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ABSTRACT

Estimation of periodicity in non-uniformly sampled time
series data is frequently a goal in astronomical data analysis.
There are various problems faced: Firstly, data is sampled
non-uniformly which makes it difficult to use simple Fourier
transform for performing spectral analysis. Secondly, there
are large gaps in data which makes it difficult to interpolate
the signal for re-sampling. Thirdly, in data sets with smaller
time periods the non-uniformity in sampling and noise
in data pose even greater problems because of the lesser
number of samples per period. Finally, recent use of CCD
technology has enabled collection of vast amounts of data
from various sources. In order to process this huge amount
of data we also need to remove human intervention from the
process of periodicity estimation to make the algorithm more
efficient. In the present work we focus on correntropy and
design a new spatio-temporal kernel to accurately estimate
the time period of the data without any human intervention.

I. INTRODUCTION

Astronomical observations using visual wavelengths are
called light curves (i.e. brightness magnitude over time)
and are used to quantify either the intrinsic variation of
stars such as pulsations and eruptions, or extrinsic variations
such as binary stars and planetary transits. Of particular
interest is the quantification of the period of light curves, a
telltale of objects such as eclipsing binaries, RRLs (pulsating
variable stars named after RR Lyrae), cepheids (intrinsically
variable stars with exceptionally regular periods of light
pulsation), etc [1]. There are several difficulties that need
to be addressed in this area. Firstly, the data set normally
consist of samples which have been taken at non-uniformly
spaced time instants. This prevents the direct usage of
Fourier transformation or correlation to study the spectral
composition or the periodicity of the signal. One possible
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alternative is to interpolate the data and re-sample it period-
ically before applying the method of choice. The presence
of gaps in the time series creates further problem as even
use of interpolation does not give results in an acceptable
range. This problem is avoided by framing the time series
data and using the frames which don’t have gaps or have
very few missing consecutive points. Generally time series
data with larger time periods allow more missing points in
a frame and also the frame length is larger, whereas for
data sets with smaller time periods smaller frame length is
used and fewer number of missing consecutive samples are
allowed. There is also the problem of noise as each sample
point at each time instant has an associated error variance.
Finally, although framing and interpolating enable usage of
simple standard techniques such as correlation or Fourier
Transform this method no longer uses the originally sampled
data points directly. This further introduces interpolation
noise which can further compromise the precision of period
determination.

The time series data analyzed in this work comes from
photometric astronomical surveys. These are basically time
series of intensity of light collected from various channels
like telescopes, different spectral bands or various instru-
ments. The MACHO (Massive Compact Halo Object) survey
[2] is operated with the purpose of searching for the missing
dark matter in the galactic halo, like brown dwarfs or planets.
In MACHO the light amplification is caused by bending
of space around a heavy object due to the phenomenon
known as microlensing. Due to variations in atmosphere
and the sky conditions the data collected is non-uniform in
nature and is noisy. Existing techniques mostly use Lomb-
Scargle (LS) periodogram [3], [4] which is an extension
of classical periodogram techniques but it works with non-
uniformly sampled data. The estimated period given by the
LS periodogram is used to fold the time series modulo the
estimated value for the period so that the periodic nature of
data is clearly seen. Then, the estimated period is trimmed
such that the scatter of the folded plot is reduced. Once
this is achieved it is possible to perform calculations to



