1, ...,ΘI}, parameter G that specifies the number of groups,

and an algorithm parameter δmax, kMC returns the group membership of the agents

Γ = {γ1, ..., γI} and the central confusion matrices Θµ = {Θ1
µ, ...,Θ

G
µ }.

Before we present kMC algorithm, we introduce a few important notations.

We assume a distance function d : Θ×Θ→ R defines the Euclidean distance between

two confusion matrices,

d(Θ,Θ
′
) =

1

M ·K

M∑
h=1

K∑
g=1

(Θh,g −Θ
′

h,g)
2 (3.31)

Given a set of confusion matrices Θ = {Θ1, ...,ΘI}, mean : Θ→ Θ is a function that
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defines the element-wise average matrix of the set,

mean(Θ) =


∑I

i=1 Θi
1,1 . . .

∑I
i=1 Θi

1,K

...
. . .

...∑I
i=1 Θi

M,1 . . .
∑I

i=1 Θi
M,K

 (3.32)

Finally, given Θµ = {Θ1
µ, ...,Θ

G
µ }, a set of G central confusion matrices, we define the

distance of agent i’s individual confusion matrix Θi to the closest central matrix as

d(Θi|Θµ) = min
Θgµ∈Θµ

d(Θi,Θg
µ) (3.33)

We describe the k-Means-Confusion algorithm below:

Algorithm 3.4.1 (K-means-Confusion).

Given Θ, G, and the maximum distance parameter δmax,

1. Randomly assign group membership, Γ = {γ1, ..., γI} where γi ← g ∈ G for all

i ∈ I.

2. Based on Γ, compute the central matrices

Θg ← {Θi ∈ Θ
′ |γi = g}, ∀i ∈ I

Θ̂g
µ = mean(Θg), ∀g ∈ G

3. Iterate until convergence:

1 Initialize empty set of outliers : O ← {}

2 Compute d(Θi|Θ̂µ) ∀i ∈ I

3 If d(Θi|Θ̂µ) > δmax:

O ← i
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4 Exclude the outliers,

Θ
′ ← Θ \ {Θi|∀i ∈ O}

I ′ ← I \ O

5 For every i ∈ O:

γi = NULL

6 For every i ∈ I ′:

Assign Θi to set Θg by finding the closest central matrix:

γi = arg min
g∈G

d(Θi, Θ̂g
µ)

Θg ← {Θi ∈ Θ
′ |γi = g}

Compute:

Θ̂g
µ = mean(Θg), ∀g ∈ G

4. Return Θ̂µ, Γ, and O

3.4.3 Analysis

We examine the performance of the k-Means-Confusion algorithm using syn-

thetic data.

We fix the set of states as T = {1, 2, 3} and the set of signals as S = {1, 2, 3}.

We vary the number of items, N = (10, 100, 1000, 10000) and the number of agents,

I = (3, 9, 24, 48, 120). For each permutation of (N × I), we experiment on three

different state priors — ρ1 =
[
1/3 1/3 1/3

]
, ρ2 =

[
0.7 0.2 0.1

]
, and ρ3 =[

0.95 0.025 0.025
]
. We also generate three agent groups such that each group con-

tains at least one agent. The three agent groups have the following hyperparameters
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(a) Mean Absolute Errors of Θ̂ (b) Accuracy Score of Γ̂

Figure 3.7: k-Means-Confusion: Performance

for each group’s confusion matrices:

Λ0 =


98 1 1

1 98 1

1 1 98

 Λ1 =


76 23 1

12 76 12

12 12 76

 Λ2 =


50 25 25

25 50 25

25 25 50


We set the hyperparameter α =

[
1/3 1/3 1/3

]
and also fix the δmax parameter of

the algorithm to 0.2.

Figure 3.7a shows the MAE of the recovered individual matrices Θ̂. As ex-

pected, the accuracy of the confusion matrix estimation deteriorates with decrease

in the total number of data points. However, this deterioration in the accuracy of

the confusion matrices estimation also impacts in the accuracy of group membership

recovery.

In Figure 3.7b, we see near perfect accuracy when there are a large number of

data points with a large number of items, N ≥ 1000, and a large number of agents,

I ≥ 9. However, we see sharp decline in the accuracy of group membership recovery

when the number of agents drops to 3, regardless of the number of items. Moreover,

we also observe steep deterioration in accuracy as the number of item falls to N ≤ 100.
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Where the number of items is 10, the k-Means-Confusion algorithm performs quite

poorly.

This experiment shows that the k-Means-Confusion algorithm works best when

there’s a sufficiently large number of data points generated from a large number of

agents. Since the k-Means-Confusion algorithm is reliant on the EM algorithm to

estimate the confusion matrices, if the accuracy of that estimation is poor, we should

expect the k-Means-Confusion algorithm to perform poorly as well.

3.5. Extensions

Since the introduction of the PrivateConfusion model by Dawid and Skene,

researchers in computer science and statistics have proposed new models that build

on the PrivateConfusion model.

One of the earliest work is the Bayesian classifier combination method (BCC)

by Ghahramani and Kim (2003). BCC uses Bayesian hierarchical model to add

deeper complexity to the original PrivateConfusion model. Similarly, Liu and Wang

(2012) introduce the HybridConfusion model in the same paper that introduces

the CommonConfusion model. Finally, perhaps most similar to the GroupCon-

fusion model, there is the JointConfusion model (Lakkaraju et al., 2015), which

assigns the agents to clusters based on various other attributes besides the error-rates.

These models are Bayesian statistical models that require the Markov Chain Monte

Carlo (MCMC) sampling methods, which are computationally expensive.

To our knowledge, the GroupConfusion model is the only new model since

the PrivateConfusion model in which the estimation of the confusion matrices and

clustering of the agents can be done with the EM algorithm and k-Means-Confusion

algorithm.
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Chapter 4: Emprical Peer Prediction Mechanisms

Originally, peer prediction mechanisms were proposed as mechanisms to elicit

honest feedback from reviewers in online recommendation systems. Since then the

researchers in the information elicitation field have found natural application of peer

prediction mechanisms in human computation systems. However, real world applica-

tion has been limited to simple mechanisms such as the Output Agreement mecha-

nism, and application of more theoretically complex mechanisms such as the classical

Peer Prediction Method has faced barriers due to their restrictive assumptions (Wag-

goner & Chen, 2013).

Independent of the research in peer prediction mechanisms, researchers in ma-

chine learning and statistics have used different models and algorithms to quantify

the error-rates of the workers in human computation systems. They have been in-

terested in quantifying the error-rates of the workers because knowing the error-rates

offers the system designer the choice of excluding the reports of the highly error-prone

workers or excluding those workers from future tasks. However, their models have

largely ignored the incentives of the human workers.

While they developed independently of one another, two fields of research

ultimately share the same goal, which is to improve human computation systems.

One of the leading researchers in peer prediction mechanisms, Jens Witkowski stated,

“... integrating peer prediction mechanisms with machine learning models will be

mutually beneficial” (Witkowski, 2014). I believe that the two fields are for ripe for

marriage today.

In this chapter, I introduce an unified approach that brings together the mod-
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els and techniques of the two fields. By integrating the error-rate models from the

machine learning literature with the incentive models of the peer prediction mecha-

nism in the information elicitation literature, we design a new class of peer prediction

mechanisms, which I call empirical peer prediction mechanisms.

In Section 4.1, we explore the CommonBelief model and the Empirical Peer

Prediction Method. Miller et al. who introduced the classical Peer Prediction Method

left open the task of estimating the state priors and the conditional signal probabilities

of the common belief model as a future direction of peer prediction research (Miller

et al., 2005); I directly address this open challenge with the CommonBelief model

and the Empirical Peer Prediction Method.

In Section 4.2, we explore the GroupBelief model, which addresses the

systematic differences in “tastes” among the agents. Miller et al. stated that the

systematic differences in the population of agents should be modeled explicitly, and

they also left this task open as a future research opportunity. I introduce the k-Means

Peer Prediction Method as an answer to this open challenge.

Finally, in Section 4.3, we further relax the homogeneity assumption and in-

troduce the PrivateBelief model where every individual agent has her own unique

biases and capabilities. I introduce a new peer prediction mechanism called the Em-

pirical Scoring Rule Mechanism that correctly incentivizes agents in this model.

For each mechanism, we analyze its properties using simulated data. I demon-

strate empirically that given a sufficiently large amount of data, empirical peer pre-

diction mechanisms are truthful peer prediction mechanisms and are robust against

various reporting strategies including collusion among the agents.

4.1. Empirical Peer Prediction Method

One of the hurdles in implementing the classical Peer Prediction Method

(CPPM) in a large-scale human computation system is its restrictive requirement

that the mechanism designer must know the commonly shared belief model of the
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agents. (Waggoner & Chen, 2013)

In their original paper that introduces CPPM, Miller et al. briefly discuss

that the mechanism designer should use historical reports submitted by the agents

to compute the state priors and the conditional signal probabilities. However, they

do not discuss this topic in detail and instead leave it open as a future research

opportunity in peer prediction mechanisms.

