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Abstract

Automatic classification methods applied to sky surveys have revolutionized the astronomical target selection
process. Most surveys generate a vast amount of time series, or “lightcurves,” that represent the brightness
variability of stellar objects in time. Unfortunately, lightcurves’ observations take several years to be completed,
producing truncated time series that generally remain without the application of automatic classifiers until they are
finished. This happens because state-of-the-art methods rely on a variety of statistical descriptors or features that
present an increasing degree of dispersion when the number of observations decreases, which reduces their
precision. In this paper, we propose a novel method that increases the performance of automatic classifiers of
variable stars by incorporating the deviations that scarcity of observations produces. Our method uses Gaussian
process regression to form a probabilistic model of each lightcurve’s observations. Then, based on this model,
bootstrapped samples of the time series features are generated. Finally, a bagging approach is used to improve the
overall performance of the classification. We perform tests on the MAssive Compact Halo Object (MACHO) and
Optical Gravitational Lensing Experiment (OGLE) catalogs, results show that our method effectively classifies
some variability classes using a small fraction of the original observations. For example, we found that RR Lyrae
stars can be classified with ~80% accuracy just by observing the first 5% of the whole lightcurves’ observations in
the MACHO and OGLE catalogs. We believe these results prove that, when studying lightcurves, it is important to
consider the features’ error and how the measurement process impacts it.

Key words: methods: data analysis – stars: statistics – surveys

1. Introduction

Modern synoptic surveys observe giant portions of the sky
for long periods of time. This gives astronomers the
opportunity to make more and greater discoveries than ever
before. Due to its enormity, the generated pool of data can no
longer be analyzed by human-intensive methods, and the
necessity for automatic computational intelligent tools has
become unavoidable. In recent years, automatic classification
of variable stars through lightcurve analysis has been heavily
studied (Debosscher et al. 2007; Kim et al. 2009, 2011a, 2014;
Wachman et al. 2009; Wang et al. 2010; Bloom & Richards
2011; Richards et al. 2011; Bloom et al. 2012; Pichara
et al. 2012, 2016; Pichara & Protopapas 2013; Nun et al. 2014;
Mackenzie et al. 2016). This task aims to identify certain
specific and valuable types of stars so they can later be studied
in greater detail by astronomers.

In this line, machine learning techniques have proved to be
particularly effective due to their precision and speed
(Debosscher et al. 2007). This kind of tool trains classification
models over a group of labeled objects, e.g., a significant group
of stars whose specific variability type has been previously
determined through spectroscopy. The training process seeks to
teach models to recognize underlying patterns that allow them
to discern among a set of variability classes. These patterns can
be very complex and high-dimensional. Fortunately, machine
learning approaches have shown the capability to discover very
complex underlying patterns, that are imperceptible for human
beings (Jiawei & Kamber 2001).

For the task of automatic classification, lightcurves are
represented as a vector of statistical features that describe
different aspects of them, such as brightness variability, color,
periodicity, and auto-correlation, among others (Richards
et al. 2011; Pichara et al. 2012; Nun et al. 2015). However,
the value of those features is highly dependent on the quality of
the measurements on which they are calculated (Kirk &
Stumpf 2009). Inherent errors in the values of photometric
time-series, as well as the amount of observations, may affect
the values of their descriptors. Therefore, the errors committed
by classifiers in their predictions can be attributed, at least in
part, to the lack of precision of the features used to represent
them. In our experiments, we assume that 100% of the
observations correspond to the number of points included on
each lightcurve after the survey finishes its operation. We also
assume that each survey was designed with a specific purpose
and that the number of observation was decided according to it.
Having that said, any lightcurve with removed observations
will be considered incomplete. If the number of removed
observations is considerable, we expect to see variations in the
values used to represent them. For example, an insufficient
amount of observations may result in incorrect estimation of
periods, spurious auto-correlations values, or poorly calculated
variability patterns.
Figure 1 shows the value of three different features for two

different lightcurves, calculated at different moments of the
observation process. The values of each individual feature
have been normalized and centered around zero, in order to
make the variations comparable. It is not surprising that the
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values change considerably as the number of observations
increases, but it is worth noting that stronger changes occur at
the beginning, when the number of observations is smaller.
This holds for most of the statistical estimates. What is
particularly interesting is that this effect is not consistent for
different features and for different lightcurves. In fact, it is easy
to find cases where the same feature takes longer to stabilize
than others or even cases where features do not appear to
converge at all.