obtain a more precise estimate of the period. This final step
known as analysis of variance (AoV) in astronomy is due
to [5]. This process is computationally intensive and with
data being collected from billions of astronomical objects
we need a technique which is more efficient and accurate
at the same time. Recently a method proposed in [6] uses
slotted correntropy for estimation of periodicity of the light
curves. First of all this technique selects a frame of sample
points spanning over a period equal to half of the total
duration of the light curve and removes samples which have
an associated error value greater than a certain threshold.
Then slotted correntropy is applied on the samples as defined
in [6] and Fourier analysis is further performed on the slotted
correntropy result. A fixed number of highest peaks are
obtained from the spectral plot. For each of these peaks a
range of trial periods values in an interval around the maxima
are chosen. Using each of the trial period values folding of
the light curve is done and then the folded light curve is
divided into dynamically chosen bins and then Information
Potential (IP) is calculated on each of these bins and average
is taken. The final metric is used to choose the estimate of
the period. In the step where slotted correntropy is performed
25 different kernel sizes are used and highest peaks of the
spectral plot in each of these cases are used. This method
has been found to give better accuracy than the existing
techniques but the drawback is that it involves a lot of
steps, does not make use of the temporal information while
selecting trial periods and involves use of various kernel
sizes. Hence in the current work we look into a method
which makes use of the temporal information directly and
fewer steps along with use of a single kernel size chosen
according to the light curve data. This inherent difficulty of
the problem requires computationally intelligent techniques
[7], [8], [9], [10], [11] to solve the problem. The present
work proposes an algorithm using Information Theoretic
approach based on correntropy [12], [13], [14] with a new
spatio-temporal kernel. We will be comparing the results of
the current work with the algorithm proposed in [6].

The rest of the paper is organized as follows: Section
II describes necessary theoretical background for this
study. Section III illustrates the new proposed method in
detail. Next, the section IV shows experimental results
with discussion on the same. Finally, section V draws the
principal conclusion.

II. THEORETICAL BACKGROUND

Correntropy uses a positive definite kernel to calculate
a generalized correlation function. Correntropy is a func-
tion of two arguments similar to correlation but with the
addition of higher order moments introduced by the kernel
function. There are various types of kernel functions used
like Gaussian, Spline or Sigmoid but in this particular case
we have used the Gaussian kernel. Correntropy has been

found to produce sharper and narrower peaks corresponding
to similarity estimation as compared to correlation function.
Given a random process {𝑥𝑡 : 𝑡 𝜖 𝑇} where 𝑡 denotes
time and 𝑇 the index set of interest, correntropy function
is defined as;

𝑉 (𝑡, 𝑠) = 𝐸[𝜅(𝑥𝑡, 𝑥𝑠)] (1)

𝜅(𝑥𝑡, 𝑥𝑠) =
1√
2𝜋𝜎

𝑒{−
(𝑥𝑡−𝑥𝑠)2

2𝜎2 } (2)

Applying Taylor series expansion to the Gaussian kernel we
can express the correntropy function as;

𝑉 (𝑡, 𝑠) =
1√
2𝜋𝜎

∞∑
𝑘=0

(−1)𝑘

(2𝜎2)𝑘𝑘!
𝐸[(𝑥𝑡 − 𝑥𝑠)2𝑘] (3)

To obtain a univariate correntropy function we must require
that the even moment terms are shift invariant which is a
stronger condition than the wide sense stationary condition
required by correlation function. Correntropy can be esti-
mated directly from samples using the ergodicity assumption
as;

𝑉 (𝜏) = 𝑉 (𝑡+ 𝜏, 𝑡) =
1

𝑁

𝑁−1∑
𝑛=0

𝜅(𝑥𝑛, 𝑥𝑛+𝜏 ) (4)

and a strict stationarity on even moments is sufficient when
Gaussian kernel is used. Another well defined metric which
correntropy induces in the input space is correntropy induced
metric (CIM) [15]. CIM is defined as;

𝐶𝐼𝑀(𝑋,𝑌 ) = (𝜅(0)− 𝑉 (𝑋,𝑌 ))1/2 (5)

For Gaussian kernel it has been observed that CIM behaves
as L2 norm when two vectors are close, as L1 norm outside
L2 norm and as they go farther apart it becomes insensitive
to distance i.e. behaves as L0 norm. The space over which
it behaves as L2 norm or L0 norm directly depends on the
kernel size 𝜎. This unique property of CIM is very useful
in rejecting outliers.

III. PROPOSED METHOD

This section defines a 2 dimensional kernel based corren-
tropy and then uses it for quantification of the likely period.
Before describing the steps first we discuss the idea behind
this proposed technique.