In this section, I introduce the Empirical Peer Prediction Method (EPPM) as

an answer to the challenge left open by Miller et al. EPPM incorporates the EM

algorithm to compute the commonly shared belief model of the agents and deploys

payment rule similar to that of CPPM. Therefore, I view EPPM as a product of

marriage between information elicitation and machine learning.

In this section, I also introduce a new scoring rule that is useful in the empirical

setting to maintain the robustness of EPPM against collusion among the agents.

4.1.1 Model

rn,isn,iΘ

tnρ

Ψi

N

I

Figure 4.1: CommonBelief Model

The CommonBelief model is closely related to the base model of peer pre-
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diction mechanism and the CommonConfusion model. We model N items with

random variable Tn = tn ∈ T for n ∈ (1, ..., N) and N × I privately observed signals

with random variable Sn,i = sn,i ∈ S for agent i and n ∈ (1, ..., N).

The state tn ∈ T for every item n ∈ (1, ..., N) is distributed independently

and identically according to state prior P (Tn = tn) similar to the base model of peer

prediction; however, we adopt the notation from the machine learning literature to

denote the state priors as ρ =
[
ρ1 . . . ρM

]
where ρm = P (Tn = m), ∀m ∈ T , ∀n ∈

(1, ..., N).

In the base model of peer prediction, the conditional signal probability P (S =

k|T = m), the probability that an agent observes signal k ∈ S given that the true

state of the world is m ∈ T , is not “explicitly” modeled as an error-rate of the ob-

servation. In the CommonBelief model, we explicitly model the conditional signal

probabilities as the error-rates of observation, and altogether, they are represented

by M ×K confusion matrix Θ:

Θ =


θ1

...

θM

 (4.1)

where the m-th row represents a probability vector θm =
[
θm,1 . . . θm,K

]
, and each

element θm,k = P (Sn,i = k|Tn = m), ∀n ∈ (1, ..., N), ∀i ∈ I such that
∑K

g=1 θm,g = 1.

Given the confusion matrix Θ, agent i’s observed signal of the n-th item, sn,i, is

distributed according a Multinomial distribution parameterized by θm conditioned

on tn = m,

sn,i ∼Multinomial(θm)

The representation of the conditional signal probabilities with confusion matrix

is relevant where the set of states T and the set of signals S have 1-to-1 relationship.

For example, in a typical human computation system the signals represent the noisy

observations about the true states.

However, the CommonBelief model does not necessarily exclude settings
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where the set of states T and the set of signals S do not have 1-to-1 relationship.

For example, consider an online recommendation system of restaurant where the true

possible state of a restaurants is “High Quality” or “Low Quality”. Given a state, a

reviewer observes a signal from a star rating in a scale of 1 to 5. While we do not

refer to the conditional signal probabilities as error-rates or confusion matrix in such

setting, the CommonBelief model is still able to represent the conditional signal

probabilities as 2× 5 matrix.

In the CommonBelief model, unlike the existing models in the machine

learning literature, we explicitly model the reporting strategies of the agents. For

every agent i ∈ I, her reporting strategy is represented by K ×K strategy matrix:

Ψi =


ψi

1

...

ψi
K

 (4.2)

ψi
k =

[
ψik,1 ... ψik,K

]
(4.3)

For all k ∈ S, ψi
k represents a probability distribution such that

∑K
g=1 ψ

i
k,g = 1, and

ψik,h represents P (rn,i = h|Sn,i = k), the probability of agent i reporting h given that

she observes signal k in item n. Therefore, a report rn,i is distributed according to a

Multinomial distribution parameterized by ψi
k conditioned on signal sn,i = k.

rn,i ∼Multinomial(ψi
k)

The truthful reporting strategy is represented by K ×K identity matrix,

Ψi =


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 (4.4)
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We adopt the graphical model representation from the machine learning literature to

summarize the CommonBelief model in Figure 4.1.

4.1.2 Mechanism

In this section, I introduce the Empirical Peer Prediction Method (EPPM).

Unlike CPPM, EPPM does not require that the designer know a priori the belief

model, ρ and Θ. These probabilities are estimated from the agent reports r using

the EM algorithm. Once the mechanism estimates the belief model, it computes the

payments to the agents in a manner similar to that of CPPM. However, we should note

that EPPM withholds payments until all reports are submitted by the participating

agents.

Suppose that agent i chooses not to report truthfully. If the mechanism utilizes

all the agents’ reports r, including the reports of agent i, to compute the estimated

confusion matrix Θ̂ and the estimated state priors ρ̂ using the EM algorithm of the

CommonConfusion model, then the reports by agent i may obfuscate the estimates.

Therefore, for each agent i ∈ I, EPPM uses the reports of agent i’s peers, r−i, to

compute Θ̂ and ρ̂.

If agent i’s peers all report truthfully such that strategy matrices of the peers

Ψ−i are the identity matrices, then because all agents share the same Θ and ρ, the

mechanism is able to simplify the CommonBelief model to the CommonConfu-

sion model that we discussed in Chapter 3 because

Ψj ·Θ = Θ, ∀j ∈ {−i} (4.5)

Thus, applying the EM algorithm of the CommonConfusion model, EPPM can

accurately compute Θ̂i ≈ Θ and ρ̂i ≈ ρ given a sufficiently large numbers of items

and peer agents. Note that we use the subscript i to indicate that Θ̂i and ρ̂i are not

the unique belief model of agent i. This is not to be confused with the superscript

in the PrivateConfusion model in Chapter 3 Section 3.3 where Θi represents the
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unique confusion matrix of agent i.

From the estimates of Θ and ρ, the mechanism can compute the signal priors

φ and signal posteriors ϑ. The signal priors are represented by a probabiliity vector,

φ =
[
φ1 . . . φK

]
(4.6)

where φk = P (Si = k) =
M∑
h=1

P (Si = k|T = h)P (T = h) (4.7)

The signal posteriors are represented by K ×K matrix,

ϑ =


ϑ1

...

ϑK

 (4.8)

where ϑk =
[
ϑk,1 . . . ϑk,K

]
is a probability vector such that

∑K
g=1 ϑk,g = 1, and

ϑk,g = P (Sn,j = g|Sn,i = k) =
M∑
h=1

Θh,g ·
Θh,k · ρh
φk

(4.9)

Recall that CPPM pays agent i using a strictly proper scoring rule R:

xi(ri, rj) = R(ϑri , rj) (4.10)

Borrowing the idea from market scoring rule (Hanson, 2007), I introduce a new pay-

ment rule for EPPM, which to my knowledge has not been used in a peer prediction

mechanism.

xi(rn,i, rn,j) = R(ϑrn,i , rn,j)−R(φ, rn,j) (4.11)

In words, the new payment rule is the difference between the score of the signal

posteriors of agent i conditioned on her report rn,i for item n and the score from

signal prior.
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We show that the new payment rule is strictly proper with a simple example.

Consider the following signal posteriors:

ϑ =

0.6 0.4

0.3 0.7


and signal priors:

φ =
[
0.35 0.65

]
Suppose that agent i observes signal Sn,i = 0 for item n. If she reports truthfully, the

expected payment to agent i using the quadratic scoring rule is

P (Sn,j = 0|Sn,i = 0) · {RQ(ϑ0, 0)−RQ(φ, 0)}

+ P (Sn,j = 1|Sn,i = 0) · {RQ(ϑ0, 1)−RQ(φ, 1)}

= 0.6 · 0.525 + 0.4 · −0.475

= 0.125

If she reports rn,i = 1 instead, her expected payment is

P (Sn,j = 0|Sn,i = 0) · {RQ(ϑ1, 0)−RQ(φ, 0)}

+ P (Sn,j = 1|Sn,i = 0) · {RQ(ϑ1, 1)−RQ(φ, 1)}

= 0.6 · −0.135 + 0.4 · 0.065

= −0.055

Agent i is better off reporting truthfully to signal Sn,i = 0. On the other hand, if she
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observes Sn,i = 1 and reports truthfully, then her expected payment is

P (Sn,j = 0|Sn,i = 1) · {RQ(ϑ1, 0)−RQ(φ, 0)}

+ P (Sn,j = 1|Sn,i = 1) · {RQ(ϑ1, 1)−RQ(φ, 1)}

= 0.3 · −0.135 + 0.7 · 0.065

= 0.005

If she reports rn,i = 0, then her expected payment is

P (Sn,j = 0|Sn,i = 1) · {RQ(ϑ0, 0)−RQ(φ, 0)}

+ P (Sn,j = 1|Sn,i = 1) · {RQ(ϑ0, 1)−RQ(φ, 1)}

= 0.3 · 0.525 + 0.7 · −0.475

= −0.175

For either signal, agent i is better off reporting truthfully. This result is also true in

settings where the number of signals K > 2.