The implications of this fact are clear. Photometric lightcurves
are noisy and inhomogeneously measured, with differences in the
number of observations between them and several observational
gaps within them. If the value of the features used to describe them
aren’t robust and based on long periods of time, then they vary
considerably as more observations are added. This class of features
is not reliable when performing classification. In the case of
ongoing surveys, the problem is even bigger. The shorter the time
series being analyzed, the scarcer the information it contains. In
many cases, not even an expert astronomer can correctly classify a
lightcurve that consists of only a couple of measurements. This
matter is of utmost importance because photometric sky surveys
normally take several years to be completed. In cases where the
data may not be sufficient to utilize, it would be very useful to have
a model able to distinguish when there is enough information to
make reliable predictions and when there is not. In our work, we
focus on generating a model that assigns a level of uncertainty to
the calculated features, then the classifier takes it into account and
make predictions considering that uncertainty. Features that are
calculated over statistical samples are often assigned some
measurement of accuracy (Street et al. 1993; Efron & Tibshirani
1994). For simple features like the mean or the standard deviation,
closed-form equations exist for the associated error. Unfortunately,
this is not the case for the majority of the time series features used
for classification. In the cases where closed-form equations are not
available, bootstrapping techniques are an adequate alternative
(Efron & Tibshirani 1994). This techniques allow to assign
measures of accuracy to any statistical quantity by doing random
subsampling of the data where it is estimated.

Our model relies on a parametric time series bootstrapping
technique, proposed to generate many different lightcurve
samples from training sets. Next, various random training sets
are built from this sample, where one automatic classifier is

trained on each of them. This approach allows to overcome the
different biases each training object may possess in its feature
values, by averaging over the predictions among different
random models.
The objective of this work is to demonstrate the advantages

of taking into account the error present in the statistical features
used for classification, and show how that error relates to the
quality of the time series used for classification. The framework
presented in this paper proves that valuable predictions can be
made using a small fraction of the observations with which the
lightcurves’ where originally designed.
The rest of the paper is organized as follows: Section 2 shows a

small review of the work done in supervised classification in
astronomy and bootstrapping techniques for order-dependent data.
Section 3 explains the relevant background theory. Section 4
describes the method presented. Section 5 shows the results
obtained with the method for an artificial case and then applied to
lightcurve catalogs. Finally, the conclusions are presented in
Section 6.

2. Related Work

Automatic classification of lightcurves success depends on
two important and separated aspects of the process. First is the
type of classifier being used. There are many different
supervised classification algorithms in machine learning theory,
each with its own advantages and limitations. Random Forests
(RFs) (Breiman 2001), support vector machines (Cortes &
Vapnik 1995), logistic regression (Cox 1958) and decision
trees (Quinlan 1986) are some of the most popular. However,
no matter which classifier is used, none of them will be
successful if the features used for representation are not
informative enough and therefore able to distinguish different
kinds of objects. This is one of the reasons why a lot of the
research regarding automatic classification of variable stars has
focused on the way lightcurves are represented, rather than the
classifiers they are fed to.
The second aspect is precisely that—how the objects are

represented. Lightcurves are not suited to be introduced as input
to a classifier because they are composed of several hundreds of
observations that are unevenly sampled, taken at different times,
and hardly ever the same size. To address this inconvenience,
lightcurves are converted to vectors of numerical values. Great

Figure 1. Normalized feature values over time. Not all features tend to a specific value (as shown by the mean) as the number of observations increases. Also, not all
features converge at the same time.