A periodic signal repeats itself after a fixed interval of
time. If we compare two samples which have been collected
at intervals equal to a multiple of the period of the signal
then it is expected that these values are equal in magnitude.
In our case this happens rarely because, first of all, the
signal is non-uniformly sampled with gaps and there are
lots of noise and modulations. But still if we take two
samples at an interval close to the multiple of the actual time
period then the magnitude will be comparable too. This idea
suggests that one should be folding the observations to the
principal argument of the period. Thus if we know the period



Combining into one frame

Fig. 1. Reconstruction of single period of the signal by
breaking the original signal into frames of length equal to
the actual Time period of the signal

we can reconstruct one period data as 𝑥(𝑡) = 𝑥(𝑡 + 𝑛𝑇 )
where 𝑇 is the period and 𝑛 is an integer. This idea is
illustrated in Figure 1 where the signal with a time period
of 10 units and average sampling time of 1 unit is used to
reconstruct a single period. If we fold the data using a value
of 𝑇 which is not a multiple of the actual period then the
actual signal would not be obtained. It is easy to see that
the period T will yield the smoothest representation in the
principal argument domain. Therefore one needs to find a
methodology to compare the similarity of the samples both
in time and in amplitude, which will be implemented with
a two dimensional kernel. We saw how we can create a
single period of the signal by knowing the actual period.
Unfortunately this method is greedy, and many possible
values of trial period needs to be evaluated to obtain the
period for which the similarity is the highest.

More concretely, we define a two dimension vector h
which has time value in one dimension and magnitude
value in the other. It is expressed as ha = [𝑡𝑎, 𝑥𝑎]

𝑇 and
hb = [𝑡𝑏, 𝑥𝑏]

𝑇 . The product kernel 𝜅 is defined as;

𝜅(ha,hb) = 𝜅1(𝑡𝑎, 𝑡𝑏)× 𝜅2(𝑥𝑎, 𝑥𝑏) (6)

where 𝜅1 and 𝜅2 are both Gaussian kernel as defined in
equation 2 defined on time (𝑡) and magnitude (𝑥) component
of the data set respectively. This kernel is still positive

definite, being effectively a Gaussian kernel with diagonal
covariance matrix with first diagonal component 𝜎1 dealing
with time component 𝑡𝑘 and second diagonal component 𝜎2
dealing with magnitude of data 𝑥𝑘 at that time instant. Using
the newly defined kernel the correntropy equation is defined
as follows;

𝑉𝑃 =
1

𝑁 − 1

𝑁−1∑
𝑖=1

𝜅(hi,hi+1) (7)

where hi is a fixed sequence of vectors denoted by 𝑃 .
The algorithm for the period T estimation is as follows:

1) Let 𝐻 = {hk = [𝑡𝑘, 𝑥𝑘]
𝑇 , 1 < 𝑘 < 𝑁} where 𝑁 is

the total number of data points obtained by selecting
frames of the light curve.

2) For the trial period 𝑇 = 𝑝, the transformation 𝜙𝑝 on
𝐻 is such that 𝜙𝑝(𝐻) = 𝑌 where 𝑌 = {Ψk =

[𝜏𝑘, 𝑥𝑘]
𝑇 , 1 < 𝑘 < 𝑁} s.t. 𝜏𝑘 = (𝑡𝑘−

⌊
𝑡𝑘
𝑝

⌋
𝑝)/𝑝 where

⌊⋅⌋ is floor function.
3) Then we order the transformed vectors such that Ψki

precedes Ψki+1
if 𝜏𝑘𝑖

<= 𝜏𝑘𝑖+1
. If 𝜏𝑘𝑖

= 𝜏𝑘𝑖+1
we

order the amplitudes s.t. 𝑥𝑘𝑖
<= 𝑥𝑘𝑖+1

4) Calculate correntropy with the 2D kernel 𝑉 (𝑝) using
transformed vectors as shown in Equation 7

5) Calculate correntropy with the time kernel only,
as a normalizing factor 𝑈(𝑝) where 𝑈(𝑝) =

1
𝑁−1

∑𝑁−1
𝑖=1 𝜅1(𝜏𝑘𝑖

, 𝜏𝑘𝑖+1
)

6) Vary the value of 𝑝 over a range and repeat from step
2 to step 5.