Mechanism 4.1.1 (Empirical Peer Prediction Method). The Empirical Peer

Prediction Method is defined as:

1. Mechanism receives reports rn,i ∈ S from every agent i ∈ I for every item

n ∈ (1, ..., N).

2. For every agent i ∈ I, estimates the confusion matrix Θ̂i and the state priors

ρ̂i from r−i, reports of agent i’s peers {−i} using the EM algorithm of the

CommonConfusion model under the truthful assumption.

3. Pays agent i for item n a payment based on xi(rn,i, rn,j) = R(ϑ̂irn,i , rn,j) −

R(φ̂i, rn,j), where rn,j is the report from a reference agent j selected from {−i}

and R is a strictly proper scoring rule.

We demonstrate EPPM in practice with an example.
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Example 4. Let us return to the example introduced in Chapter 2. In Example 3,

the computer scientist adopted CPPM, and he luckly managed to accurately compute

the true state priors and the conditional signal probabilities, which were

ρ =
[
0.3 0.7

]

Θ =

0.7 0.3

0.2 0.8


Let us suppose that the computer scientist does not have knowledge of the belief model

in advance. Now, he would not be able to implement CPPM in his human computation

system, but instead, he can adopt EPPM. He segments the total data set of images

into batches of 1,000 images. He withholds the payments until all workers submit

their labels for all the images in each batch. Once he receives all the reports, he pays

his workers accordingly using EPPM.

For worker i, EPPM computes the belief model based on her peer’s reports,

which is

ρ̂i =
[
0.29 0.71

]

Θ̂i =

0.69 0.31

0.22 0.78


From these estimates, EPPM computes φ̂i and ϑ̂i,

φ̂i =
[
0.36 0.64

]

ϑ̂i =

0.48 0.52

0.28 0.72


Based on these estimated probabilities, EPPM computes the payment schedule

for worker i using the quadratic scoring rule, which is shown in Table 4.1.

For item n, suppose that worker i observed Sn,i = 0. If she reported truthfully,
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HHH
HHHri

rj 0 1

0 0.28 −0.20

1 −0.21 0.10

Table 4.1: Example 4 EPPM Payment Matrix

then worker i’s expected payment for item n would be

P (Sn,j = 0|Sn,i = 0) · 0.28 + P (Sn,j = 1|Sn,i = 0) · −0.20

≈ 0.43 · 0.28 + 0.57 · −0.20

≈ 0.0064

In contrast, if she reported rn,i = 1, then her expected payment would be

P (Sn,j = 0|Sn,i = 0) · −0.21 + P (Sn,j = 1|Sn,i = 0) · 0.10

≈ 0.43 · −0.21 + 0.57 · 0.1

≈ − 0.0333

For the observed signal Sn,i = 0, worker i would be better off reporting truthfully.

Instead, suppose that worker i observed Sn,i = 1 for item n. If she reported

truthfully, then her expected payment would be

P (Sn,j = 0|Sn,i = 1) · −0.21 + P (Sn,j = 1|Sn,i = 1) · 0.10

≈ 0.24 · 0.21 + 0.76 · 0.10

≈ 0.0256

However, if she reported rn,i = 0, then her expected payment would be

P (Sn,j = 0|Sn,i = 1) · 0.28 + P (Sn,j = 1|Sn,i = 1) · −0.20

≈ 0.24 · 0.28 + 0.76 · −0.20

≈ − 0.0848
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Therefore, worker i would be better off reporting truthfully in either signal observation.

Although a recently introduced peer prediction mechanism, Multi-task 01-

Mechanism (Shnayder et al., 2016), is robust against uniformative equilibria, most

peer prediction mechanisms that have been introduced in the information eliciation

literature cannot avoid the problem of the uninformative equilibria (Waggoner &

Chen, 2013). However, EPPM is robust against uninformative equilibria. This prop-

erty is due to EPPM’s empirical estimation of the belief models using the EM algo-

rithm and the new payment rule. We demonstrate this property of EPPM with an

example.

Example 3 (continued). We return to the example at the end of Chapter 2 where

the computer scientist’s human computation system is under attack by collusion of

multiple workers. Multiple workers have coordinated to label every image as ‘cat’

regardless of what they observe, and they are maximizing their payments this way.

The computer scientist implements EPPM using the quadratic scoring rule

in hopes of thwarting the collusion attack. After receving the reports on the first

1, 000 images, he finds that the estimate of the state priors and the conditional signal

probabilities for all workers are the exactly same:

ρ̂i =
[
0.0 1.0

]

Θ̂i =

0.0 1.0

0.0 1.0


As a result, the estimated signal priors and signal posteriors are:

φ̂i =
[
0.0 1.0

]

ϑ̂i =

NaN NaN

0.0 1.0


72



Consequently, the payment to each worker is

x(1, 1) = RQ((0.0, 1.0), 1)−RQ((0.0, 1.0), 1)

= 1.0− 1.0 = 0.0

While the workers involved in the collusive attack wasted the computer scientist’s time,

they did not inflict any financial cost. By adopting EPPM, the computer scientist

successfully thwarted the collusive attack.

As demonstrated in Example 3 with binary signals, if all agents collude to

report the same signal repeatedly, then the estimates of the signal posteriors and the

signal priors will be such that the scores from two strictly proper scoring rule will

cancel each other out. This results in 0 payments for all agents. This result is also

true in settings where K > 2 as we shall see with simulated data in the following

section.

4.1.3 Analysis

In this section, we empirically demonstrate properties of EPPM.

Performance of the EM Algorithm and the Expected Payment of EPPM

We examine the expected payment to a truthfully reporting agent in EPPM

using simulated data. This experiment is similar to the experiment for the Common-

Confusion model in Section 3.2.3. However, our primary interest in this section is

the expected payment of EPPM with respect to varying number of data.

We fix the states to T = {0, 1, 2} and the signals to S = {0, 1, 2}. We vary the

number of items, N = (10, 100, 1000) and the number of agents, I = (2, 5, 10, 25, 100).

For each permutation of (N × I), we experiment on three different state priors —

ρ1 =
[
1/3 1/3 1/3

]
, ρ2 =

[
0.7 0.2 0.1

]
, and ρ3 =

[
0.95 0.025 0.025

]
. For

each permutation and state priors, we run 50 experiments and report on the average

results. Throughout the experiment, we create synthetic agents using the following
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(a) MAEs of Θ̂ (b) Expected Payment of EPPM

(c) Absolute Difference CPPM vs
EPPM

Figure 4.2: Empirical Peer Prediction Method: Accuracy

single, common confusion matrix,

Θ =


0.7 0.2 0.1

0.2 0.7 0.1

0.15 0.15 0.7


In Figure 4.2a, we observe that the accuracies of recovering Θ, as measured

by MAE, exhibits similar trend to what we observed in Section 3.2.3.
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Figure 4.2b shows the average expected payments of a truthful agent in EPPM.

As the performance of the EM algorithm suffers from shortage of data, we see in-

creased uncertainty in the expected payment of EPPM as measured by the standard

error.

If the mechanism designer can perfectly estimate the belief model, or if the

designer has advance knowledge of the belief model, then the expected payments

to the agents should be the same as that of CPPM with the new payment rule.

Therefore, we set the expected payments of CPPM as the benchmark to measure the

accuracies of expected payments in EPPM.

Figure 4.2c shows a plot of the absolute difference in the expected payments

between these two mechanisms as defined by :

|EEPPM [xi(si, sj)|Si = si]− ECPPM [xi(si, sj)|Si = si]|

We observe that when there are a large number of data points, N ≥ 100 and

I ≥ 5, the expected payments of EPPM do not deviate far from those of CPPM.

However, as the number of data points decreases, the accuracy of EPPM’s expected

payment deteriorates in a trend similar to that of MAEs of Θ̂.

Robustness of EPPM against Strategic Reporting

In this experiment, we compare the expected payments of the truthful report-

ing strategy and those of other reporting strategies in EPPM.

We maintain the same parameters — the states, the signals, and the common

confusion matrix — as the previous experiment. From the experiment above, we note

that N ≥ 1000 and I ≥ 10 generates sufficiently large data points to yield accurate

expected payments in EPPM; therefore, in this experiment, we fix the number of items

to N = 1000 and the total number agents to I = 12. We also run the experiment on

the three different state priors that were introduced in the previous experiment. For

each state prior, we perform 100 simulation runs.
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(a) Truthful Strategy vs Random
Reporting Strategy

(b) Truthful Strategy vs Signal-
Prior Reporting Strategy

(c) Truthful Strategy vs Collusion
Strategy

Figure 4.3: Empirical Peer Prediction Method: Robustness

First, we examine the expected payment of the random reporting strategy.