2

The Astronomical Journal, 155:16 (15pp), 2018 January Castro, Protopapas, & Pichara



efforts have been made to investigate this topic, Richards et al.
(2011) introduced features that measure different statistical
characteristics of time series, such as standard deviation,
skewness, kurtosis, slopes, and period. Kim et al. (2011a) used
features that capture the period, color, amplitude, and auto-
correlation value of light curves, in order to accurately identify
quasars from the MAssive Compact Halo Object (MACHO)
Large Magellanic Cloud (LMC) database. Additionally, Pichara
et al. (2012) proposed new features based on the parameters of
an adjusted continuous autoregressive model of the lightcurves,
which generated an improvement in the accuracy of quasar
detection methods. Nun et al. (2015) developed a software
library that aims to facilitate the feature-extraction process. The
library includes a very complete compendium of the most
important features in recent literature. Furthermore, it is open-
sourced, making it possible for the whole academic community
to ensure that their implementation is correct and to contribute if
new descriptors are designed in the future.

Although the techniques previously mentioned are effective,
they all rely on features designed by experts in order to describe
objects. It is important to mention some efforts to reduce the
feature-engineering process and contribute to the further
automation of the classification process. Eyer & Blake (2005)
propose the use of parameters obtained from a Fourier deco-
mposition of lightcurves in order to classify objects from the All-
Sky Automated Survey. In Brett et al. (2004), self-organizing
maps are applied to classify singly periodical lightcurves in an
unsupervised approach. In other words, their model works
directly over unclassified objects, without the need to train on a
labeled training set. Finally, Mackenzie et al. (2016) propose an
unsupervised feature learning technique that later can be used to
encode and classify variable stars in a supervised fashion.

Regarding bootstrapping methods, they belong to a family of
techniques in statistics that rely on sampling with replacement
in order to perform inference (Efron & Tibshirani 1994). They
were first introduced by Efron (1979) and have become
increasingly popular since, because they allow to obtain
measures of accuracy (such as the standard error) of a sampling
statistic for small samples of data. Their only limitation is that
they are computer-intensive because they require repetition of
the calculation of the statistics of interest over many bootstrap
samples, but recent advances in computer power make this easy
to overcome and implement.

Because of the previous reasons, and the fact that they can
assign deviations measures to almost any statistics, they are
perfectly suitable to obtain confidence intervals for the values
of complex astronomical features. Nevertheless, the case of
lightcurve features is more complicated. Because this descrip-
tor operates on time series, which are order-dependent data, the
manner in which to resample the data is not evident.

Bootstrapping time series or order-dependent data is not a
straightforward or intuitive task, and many different approaches
have been proposed along the years. Special considerations
must be made, because the order of the data cannot necessarily
be changed without changing the values of the estimators one
wants to calculate. The block bootstrap (Kunsch 1989),
attempts to solve this issue by dividing the time series
observation in adjacent blocks of length ℓ. Next, the resampling
is conducted by drawing these blocks uniformly, thus
preserving the original time series structure within each block.
Although the choice of ℓ is not obvious, block bootstrap has

been shown to work for general stationary data-generating
processes (Bühlmann 2002). Kreiss & Franke (1992) introduce
a different kind of approach based on autoregressive models
and sieve approximation (Grenander 1981). Finally, Kreiss
et al. (1998) propose the so-called local bootstrap, which aims
to model the dependency that each observation has on the
previous ones. This model proves to be effective only when the
observations are generated by a short-range dependent process
(Paparoditis & Politis 2000).
Although all of these methods prove to be effective in

specific cases, they each make different assumptions over the
time series where they are going to be applied, in order to
deliver good results (Bühlmann 2002). This, together with the
fact that photometric lightcurves do not obey many consistency
requirements, make it necessary to look for more flexible ways
of obtaining bootstrap samples.

3. Background Theory

As shown in Figure 1, the value of time series features used
for classification fluctuates significantly when the number of
observations is small, and normally it tends to converge into
more stable values as the lightcurves grow in length. This
stabilization process varies for each object and each of its
features. In cases where features need very well-sampled time
series to be stable, it is harder for a classifier to make accurate
predictions. This motivates us to find a method able to assign
measures of confidence to the estimated features, as well as a
way for classifiers to adjust their predictions accordingly.
For some simple statistical estimates (e.g., the sample mean),

closed-form equations for the error of the estimate are
available. This is not the case for the vast majority of features
used in time series classification. The descriptors used in this
context are normally very complex and exact theoretical values
cannot be obtained. In these kinds of cases, bootstrapping
techniques are an adequate alternative.
In the case of lightcurves, further complications arise.