7) The value of 𝑝 which gives first significant peak in the
plot of 𝑉 (𝑝)/𝑈(𝑝) is the desired period.

In the above algorithm the range depends on some
apriori knowledge of the periods of interest. The range
of 0.25 𝑡𝑜 200 is used and step size of 10(−4) is used.
For lower periods i.e. for values less than 2 days step
size of 10(−5) is used. The reason behind different step
sizes is that for lower values of 𝑝 a small deviation in the
estimated period value can give noisy period reconstruction
as the number of cycles is larger in the given data set. A
significant peak is defined as a peak which exceeds 90%
of the dynamic range of the plot. In the method proposed
in the current work we see that folded light curve is used
to compute the correntropy measure whereas in case of [6]
folded light curve was used to obtain the IP based measure.
In the present work the trial period values are directly used
with a fixed kernel size for a particular light curve whereas
in case of [6] the trial period values are selected from
the Correntropy spectral density (CSD) plot for various
kernel sizes. Also an interesting aspect of the proposed
method is that it is able to use the non-uniform sampling
to its advantage to detect periodicities corresponding to
frequencies above the Nyquist rate. This is possible because
of the folding of the light curves along with the usage of the



Table I. Comparison of proposed technique and method
presented in [6] with results published by Time Series
Center, Harvard University being used as the golden standard
in a subset of 200 EB light curves from MACHO survey

Method Hits[%] Multiples[%] Misses[%]

Proposed Technique 69.0 31.0 0.0

Slotted Correntropy 74.0 25.5 0.5

Table II. Comparison of proposed technique and method
presented in [6] with results published by Time Series
Center, Harvard University being used as the golden standard
in a subset of 400 Cepheid and RRL light curves from
MACHO survey

Method Hits[%] Multiples[%] Misses[%]

Proposed Technique 94.25 3.5 2.25

Slotted Correntropy 97.0 2.75 0.25

temporal information of the folded light curve in the method.

IV. RESULTS AND DISCUSSION

The results are obtained by applying our proposed cor-
rentropy based technique on light curves from the MACHO
survey. We use the results published by Time Series Center,
Harvard University as a golden standard. These results have
been obtained by using AoV and visually inspected by the
Time Series Center team. In this section we first look into the
selection of the kernel sizes. The value of 𝜎1 is considered
w.r.t. average sampling period (determined by dividing the
time interval over which all transformed vectors are spread
by total number of vectors) for choosing an appropriate value
of standard deviation for the time kernel. We can observe
in Figure 2(a) that the peak becomes more prominent by
increasing 𝜎1×(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒) and we also take
into consideration the fact that consecutive vectors in time
passed through the kernel should be given more importance
as compared to vectors which are far apart from each other in
time. Giving more weight to consecutive vectors is especially
more significant as we are trying to measure similarity
between the transformed 2D vectors which are consecutive in
time, during the implementation of our proposed technique.
To give more importance to vectors which are closer in
time we need to reduce the kernel size. So a trade-off is
considered between these two opposing factors and we have
𝜎1 × (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒) = 1. One thing to be
noticed is that the average sampling rate is always fixed for
all values of trial period while scanning over a range because
in the proposed technique we scale all the 2D vectors in the
time range 0− 1 after performing the modulo operation and
the total number of vectors is fixed.