Under this strategy, the agent reports any signal with 1/3 probability regardless of

her observation. For each run, we first make all twelve agents report truthfully and

compute their expected payments. Afterwards, while all other agents stay truthful,

we select one agent to adopt the random reporting strategy and run the simulation

again in the same environment and compute her expected payment under the new

strategy.

Figure 4.3a shows a scatter plot of the expected payments to an agent when she

reports truthfully versus the expected payments to the same agent when she reports
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randomly. Each point in the plot indicates the expected payment in one simulation,

showing the truthful reporting payments along the x-axis and the random reporting

payments along the y-axis. A point lying below the dotted red line indicates that the

expected payment is higher under the truthful reporting strategy; likewise, a point

lying above the red line indicates that the random reporting strategy has the higher

expected payment. Figure 4.3a shows that in all three state priors, agents are better

off reporting truthfully.

Second, we examine the truthful reporting strategy against a reporting strat-

egy that we call Signal-prior strategy. Under the Signal-prior strategy, the agent keeps

track of the number of signal observations and builds the signal priors based on the

historical counts. In each round, agent reports randomly based on the signal priors

that she computed before that round. In Figure 4.3b, we plot the expected payments

of the truthful reporting strategy against that of the Signal-prior strategy. Similar to

the outcomes from the random reporting strategy, the expected payments under the

Signal-prior strategy are almost all below those of the truthful reporting strategy.

Finally, we examine the expected payments under the collusion strategy in

which all twelve agents coordinate to report the same signal repeatedly. We repeat

the experiment for all three signals and plot the expected payments versus that of

the truthful reporting strategy in Figure 4.3c. As shown in Example 3 in Section

4.1.2, the expected payments for every agent under this strategy is zero. Hence, in

almost all cases, the agents are better off by reporting truthfully with a few exceptions

when the state priors are heavily imbalanced. In the case where the state priors are

ρ =
[
0.95 0.025 0.025

]
, the truthful reporting strategy may yield lower expected

payment because the errors in signal observation can cause the agent to report 1 and

2 more frequently than desired.
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4.2. k-Means Peer Prediction Method

In the original paper that introduces CPPM, Miller et al. state that the agents

may exhibit systematic differences and if so, the mechanism designer must explicitly

model the different types of agents. They suggest that the mechanism designer model

the different types of agent based on the historical reports; however, Miller et al. do

not go into a detailed discussion about how the designer should model the different

type of agents or suggest how the designer should identify each agent’s type. Instead,

they leave these details as future research opportunities.

In this section, I relax the assumption of homogeneity of agents and introduce

the GroupBelief model, which models systematically different type of agents. I

also introduce the k-Means Peer Prediction Method (kPPM) as an answer to the

challenge left open by Miller et al. in such a model.

Modeling the different types of agent may be useful in designing payment

rule that favors a certain type of agents over the others. For example, in Chapter

3 Section 4.2.1, I presented an example of human computation system that builds

bilingual corpora. The system designer suspects that there are three type of transla-

tors —“Advanced,” “Intermediate,” and “Novice”. Once the types are identified, the

designer can reward the Advanced translators with higher expected payments. This

can incentivize the participants to not only report truthfully about their observed

signals but also induce them to make more effort in the signal observation so that the

mechanism may classify them as an Advanced translator.

4.2.1 Model

The GroupBelief model is an extension of the base model of peer prediction

mechanisms and the GroupConfusion model introduced in Chapter 3 Section 3.4.

The graphical model representation in Figure 4.4 summarizes the GroupBelief

model.

We note that in the GroupBelief model the mechanism designer does not
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Figure 4.4: GroupBelief Model

know in advance the belief models of each group. In addition, the designer also does

not know Γ, the group membership of the agents.

4.2.2 Mechanism

Recall that EPPM uses reports of agent i’s peers, r−i to estimate Θ and ρ. If

agent i’s peers report truthfully, this approach enables EPPM to accurately estimate

the belief model for agent i even if she does not report her signals truthfully.

Similarly, in the GroupBelief model, if the group membership of the agents

Γ is known to the mechanism, then with a sufficiently large number of data points,

the mechanism can accurately estimate Θg for every g ∈ G using the reports of agents’

group peers. In other words, the designer can partition the agents based on the group

membership and run separate EPPM on each group.

However, in the GroupBelief model, the mechanism designer does not know

the group memberships in advance. As a result, unless the designer trusts that all

agents reported truthfully, the mechanism cannot reliably estimate Θg. As a solution,

kPPM does not rely on the estimate of individual confusion matrix Θ̂i to compute
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the payments to agent i. Instead, the mechanism estimates the centeral confusion

matrices Θ̂µ = {Θ̂1
µ, ..., Θ̂

G
µ } using the k-Means-Confusion algorithm introduced in

Section 3.4.

Once kPPM estimates the central confusion matrices of the groups, it is able to

also compute the signal priors φg and signal posteriors ϑg of every group g ∈ G. With

these estimates as well as inferred group membership information, kPPM proceeds

to compute the payments for the agents in each group using the new payment rule

introduced for EPPM.

Mechanism 4.2.1 (k-Means Peer Prediction Method). The k-Means Peer Pre-

diction Method is defined as:

1. Mechanism receives reports rn,i ∈ S from every agent i ∈ I for every world

states indexed n ∈ (1, ..., N).

2. Estimates the confusion matrices Θ̂ and the state priors ρ̂ using the EM algo-

rithm of the PrivateConfusion model assuming truthful reporting.

3. Computes the group membership Γ, the central confusion matrices Θ̂g
µ, and the

outliers O from the k-Means-Confusion given the estimated confusion matrices

Θ̂ and maximum distance parameter δmax.

4. For each group, computes the estimated state posterior ϑ̂g and the estimated

state priors φ̂g from the estimated group confusion matrices Θ̂g
µ and the esti-

mated state priors ρ̂.

5. For any agent o ∈ O, randomly selects g ∈ G and classifies γo = g.

6. Pays agent i, a member of group g ∈ G, for item n a payment based on

xi(rn,i, rn,j) = R(ϑ̂grn,i , rn,j) − R(φ̂g, rn,j), where rn,j is the report from a ref-

erence agent j selected from group g.

If there is 1-to-1 relationship between the set of states and the set of signals

such that the mechanism designer can model the conditional signal probabilities as
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error-rates of the signal observation, then due to the implementation of strictly proper

scoring rules, kPPM naturally rewards the agents who exhibit lower (higher) error-

rates with higher (lower) expected payments. By rewarding the agents with lower

error-rates, kPPM is able to incentivize not only truthful reporting but also induce

effort by the agents to accurately observe the signals. We demonstrate this property

with an example.

Example 5. We return to the example of the computer scientist and his image la-

beling human computation system. After running EPPM with a small number of

workers, he decides to expand the number of workers. However, based on his past

experience, he believes there are two classes of workers - Professionals and Amateurs.

Professionals tends to be workers who make their living working for human

computation systems. They value their reputation and make earnest effort to provide

high quality work for human computation systems.

On the other hand, Amateurs are in general hobbyists. They partake in human

computation systems to make a quick buck on the side, but they are not fully committed

to working for human computation systems for their living. As such, their work tends

to be of lower quality.

The computer scientist wishes to identify the Professionals and reward them

with higher payments. He adopts kPPM for his human computation system. After

receiving all the reports, the mechanism computes the central confusion matrices of

the Professionals and the Amateurs:

Θ̂Pr
µ =

0.99 0.01

0.01 0.99

 Θ̂Am
µ =

0.75 0.25

0.26 0.74


Using the estimates of the state priors and the group confusion matrices, the mecha-

nism estimates the following signal priors and signal posteriors for each group:

φ̂Pr =
[
0.28 0.72

]
φ̂Am =

[
0.39 0.61

]
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ϑ̂Pr =

0.96 0.04

0.02 0.98

 ϑ̂Am =

0.52 0.48

0.31 0.69


Based on these estimates, kPPM computes the payment schedules for the Professionals

and the Amateurs, which are shown in Table 4.2 and Table 4.3, respectively.