Normal bootstrapping approaches assume that realizations of
the random variable are independent of each other, which is not
the case for time series data. Lightcurves are measurements
of the brightness intensity of an object with time. Therefore,
each point is clearly related to the ones observed nearby. In
fact, the closer they are, the more information they give about
each other. Only time-series-specific bootstrap methods
are suitable for this task. Also, the fact that lightcurves are
non-uniformly sampled, not aligned, and have uneven lengths
and noisy observations places even more restrictions on the
techniques that might be developed. In this work, we propose a
Gaussian Process (GP) based approach. GP is a very strong and
flexible non-parametric model that can be used for regression
analysis. Because it is non-parametric, it works based on a
kernel function that defines how any to given observations are
related. Several kernel functions can be chosen, depending on
how suitable they are for a given problem. In the next section,
we give further details about GPs and their application to time
series bootstrapping and bagging in machine learning.

3.1. Gaussian Process Regression

The regression problem corresponds to finding a function
xf ( ) that describes the relation between a vector of input

variables x and a target variable y. In practice, however, the
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process by which data is obtained introduces noise to the values
of y. In the following review, a zero mean Gaussian noise on y
will be assumed. Therefore:

xy f , 0, .n
2e e s= + ~( ) ( )

It is important to mention that modern astronomical
instruments are normally able to estimate the measurement
error ε associated with each observation. Although this is rarely
the case in real applications, it does not affect the concepts
presented.

One manner to try and solve the regression problem, and
probably the most common one, is to restrict the class of
functions for xf ( ). Next, the parameters that govern the model
are optimized, so that it fits the observed data as best as
possible. This is called a parametric approach. Although they
are usually easy to interpret, they lack expressive power in
more complex scenarios.

Another approach—the method we use in this paper—is to
define a probabilistic model on the functions f that might fit the
data, then perform inference directly in the space of functions.
Such techniques are known as “non-parametric Bayesian
models” because they establish a prior that reflects the type
of functions we expect to see (periodic or soft curves for
example), and then make Bayesian inferences by combining
the data that we possess with the prior. This strategy is more
flexible because it does not impose any particular type of shape
to the curves that might fit the data. Unfortunately, a function,
may be evaluated in any number of locations; therefore, it is
unfeasible to track a probability distribution that describes its
values over a possibly infinitely large input vector x. However,
when realizing regression, knowledge of the complete domain
of x is unnecessary. In practice, one is only interested in
making predictions on a vector x* of limited size. This fact
allows GPs to solve the problem.

Whereas a probability distribution describes the possible
outcomes of a random variable (discrete or continuous), a
stochastic process governs the properties of functions. A GP, in
particular, is a collection of random variables, any finite
number of which have a joint Gaussian distribution (Rasmus-
sen & Williams 2005). This means GPs satisfy what is called a
marginalization property, which states that if the GP specifies
y y, ,1 2  m~ S( ) ( ), then it must also specify y ,1 1 11 m~ S( ).
In other words, if it implies a distribution over a (possibly
infinite) set of variables, then that same distribution applies for
a smaller set of those variables. Therefore. this property allows
to make the same inference as if one was dealing with the
infinite set of variables, even when only working with the ones
that are of interest.

A GP is completely defined by its mean and covariance
functions m(x) and k x x, ¢( ). On one hand, the mean function
specifies the general tendency of the functions that will arise.
For example, in many real applications, the mean function is
simply defined as m x 0=( ) . This means the average value of
the functions perceived at any given point x is 0. On the other
hand, the covariance function k x x, ¢( ) defines the shape of the
curves that appear, by determining the covariance between any
two points. More formally, the mean and covariance functions
that govern a real process xf ( ) are:

x x
x x x x

m f

k x x f m f m

,

,




=
¢ = - ¢ - ¢

( ) [ ( )]
( ) [( ( ) ( ))( ( ) ( ))]

and the GP

x x x xm k, , .~ ¢( ( ) ( ))
Thus, in order to sample functions from a GP prior, one must

simply build a multinomial Gaussian distribution by replacing
the x* where one wants to sample in the mean function and
covariance function of choice, and with that build the
corresponding x*m ( ) and x*S( ). Assuming m x 0=( ) and a
number of input points X*, the function evaluated at those
points f* satisfies:

f K X X0, , .
* * *~ ( ( ))