Similarly for magnitude the value of 𝜎2 is considered
w.r.t. amplitude dynamic range. Choosing a very large

kernel size means any two magnitude values from the
corresponding vectors passed through the kernel will give
similar output as the kernel tapers very slowly. Choosing
a very small kernel size would give an output of 1 only
when we have equal magnitude values and give output
close to zero for any other pair of amplitude values. This
is clearly reflected in Figure 2(b) where in the plot of
𝜎2/(𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒) vs 𝑇𝑟𝑖𝑎𝑙 𝑃𝑒𝑟𝑖𝑜𝑑 we
see a larger kernel size gives a flat plot having a value close
to one irrespective of the trial period value and where a
small kernel size gives a plot having value close to zero.
Therefore to obtain a sharper peak at the true period we
choose 𝜎2/(𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒) = 0.1 as the
optimum value.

For simplicity and to have the plot values restricted
between 0 and 1 we drop the normalizing factor for unit
integral in the Gaussian kernel.

Now we present the results obtained by testing and
comparing our correntropy based proposed algorithm to
the algorithm presented in [6]. In Tables I and II the column
indicating multiples means the estimated period in those
percentage of cases were integral multiples or sub-multiple
of the true period. In Table I we see that the accuracy
obtained for the proposed method and also the slotted
correntropy is less compared to accuracy obtained in Table
II for Cepheids and RRL light curves. Large percentage of
EB light curves give an estimated period value which is
sub-multiple of the true period. This means peaks have been
obtained at a sub-multiple of the actual time period and the
difference between the maximum peak value and the peak
value at sub-multiple is less than 10% of dynamic range
of the plot obtained using the proposed technique. This is
illustrated in Figure 3(a). We see a distinct but smaller peak
at half of the true period. This is true for all the EB light
curves which do not give the accurate estimate of the true
period. The proposed algorithm in fact produces multiple
peaks at integral multiple of the true period. The reason
for getting a peak at sub-multiple of true period in case
of EB light curves is due to the shape of the signal which
can be seen in Figure 3(b). We see the modulation effect
inside a period which is responsible for the peak at a value
which is half of the true period. Therefore this will be very
difficult to discern with the current correntropy technique
and further processing will be necessary to cope with this
phenomenon. Ideas from pitch detection in speech may be
very appropriate, but will be object of further research.

V. CONCLUSION

In this work we have introduced a novel spatio-temporal
kernel in correntropy which gives lower but comparable
accuracy to the recently proposed slotted correntropy tech-
nique. The proposed method is able to overcome the dif-
ficulties faced due to non-uniform sampling, large gaps in
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(a) Correntropy plot with varying standard deviation values for time kernel
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(b) Correntropy plot with varying standard deviation values for magnitude kernel

Fig. 2. Determination of kernel size using light curve 1.3442.172 with true period of 1.02 days as an example

data and light curves with smaller time periods and along
with it removes the need of manual verification of the
data. The most interesting aspect of the proposed method
is that it uses the temporal information of the data in the
definition of the kernel function for correntropy, whereas
most existing methods tend to avoid the use of temporal
information. Popular techniques such as Lomb Periodogram
which uses the temporal information tend to give very low
accuracy (close to 10%) in case of EB light curve data due
to their inherent modulation. Another advantage is that it
provides better accuracy to light curves with periodicities
that are close to the sampling frequency because of the
intrinsic folding that is created by the kernel. Essentially
we can estimate frequencies above the Nyquist rate. Finally,
when compared with the slotted correntropy, the proposed
method is much more straight forward to apply because the
weighting is again included in the kernel definition. This is
also due to the fact that in [6] the slotted correntropy method
approximates the time values according to time slots. Hence
it needs multiple peaks and various kernel sizes to help
capture a value close to the true period for folding operation
prior to using information potential. However one drawback
of the proposed method is that it is greedy as it scans through
the value of trial periods to give a similarity measure over
a certain range which is used to identify the true period
of the light curve. Future work will deal with the issue of
kernel design which we believe is the source of the lesser

performance w.r.t. slotted correntropy. In fact, the Gaussian
in time may be too broad to provide sufficient accuracy
whereas a Laplacian kernel may be more appropriate. We
also need to reduce the search for the trial period and also
develop methods to identify the peaks associated with the
true period more accurately.
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