HH
HHHHri

rj 0 1

0 1.03 −1.69

1 −0.88 0.16

Table 4.2: Example 5 kPPM Professional Payment Matrix

HHH
HHHri

rj 0 1

0 0.28 −0.24

1 −0.21 0.11

Table 4.3: Example 5 kPPM Amateur Payment Matrix

The mechanism identifies worker j as a Professional and worker i as an Am-

ateur. Assuming all her group peers reported truthfully, if worker j observed signal

Sn,j = 0 and reported truthfully, her expected payment would be

P (Sn,h = 0|Sn,j = 0) · xj(0, 0) + P (Sn,h = 1|Sn,j = 0) · xj(0, 1)

≈ 0.96 · 1.03 + 0.04 · −1.69

≈ 0.9212

For signal Sn,j = 1, her expected payment from truthful reporting would be

P (Sn,h = 0|Sn,j = 1) · xj(1, 0) + P (Sn,h = 1|Sn,j = 1) · xj(1, 1)

≈ 0.02 · −0.88 + 0.98 · 0.16

≈ 0.1392

Compare these expected payments for the Professional worker against those of

82



an Amateur worker. Assuming all her group peers reported truthfully, if worker i

observed signal Sn,i = 0, the expected payment from truthful reporting is

P (Sn,f = 0|Sn,i = 0) · xi(0, 0) + P (Sn,f = 1|Sn,i = 0) · xi(0, 1)

≈ 0.52 · 0.28 + 0.48 · −0.24

≈ 0.0304

For signal Sn,i = 1, the expected payment is

P (Sn,f = 0|Sn,i = 1) · xi(1, 0) + P (Sn,f = 1|Sn,i = 1) · xi(1, 1)

≈ 0.31 · −0.21 + 0.69 · 0.11

≈ 0.0108

For either signals, if the Professional reports truthfully, her expected payment is higher

than that of the Amateur. This difference in the expected payment across the different

types of worker can provide an incentive for the Amateurs to make more effort to

accurately observe their signals in order to be classified as Professionals in the mech-

anism. The overall effect is improvement in the accuracy of the reports for the human

computation system.

Let us assume that the peers of agent i reported truthfully. If agent i did not

report truthfully, one of the three outcomes are possible in kPPM:

1. Agent i is correctly classified into g ∈ G where γi = g

2. Agent i is incorrectly classified into g
′ ∈ G where γi 6= g

′

3. Agent i is classified as an outlier because d(Θi|Θ̂µ) > δmax, and she is classified

into a randomly selected g
′′ ∈ G

If outcome 1 is realized, agent i is worse off than if she had reported truthfully because

within her group the expected payment is maximized only via truthful reporting

strategy. If outcome 2 is realized, agent i’s belief about the signal posteriors of
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her peer agents are inaccurate; therefore, her reports cannot maximize her expected

payment. Finally, if outcome 3 is realized, then agent i faces either outcome 1 or

outcome 2 depending on her randomly assigned group membership. We demonstrate

this property of kPPM with an example.

Example 6. Worker x joins the image labeling human computation system. Worker

x is an Amateur; however, unlike his group peers, he decides to adopt randomly

reporting strategy. Instead of truthfully reporting his observations, worker x decides

to randomly label ‘cat’ and ‘dog’ with 50/50 probability.

From his reports, kPPM incorrectly estimates his confusion matrix:

Θ̂x =

0.5 0.5

0.5 0.5


and the mechanism classifies him as an outlier, neither a Professional nor an Ama-

teur.

Let us assume that kPPM randomly assigns worker x as a Professional. In

this case, the true state posteriors with respect to worker x is shown in Table 4.4.

PPPPPPPPPSAmn,x

SPrn,j 0 1

0 0.552 0.448

1 0.134 0.866

Table 4.4: Example 6 kPPM Signal Posteriors

If his true observed signal is Sn,x = 0, then, the expected payment for worker

x is

0.5 · {P (SPrn,j = 0|SAmn,x = 0) · xx(0, 0) + P (SPrn,j = 1|SAmn,x = 0) · xx(0, 1)}

+ 0.5 · {P (SPrn,j = 0|SAmn,x = 0) · xx(1, 0) + P (SPrn,j = 1|SAmn,x = 0) · xx(1, 1)}

≈ 0.5 · {0.552 · 1.03 + 0.448 · −1.69}+ 0.5 · {0.552 · −0.88 + 0.448 · 0.16}

≈ −0.301
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For signal Sn,x = 1,

0.5 · {P (SPrn,j = 0|SAmn,x = 1) · xx(0, 0) + P (SPrn,j = 1|SAmn,x = 1) · xx(0, 1)}

+ 0.5 · {P (SPrn,j = 0|SAmn,x = 1) · xx(1, 0) + P (SPrn,j = 1|SAmn,x = 1) · xx(1, 1)}

≈ 0.5 · {0.134 · 1.03 + 0.866 · −1.69}+ 0.5{0.134 · −0.88 + 0.866 · 0.16}

≈ −0.652

The total expected payment is

P (SAmn,x = 0) · −0.301 + P (SAmn,x = 1) · −0.652

≈ 0.39 · −0.301 + 0.61 · −0.652

≈ −0.515

On the other hand, let us assume that kPPM randomly, but correctly, assigns

worker x as an Amateur. If his observed signal is Sn,x = 0, then the expected payment

for worker x is

0.5 · {P (SAmn,i = 0|SAmn,x = 0) · xx(0, 0) + P (SAmn,i = 1|SAmn,x = 0) · xx(0, 1)}

+ 0.5 · {P (SAmn,i = 0|SAmn,x = 0) · xx(1, 0) + P (SAmn,i = 1|SAmn,x = 0) · xx(1, 1)}

≈ 0.5 · {0.52 · 0.28 + 0.48 · −0.24}+ 0.5 · {0.52 · −0.21 + 0.48 · 0.11}

≈ −0.013

For signal Sn,x = 1,

0.5 · {P (SAmn,i = 0|SAmn,x = 1) · xx(0, 0) + P (SAmn,i = 1|SAmn,x = 1) · xx(0, 1)}

+ 0.5 · {P (SAmn,i = 0|SAmn,x = 1) · xx(1, 0) + P (SAmn,i = 1|SAmn,x = 1) · xx(1, 1)}

≈ 0.5 · {0.31 · 0.28 + 0.69 · −0.24}+ 0.5 · {0.31 · −0.21 + 0.69 · 0.11}

≈ −0.034
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The total expected payment is,

P (SAmn,x = 0) · −0.301 + P (SAmn,x = 1) · −0.652

≈ 0.39 · −0.013 + 0.61 · −0.034

≈ −0.026

Compare these results to the expected payment of truthful reporting strategy for worker

x for all signals,

P (SAmn,x = 0) · 0.0304 + P (SAmn,x = 1) · 0.0108

≈ 0.39 · 0.0304 + 0.61 · 0.0108

≈ 0.0184

Worker x is far worse off being classified as a Professional. Even if he is

classified as an Amateur, his expected payment is less than if he had reported truth-

fully. Whether worker x is assigned as a Professional or as an Amateur, his expected

payment is greater if he had reported truthfully.

Given a sufficently large numer of data points, kPPM is also robust against

collusion. The same as EPPM, this property is due to the empirical estimation of the

probabilities and the new scoring rule. We demonstrate this property of kPPM with

a simulation in the following section.

4.2.3 Analysis

Performance of EM Algorithm and Expected Payment of kPPM

Similar to the experiment of EPPM, we examine the expected payments to

truthfully reporting agents in kPPM using simulated data. As before, we fix the

states to T = {0, 1, 2} and the signals to S = {0, 1, 2}.

We create three different types of agents - (1) Advanced, (2) Intermediate,

and (3) Novice. Every agent belong to one of the three groups, and the group as-
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(a) MAEs of Θ̂ (b) Expected Payment of EPPM

(c) Absolute Difference CPPM vs
kPPM

Figure 4.5: k-Means Peer Prediction Method: Accuracy

signment are distributed according to a Multinomial distribution with parameter

α =
[
1/3 1/3 1/3

]
. This results in a group assignment with roughly even mem-

bership in all three groups.

The hyperparameters for the confusion matrices for each groups are as follows,

ΛAdv =


98 1 1

1 98 1

1 1 98

 ΛInt =


76 23 1

12 76 12

12 12 76

 ΛNov =


50 25 25

25 50 25

25 25 50
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We vary the number of items, N = (10, 100, 1000) and the number of agents,

I = (9, 24, 48, 90, 180). Similar to the experiment in Section 4.1.3, for each permuta-

tion of (N × I), we experiment on three different state priors. For each permutation

and state priors, we run 50 experiments and report the average of the results.

In addition, because the GroupBelief model assumes that there is a suf-

ficiently large number of agents such that each group has at least two agents, we

sample the groups so that every group contains at least two agents.

Figure 4.5a shows the MAE of recovered Θ̂ from the EM algorithm. We note

that the trend is similar to what we observed in Figure 3.4a in Chapter 3 Section

3.3.3. However, our primary interest lies in the expected payments of kPPM in

various environment.

Figure 4.5b shows the expected payments of the three groups of agents. The

Advanced agents consistently receive higher expected payments than the Intermediate

agents and the Novice agents, and the Intermediate agents likewise receive higher

expected payments than the Novice agents. As the the number of data points decline,

the standard errors of the expected payments also increase for all groups; nevertheless,

kPPM manages to maintain the gaps in the expected payments between the three

groups.

Finally, we compute the absolute differences between the expected payments

of all three groups in kPPM against the expected payments of CPPM in which the

designer has knowledge of all the parameters of the model including the group mem-

bership. In Figure 4.5c, we observe sharp increase in the standandard errors of the

absolute difference as the number of data points go to (N × I) < 2400.