To further increase our understanding, let us assume a GP
prior with a mean function x 0m =( ) and the following kernel
function:

x x x x x xf f kcov , , exp
1

2
.p q p q p q

2= = - -⎜ ⎟⎛
⎝

⎞
⎠( ( ) ( )) ( ) ∣ ∣

This function is called squared exponential and is one of the
most common kernel functions. Figure 2 shows three samples
taken at random from this prior.
Finally, having assumed a given GP prior, one must be able

to incorporate the information the training data provide from

Figure 2. Three sampled functions from a GP prior with squared exponential
kernel function.

Figure 3. Three sampled functions from the GP posterior conditioned on five
observations. The standard deviation is smaller close to the observations and
grows as one moves away.
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the phenomenon. In Bayesian terms, this corresponds to
combining the likelihood of the functions, given the observed
points, with the prior that has been chosen, in order to get the
posterior distribution. The joint distribution of the training
outputs f and the test outputs f

*
, according to the prior, is

f
f

K X X K X X
K X X K X X

0,
, ,
, ,

.
*

*
* * *

~
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

( ) ( )
( ) ( )

To get the posterior distribution, the joint distribution must
be conditioned to produce only those functions that are
consistent with the observed data points. This becomes simply

f f fX X K X X K X X

K X X K X X K X X K X X

, , , , ,

, , , , .

1

1
* * *

* * * *

~

-

-

-

∣ ( ( ) ( )
( ) ( ) ( ) ( ))

Now, in real cases where observations are noisy, these
equations can very easily be updated to incorporate these
deviations. The covariance function, regardless of the one that
is being used, must be updated to

x x

y

y y k

K X X I

cov , ,
or

cov , ,

p q p q n pq

n

2

2

s d

s

= +

= +

( ) ( )

( ) ( )

where pqd is the Kronecker delta. Then the joint distribution
becomes:

y
f

K X X I K X X
K X X K X X

0,
, ,

, ,
,n

2

*
*

* * *
 s~ +⎡

⎣⎢
⎤
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⎝
⎜⎜

⎡
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⎤
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⎞
⎠
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( ) ( )

and one can finally arrive at the key predictive equations for GP
regression.

f y f f

f f y

y
f

X X

X X

K X X K X X I
K X X K X X K X X

I K X X

, , , cov ,
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, ,
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] ( )

For the complete derivation of these equations, please refer
to Rasmussen & Williams (2005).
In the case of regression problems, the mean of the

distribution formed by the posterior is taken as the function
that best represents the relation between the input and the
objective variable. One of the main advantages of this
regression model, other than its flexibility, is that it not only
gives the values of the function evaluated on some locations
X*, but also, because it is probabilistic, the prediction has a
deviation assigned to it. As Figure 3 shows, this deviation
accurately reflects the knowledge provided by data, because it
tends to be smaller near the data points and grows in the
intervals where there are not any observations.

3.2. Gaussian Process Bootstrap

Because the GP is a probabilistic model, it can be used in
ways other than just as a simple regressor. Kirk & Stumpf
(2009), shows an example of how one can apply GP regression
to form a parametric time series bootstrap. The technique is
straight forward. A GP is adjusted over the time series of
interest and the posterior distribution that best explains the
behavior of the data is obtained. As shown in Section 3.1, the
posterior is a multivariate Gaussian distribution completely
defined by its mean vector f

*
¯ and covariance matrix fcov

*
( ).