Robustness of kPPM against Strategic Reporting

Similar to the experiment in Section 4.1.3, we compare the expected payments

of the truthful reporting strategy against various reporting strategies in kPPM. We

fix the number of items to N = 1000 and the number of agents to I = 24. We sample
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(a) Advanced Agent (b) Intermediate Agent

(c) Novice Agent

Figure 4.6: k-Means Peer Prediction Method: Robustness – Random
Strategy

the group membership such that each group has exactly eight agents.

First, in Figure 4.6, we examine the expected payments of the three different

agent types if they adopted the random reporting strategy. For all three types of

agents, we see that there is a bimodal distribution of the expected payments under

the random reporting strategy, which was not observed in the EPPM experiment.

One mode is centered close to 0, and the other is centered around −2.5 with standard

deviation of approximately 0.1.

In kPPM, if an agent does not report truthfully she can expect one of three

possible outcomes: (1) be assigned to the correct group, (2) be assigned to a wrong
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(a) Advanced Agent (b) Intermediate Agent

(c) Novice Agent

Figure 4.7: k-Means Peer Prediction Method: Robustness – Signal-prior
Strategy

group, or (3) if identified as an outlier, be randomly selected into any group. For

the randomly reporting agent, kPPM should identify this agents an outlier and will

randomly assign her to one of the three groups. The consequence of this random

assignment is the bimodal distribution of expected payments. If she were correctly

assigned to her true group by chance, her expected payments would be closer to zero.

On the other hand, if she were assigned to another group by chance, her expected

payments would be even lower in the negatives. All in all, Figure 4.6 shows that the

agents’ expected payments are higher in general under the truthful reporting strategy

for all three agent types.
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(a) Advanced Agent (b) Intermediate Agent

(c) Novice Agent

Figure 4.8: k-Means Peer Prediction Method: Robustness – Collusion
Strategy

Likewise, we experiment with the Signal-prior reporting strategy that was

introduced in Section 4.1.3. Figure 4.7 also exhibits a bimodal distribution of the

expected payments under the Signal-prior strategy. kPPM classifies the strategically

reporting agents as outliers, then randomly assigns them to one of the three groups.

The end result is that for all three agent types the agents are worse off than if they

had stuck with the truthful reporting strategy.

Finally, in Figure 4.8, we examine collusion among all 24 agents. For all three

agent types, the consequence of collusion is that their expected payment becomes

zero, and they are better off reporting truthfully.
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4.3. Empirical Scoring Rule Mechanism

While the GroupBelief model relaxes the assumption on the homogeneity of

agents, it is still restrictive in a setting where every agent holds her own unique, private

belief. For example, a human computation system may employ a small number of

workers, and the system designer cannot assume that every worker belongs to a group

in which the members share similar beliefs. In such a setting, the designer should

assume that every worker is her own type of worker with unique, private beliefs of

her own.

However, Radanovic and Faltings (2015) show that when there is a complete

heterogeneity of agents, no existing peer prediction mechanism in the information

elicitation literature can strictly incentivize the agents to report truthfully. This

problem also extends to the Empirical Peer Prediction Method or the k-Means Peer

Prediction Method.

In this section, I introduce the Empirical Scoring Rule Mechanism (ESRM). I

demonstrate empirically that ESRM is a truthful peer prediction mechanism for the

PrivateBelief model, which assumes complete heterogeneity of agents. In addition,

I show that ESRM can also serve as a truthful peer prediction mechanism in other

models.

4.3.1 Model

The PrivateBelief model is an extension of the base model of peer predic-

tion and the PrivateConfusion model. Every agent i ∈ I has own unique confusion

matrix Θi. As were the cases in the CommonBelief model and the GroupBelief

model, the mechanism designer does not know the state priors ρ or the conditional

signal probabilities of the individual agents Θ = {Θ1, ...,ΘI}.

The graphical model representation in Figure 4.9 summarizes the Private-

Belief model.
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rn,isn,iΘi

tnρ

Ψi

N

I

Figure 4.9: PrivateBelief Model

4.3.2 Mechanism

In Chapter 2 Section 2.2, we noted the symmetry of signal posteriors in the

base model of peer prediction mechanism,

P (Sj = s
′ |Si = s) = P (Si = s

′ |Sj = s) ∀i, j ∈ I (4.12)

The common belief model satisfies this property because the conditional signal prob-

abilities are equivalent,

P (Sj = k|T = m) = P (Si = k|T = m) (4.13)

However, the symmetrical property is not satisfied in the PrivateBelief model due

to differences in the confusion matrices Θi and Θj.

Radanovic and Faltings (2015) show that when the agents hold private beliefs,

existing peer prediction mechanisms cannot reliably elicit truthful reports from the

agents. Let us use an example from Radanovic and Faltings (2015) to demonstrate

this problem.
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Consider the case in which I = {i, j} and S = {0, 1}. Suppose that a private

belief model yields the following relationship for agent i and agent j:

P (Sj = 0|Si = 0) = P (Si = 1|Sj = 0) (4.14)

P (Sj = 1|Si = 1) = P (Si = 0|Sj = 1) (4.15)

In this case, if both agent i and agent j observed the same signal such that Si = Sj,

then the expected payments for agent i and agent j would be the same for reporting

the opposite signals, preventing the mechanism from strictly incentivizing the agents

to report truthfully to both signals. In this case, CPPM, EPPM, and kPPM will fail

to be truthful peer prediction mechanisms.

The Empirical Scoring Rule Mechanism provides a solution to this problem

in the PrivateBelief model. Instead of using the reports of the peers and the

signal posteriors, ESRM uses the estimated state posteriors P (Tn|Sn,i = k) and the

estimated true state t̂n and pays the agent as if the agent is engaged in the information

elicitation with verifiable truth using strictly proper scoring rule as seen in Chapter

2 Section 2.1.

The state posteriors represent the agent i’s belief about the probability of the

true state tn of item n given her observed signal of Sn,i. Let us denote the state

posteriors of agent i as a K ×M matrix:

Πi =


πi1
...

πiK

 (4.16)

where πik =
[
πik,1 . . . πik,M

]
, a probability vector, denotes the k-th row of Πi and

πik,m = P (Tn = m|Sn,i = k) represents agent i’s probabilistic belief about the true

state of item n is m conditioned on her signal observation of k.

Similar to the new payment introduced for EPPM and kPPM, the payment
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rule for ESRM is as follows:

xi(rn,i, t̂n) = R(π̂irn,i , t̂n)−R(ρ̂, t̂n) (4.17)

where π̂irn,i is the estimated state posteriors of agent i for signal rn,i. In words,

ESRM’s payment rule is the difference between scores of agent i’s estimated state

posteriors and the mechanism’s estimated state priors.

Mechanism 4.3.1 (Empirical Scoring Rule Mechanism). The Empirical Scor-

ing Rule Mechanism is defined as:

1. Mechanism receives reports rn,i ∈ S from every agent i ∈ I for every world

states indexed n ∈ (1, ..., N).

2. Estimates the confusion matrices Θ̂, the state priors ρ̂, and the true states t̂

from the reports r using the EM algorithm of the PrivateConfusion model

assuming truthful reporting.

3. Computes state posteriors Π̂i from the estimated confusion matrix Θ̂i and the

state priors ρ̂ for every agent i ∈ I.

4. Pays agent i for item n a payment based on

xi(rn,i, t̂n) = R(π̂irn,i , t̂n)−R(ρ̂, t̂n)

where R is a strictly proper scoring rule.

We should note that the agents do not have advance knowledge or belief about

the details of the model. As long as the agents believe that the mechanism accurately

estimates the parameters of the model and accurately infers the true labels, they can

be confident that the mechanism will use the recovered true labels to award them

appropriately for truthful reports.
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Assuming that with sufficiently large N and I ESRM accurately estimates the

parameters and recovers the true states such that Θ̂ ≈ Θ, ρ̂ ≈ ρ, and t̂ ≈ t, then

ESRM is a truthful empirical peer prediction mechanism due to the strictly proper

property of its payment rule. We demonstrate the truthful property of ESRM with

an example.

Example 7. Let us return to the computer scientist and his image labeling human

computation system. He decides to hire six workers for his project, and he believes

that each worker has unique level of competency. In other words, each worker has

her own unique confusion matrix. For this problem, the computer scientist decides to

implement ESRM.

The state priors of the model are

ρ =
[
0.3 0.7

]
The confusion matrix and state posteriors of worker i are as follows,

Θi =

0.7 0.3

0.2 0.8



Πi =

 0.6 0.4

0.1385 0.8615


Suppose that worker i and all her peers reported truthfully. ESRM runs the

EM algorithm to estimate the state priors and the individual confusion matrix of every

worker. Suppose that the estimated state prior is

ρ̂ =
[
0.29 0.71

]
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Furthermore, worker i’s estimated confusion matrix is

Θ̂i =

0.69 0.31

0.22 0.78


From ρ̂ and Θ̂i, the mechanism computes the estimated state posteriors of the worker

i,

Π̂i =

0.56 0.44

0.14 0.86


From these estimates, the mechanism designs the payment schedule for worker i shown

in Table 4.5.

H
HHH

HHrn,i

t̂n 0 1

0 0.614 −0.45

1 −0.488 0.132

Table 4.5: Example 7 ESRM Truthful Reporting Payment Matrix

The total expected payment of worker i from reporting truthfully is

P (Tn = 0, Sn,i = 0) · xi(0, 0) + P (Tn = 1, Sn,i = 0) · xi(0, 1)

+ P (Tn = 0, Sn,i = 1) · xi(1, 0) + P (Tn = 1, Sn,i = 1) · xi(1, 1)

= 0.21 · 0.614 + 0.14 · −0.45 + 0.09 · −0.488 + 0.56 · 0.132

= 0.096

(4.18)

However, let us suppose that worker i reported randomly. The EM algorithm

would had computed her confusion matrix and state posteriors as follows,

Θ̂i =

0.53 0.47

0.48 0.52
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Π̂i =

0.33 0.67

0.28 0.72


Based on these estimates, ESRM computes the payment schedule for worker i

shown in Table 4.6.

H
HHH

HHrn,i

t̂n 0 1

0 0.062 −0.029

1 −0.062 0.026

Table 4.6: Example 7 ESRM Random Reporting Payment Matrix

The total expected payment of worker i from the randomly reporting strategy

is

P (Tn = 0, Sn,i = 0) · xi(0, 0) + P (Tn = 1, Sn,i = 0) · xi(0, 1)

+ P (Tn = 0, Sn,i = 1) · xi(1, 0) + P (Tn = 1, Sn,i = 1) · xi(1, 1)

= 0.21 · 0.062 + 0.14 · −0.029 + 0.09 · −0.062 + 0.56 · 0.026

= 0.018

(4.19)

For worker i, she would have had higher expected payment under the truthful reporting

strategy.

We note that ESRM is also robust against collusion. If all agents coordinate

to report one signal repeatedly, the ρ̂ and Θ̂ (consequently, Π̂) will be uninformative

of the true probabilities. However, the result is deterimental for the colluding agents

as well. We demonstrate this property with an example.

Example 8. Let us return to the computer scientist in the earlier example. Now, he

believes that each worker has unique capabilities, and he decides to deploy ESRM.

The computer scientist’s system faces collusion attack from multiple agents

who have coordinated to label ‘cat’ for all images. Consquently, when the mecha-

nism performs the EM algorithm to compute the model parameters, it returns the the
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following result:

ρ̂ =
[
0.0 1.0

]
and for every worker i, her confusion matrix is

Θ̂i =

0.0 1.0

0.0 1.0


As a result, the estimate of worker i’s state posteriors are

Π̂i =

NaN NaN

0.0 1.0


Moreover, the recovered labels are

t̂ = {1, ..., 1}

The collusive workers provided no useful information for the computer scien-

tist; however, their coordinated attack was also deterimental to their own payments

because the payment for every worker was as follows

x(0, 0) = RQ((0.0, 1.0), 1)−RQ((0.0, 1.0), 1)

= 1.0− 1.0 = 0.0

Although the colluding workers watsted his time, they did not inflict any financial

cost.

4.3.3 Analysis

Performance of EM Algorithm and Expected Payment of ESRM

Using sythetic data, we examine the expected payment to a truthfully re-

porting agent in ESRM under different environment. As before, we fix the states to
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(a) MAEs of Θ̂ (b) Accuracy of t̂n

(c) Expected Payment of ESRM (d) Absolute Difference

Figure 4.10: Empirical Scoring Rule Mechanism: Accuracy

T = {0, 1, 2} and the signals to S = {0, 1, 2}.

We vary the number of items N = (10, 100, 1000) and the number of agents

I = (2, 5, 10, 25, 100). Similar to the experiments in Section 4.1.3 and Section 4.2.3,

for each permutation of (N × I), we experiment on the three different state priors.

For each permutation of (N × I) and state priors, we run 50 experiments and report

the average of the results.

For each experiment, we sample I unique confusion matrices, as described in
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Section 3.4.1, using the following hyperparameter:

Λ =


10 1 1

1 10 1

1 1 10


Unlike EPPM and kPPM, the accuracy of ESRM payment also depends on the

accuracy of the recovered true labels t̂. Therefore, we examine the accuracy of the EM

algorithm in recovering the true labels as well. Figure 4.10a and Figure 4.10b show

the accuracies of recovered confusion matrices and the true labels, respectively. We

note that the two figures are quite similar to Figure 3.4 from Chapter 3 Section 3.3.3.

We notice steep decline in the accuracies of the EM algorithm where the number of

agents is 2 even if the number of items is as large as 1000.

The deterioration in the accuracy of the EM algorithm corresponds to the

spike in the expected payment of ESRM as shown in Figure 4.10c. Lastly, we compare

the expected payments of ESRM against the theoretical payments of ESRM if the

designer had a priori knowledge of the ρ, Θ, and t. We note the steep increase in

the absolute difference between the theoretical score and the empirical score where

the number of agents is 2. The expected payment in ESRM appears to be deviate far

from the theoretical expected payment when there’s deterioration in the accuracy of

the recovered states.

As we shall see in the subsequent section where we compare EPPM and kPPM

against ESRM, with a larger number of data points ESRM yields more accurate re-

sults in terms of absolute difference between the expected payments of empirical

mechanism versus the theoretical mechanism. Whereas with a smaller number of

data points, ESRM also yields less accurate results compared to the other empirical

peer prediction mechanisms.

Robustness of ESRM against Strategic Reporting
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(a) Expected Payment of Truth-
ful Strategy vs Random Reporting
Strategy

(b) Expected Payment of Truthful
Strategy vs Signal-Prior Reporting
Strategy

(c) Expected Payment of Truthful
Strategy vs Collusion Strategy

Figure 4.11: Empirical Scoring Rule Mechanism: Robustness

Similar to the experiments for EPPM and kPPM, we test the robustness of

ESRM against various reporting strategies. We fix the number of items to N = 1000

and the number agents to I = 12. Each agent has her own unique confusion matrix

that is sampled from Λ.

Figure 4.11 shows the expected payments of all three reporting strategies —

random, Signal-prior, and collusion — against the truthful reporting strategy. While

all three reporting strategies have lower expected payments than the truthful report-

ing strategy, the pattern is quite different from those we observed in EPPM and
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kPPM.

The payment rule of ESRM is the difference between the quadratic score of

the agent’s state posteriors and the quadratic score of the state priors:

xi(rn,i, t̂n) = R(π̂irn,i , t̂n)−R(ρ̂, t̂n) (4.20)

Intuitively, ESRM rewards the agent more if she provides more information about

the state of an item than the baseline knowledge, which is the state priors. Thus,

agents are incentivized to not only report truthfully but are also incentivized to make

more effort to provide accurate reports to the mechanism. This interpretation of

ESRM is attractive for human computation systems because it also means that the

mechanism rewards the agent who contributes more to the accurate inferrence of the

state of the items. Hence, ESRM aligns the incentives of the agent whose goal is to

maximize her expected payment with the goal of human computation systems, which

is to accurately infer the true states of the items.

Consequently, since strategic reports do not provide additional information

about any item, ESRM punishes the agents who adopt such reporting strategies with

near 0 payments. This outcome is demonstrated in Figure 4.11.

Performance of ESRM in the CommonBelief Model

The Empirical Scoring Rule Mechanism is also applicable to the Common-

Belief model. Here, we compare the expected payments of ESRM against those of

EPPM in the CommonBelief model.

First, in Figure 4.12, we compare the accuracies of the expected payments of

the two mechanisms for different number of data points. We compare three different

combination of N and I — (1000×100), (100×10), and (10×2). Recall from Chapter

3 Section 3.2.3 that the EM algorithm accurately estimates the confusion matrix and

the true states when N = 1000 and I = 100. In contrast, when N = 10 and I = 2,

the EM algorithm exhibited high errors in estimating the confusion matrix and the
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(a) N = 1, 000× I = 100 (b) N = 100× I = 10

(c) N = 10× I = 2

Figure 4.12: ESRM vs EPPM: Absolute Difference in Expected Payment

true states.

As a reminder, the accuracy of the mechanism’s expected payment refers to

the absolute difference between the mechanism’s expected payment and the theoret-

ical counterpart where the designer has full knowledge of the belief model. For the

theoretical counterpart of ESRM, we assume that the mechanism designer also has

full knowledge of the true states.

Figure 4.12 shows the comparison between the accuracy of expected payments

of ESRM and EPPM in the CommonBelief model. As shown in Figure 4.12a, where

there is a large number of data points N = 1000 and I = 100, then the expected

payments of both mechanisms are close to the theoretical payments. Moreover, ESRM
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exhibits smaller variance for the absolute difference between the expected payments.

However, as the number of data points decreased to 100 × 10, the absolute

difference started to rise for both mechanisms with the difference increasing slighter

more for ESRM than EPPM. At N = 10 and I = 2, as shown in Figure 4.12c, there

is a large increase in the absolute difference between the expected payments of the

theoretical mechanisms and their empirical counterpart. In addition, the absolute

difference of expected payments of ESRM exhibits higher variance.

Whereas EPPM only relies on the estimate of the confusion matrix Θ and

the state priors ρ, ESRM must also recover the true states t on top of Θ and ρ.

Consequently, where there is a shortage of data, the expected payments of ESRM

may deviate more from the theoretical payments than those of EPPM.

We also examine the robustness of the two mechanisms against the differ-

ent reporting strategies in the CommonBelief model. We fix the number of items

N = 1000 and the number of agents I = 12 and compared the ratios of the ex-

pected payments of strategic reporting over those of truthful reporting. Figure 4.13

summarizes our findings.

Both mechanisms punish colluding agents with zero payments. However, for

other strategies, we observe that the two mechanisms punishes strategic reporting dif-

ferently. First, EPPM is more punishing with negative expected payments with high

variance. On the other hand, ESRM pays the agents approximately zero payments

with low variance.

All in all, the simulated data shows that with a sufficiently large number of

data points, ESRM can also incentivize the agents to report truthfully in the Com-

monBelief model just as well as EPPM. One drawback of ESRM is that because the

mechanism relies on both the parameters of the model, Θ and ρ, and the recovered

states t it appears to be more vulnerable to less accurate payments than EPPM in

settings with a smaller number of data points.
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(a) EPPM: Truthful vs Random (b) ESRM: Truthful vs Random

(c) EPPM: Truthful vs Signal-prior (d) ESRM: Truthful vs Signal-prior

(e) EPPM: Truthful vs Collusion (f) ESRM: Truthful vs Collusion

Figure 4.13: ESRM vs EPPM: Expected Payments of Truthful Strategy
vs Other Strategies
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Performance of ESRM in the GroupBelief Model

(a) N = 1, 000× I = 180 (b) N = 100× I = 48

(c) N = 10× I = 9

Figure 4.14: ESRM vs kPPM: Absolute Difference in Expected Payment

ESRM is also applicable to the GroupBelief model. Here, we examine the

accuracy of ESRM versus kPPM in the CommonBelief model.

First, we compare the accuracies of the expected payments of the two mech-

anisms for different number of data points. Similar to the earlier experiment in

the CommonBelief model, we compare three different combination of N and I —

(1000 × 180), (100 × 48), and (10 × 9). Recall from Chapter 3 Section 3.4.3 that

the EM algorithm and the k-Means-Confusion algorithm can accurately estimate the

common confusion matrices and the true states when N = 1000 and I ≥ 120. In con-

trast, when N = 10 and I = 9 the two algorithms exhibited high errors in estimating
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the confusion matrices, the group membership, and the true states.

The outcomes of the experiments are quite similar to those observed for the

CommonBelief model. We briefly comment on the outcomes.

Figure 4.14 shows the absolute difference between empirical scores versus the

theoretical scores to highlight the accuracy of the two mechanisms. We notice that

both kPPM and ESRM are highly accurate when there is a large number of data

points, (1000× 180); however, their accuracies progressively deteriorates as the num-

ber of data points decreases.

In contrast to the experiment in the CommonBelief model, the outcome of

this experiment does not necessarily show larger variance for ESRM as the number of

data point decreases. Because kPPM also relies on the group membership estimate Γ,

it too is vulnerable to a lower number of data points; therefore, we do not see greater

variance of the absolute differences in expected payments for ESRM.

Finally, in Figure 4.15, we see the the expected payments for truthful reporting

strategy versus other reporting strategies of an Intermediate agent. Similar to the

experiment for the CommonBelief model, we see that the two mechanisms punish

strategic reporting quite differently. Nevertheless, for both mechanisms, truthful

reporting strategy appears to be the dominant strategy over the three other strategies.

Thus, we establish that ESRM is applicable to the GroupBelief model and that

ESRM aligns the incentives of the agents to truthful reporting just as well as kPPM

in this model.
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(a) kPPM: Truthful vs Random (b) ESRM: Truthful vs Random

(c) kPPM: Truthful vs Signal-prior (d) ESRM: Truthful vs Signal-prior

(e) kPPM: Truthful vs Collusion (f) ESRM: Truthful vs Collusion

Figure 4.15: ESRM vs kPPM: Expected Payments of Truthful Strategy
vs Other Strategies
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Chapter 5: Summary and Conclusions

In this thesis, I explored existing peer prediction mechanisms from the infor-

mation elicitation literature and models and algorithms for inferring error-rates of

workers in human computation from the machine learning literature. I combined the

concepts from these two different disciplines to present an unified approach to resolv-

ing the incentive-alignment problem and noisy-data problem in human computation

systems.

I started with the CommonBelief model, which maintained the homoge-

neous agent assumption originally introduced in the base model of peer prediction. I

progressively relaxed the homogeneity assumption as I introduced the GroupBelief

model and the PrivateBelief model. For each model, I introduced an applicable

empirical peer prediction mechanism and demonstrated through simulated data that

the mechanism is robust against various reporting strategies. I also showed that the

Empirical Scoring Rule Mechanism is applicable to not only the PrivateBelief

model but also the CommonBelief model and the GroupBelief model. Through

simulated data, I showed that ESRM is a robust mechanism in all three domains.

I believe there are several interesting research directions that one can take in

the empirical methods in peer prediction.

In this thesis, I empirically demonstrated using simulated data the robustness

of the empirical peer prediction mechanisms against strategic reporting. One inter-

esting future direction would be to apply the probably approximately correct learning

(PAC learning) framework to rigorously examine the robustness of the empirical peer

prediction mechanism.
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All three empirical peer prediction mechanisms require that they receive com-

plete report for all items from every participating agents. While in theory a mecha-

nism can indefinitely withhold payments, in real world human computation systems,

workers typically demand timely payment for the completed tasks. Therefore, de-

laying payments until all the workers complete every task may not be applicable in

practice.

An interesting future direction for the empirical methods in peer prediction

would be to incorporate other machine learning techniques, besides the EM algorithm

and the k-means algorithm, to quickly and accurately estimate the belief models of

the agents so that the agents can be paid in timely fashion. Ideally, a mechanism

should accurately compute necessary parameters of the model and pay an agent as

soon as she completes a single task.

Also, the three empirical peer prediction mechanisms compute the payments

based on the error-rates of the agents. They do not consider attributes of the tasks.

In human computation, some tasks are harder than others, and these difficult tasks

should carry higher reward for the workers. Exploring models that incorporate hetero-

geneity of the tasks is an interesting research direction. The JointConfusion model

(Lakkaraju et al., 2015) is a promising candidate for exploration in this direction.

The marriage between machine learning algorithms and peer prediction mech-

anisms is still in its infancy. The three empirical peer prediction mechanisms in this

thesis merely scratch the surface of many more interesting empirical methods in peer

prediction to be introduced in the future. We should look forward to see how these

innovative mechanisms improve human computation systems and be excited about

what newly improved human computation systems can contribute to the broader

scientific community.
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Glossary

Mechanism Design Often called “inverse game theory,” mechanism design is the

study of approaches to engineering incentives in strategic settings where the

agents behave rationally.

Nash Equilibrium A strategy profile (within game theory) Ψ = {Ψi, ...,ΨI} of I

agents is a Nash equilibrium if, for every agent i ∈ I, Ψi is the best response

to Ψ−i. Nash equilibrium is a stable strategy profile such that no agent would

benefit, or increase his utility, by changing his strategy.

Correlated Equilibrium A solution concept in game theory that generalizes Nash

equilibrium. In correlated equilibrium, each agent chooses her action accord-

ing to her private observation of the same public signal. In peer prediction

mechanism, this public signal is the true state of the world.

Human Computation A computational technique in which certain tasks, usually

microtasks, in computation is outsourced to humans. Unlike the traditional

computation scheme where human beings employ the machines to solve a prob-

lem, in human computation, the machine seeks input from human workers,

serving as a step in an algorithm that collects, interprets, and integrates the

inputs into the final solution.

Confusion Matrix Also known as contingency table, or error matrix, the confusion

matrix allows visualization of the performance of classification tasks. For exam-
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ple, given the confusion matrix generated from an image processing software,

Predicted Class

True Class Dog Cat

Dog 8 2

Cat 1 9

we observe that the software correctly labeled 8 images and mislabeled 2 images

out of the total of 10 images of dogs.

Maximum Likelihood Estimation A widely used method of estimating the pa-

rameters of a statistical model given data (i.e. the likelihood P (D|θ))

θMLE = arg max
θ

P (D|θ)

.
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