Thus, several possible time series can be randomly sampled
from this distribution until a sample set of the desired size is
formed.
This has many advantages over more traditional bootstrap

approaches. First, it takes into account the relation different
observations have on each other, and their relative position in
the curve. In other words, if an observation is being sampled
from an isolated fragment of a series, the value will vary
considerably across different samples, while samples that have
actual observations near them will have similar values to the
points around them. Second, the way observations influence
each other can be controlled depending on the kernel function
that is chosen. If periodic relations are expected or seen in the
data, a periodic term can be added to the kernel, for example.
Third, depending on the kernel that is used, it is possible to take

Figure 4. Illustration of the first stage of the algorithm, the time series bootstrapping. A GP is adjusted over a lightcurve and several random sampled curves are
obtained from it.
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into consideration the error in the values of the data that one
possesses. Fortunately, in the case of photometric lightcurves,
catalogs possess the measurement error for every observation.
Therefore, this information can be added to the model in order
to increase its accuracy, because the model knows beforehand
which data points are more reliable than the rest. Finally, it uses
all the observations available to create the sampled curves,
whereas other bootstrap techniques work by dividing the data
into subsets—where valuable information may be lost.

3.3. Bagging

Bagging is an abbreviation for “bootstrap aggregating,” and is a
machine-learning ensemble strategy first introduced by Breiman

(1996). It allows to combine the strength of multiple models in
order to increase the overall predicting accuracy. The idea behind
bagging is to generate many versions of the same predictor, where
each version is trained on a different bootstrap sample of the
original training set. Then, in the case of objects classification,
the most voted class among the group of models is regarded as the
final output. Bagging not only improves the predictive power of
the models, but also, by taking the voting distribution, it gives a
confidence measure of the prediction it makes.
Bagging is especially effective when the predictive method

presents a high instability. Büchlmann & Yu (2002) formalize the
notion of instability and show how this technique helps to
overcomes the effects it has in classification performance. The

Figure 5. GP regressor adjusted over a lightcurve from the MACHO catalog. The model captures the general form of the time series and adjusts the deviation
according to the observations possessed. The model is less influenced by measurements with greater measurement error.

Figure 6. Two random samples taken from a GP model of a MACHO lightcurve. The samples are taken at uniform times over the span of the measurements. Sampled
observations near the original ones have very similar values, while samples taken from empty spaces are more disperse.
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formal mathematical definition is outside the scope of this paper,
but the general idea is that instability is greater when the model
being adjusted does not converge to a definite value after a certain
amount of data. In other words, small changes in the data
considered to train, or new observations of the same, produce
differences in the final model. This is precisely the case shown in
Figure 1. If the value of the features is highly unstable due to the
small amount of observations, then the learned model will suffer
the same problem, and the predictions it realizes will not be
reliable.

4. Methodology

As demonstrated before in Section 1, when lightcurves are
composed of only a few points, the values of the features that
describe them become dispersed. This because, as there are few
observations, the value of each one becomes more important, and
tiny variations on their values, or the presence of new ones, affects
the estimation considerably. This deteriorates the effectiveness of
classifiers, as features are no longer able to describe different
objects consistently. To overcome this problem, we draw from
what is proposed in Kirk & Stumpf (2009) to create bootstrapped
samples of any feature, together with a bagging approach to
combine the different outcomes each set of samples produces. By
doing this, we diminish the effect that feature variance has on
classification performance.

Our algorithm consists of four major steps. In the first stage,
we adjust a GP regression model to each lightcurve. This
produces a probability distribution, for each individual curve,
that represents the different values that curve may take. Next, n
time series are randomly sampled from each of this models,
according to the technique described in Section 3.2. In the
second stage, we take a different sample from each of the
original objects to form n different sets. We then calculate a set
of descriptors for each of the samples in these so-called “sample
sets.” The third stage consists of training a classifier on each of

these sets, thus obtaining n different models. The fourth and final
step is to classify the unknown lightcurves. We use the same
idea again; n samples are taken from the adjusted GP on the
lightcurve. Finally, each sample is classified by one of the
models, thus obtaining a voting distribution on each object’s
class. Figures 4–8 show the different stages of the process.

4.1. Time Series Bootstrapping

The first step of the process is to take every lightcurve in the
training set and obtain bootstrapped samples from each of
them. The idea is that each lightcurve presents different
behaviors in the sections where the sampling is poor; in other
words, where not many measurements were made. On the other
hand, if the lightcurve presents a very good sampling, we
expect the bootstrapped samples to be very similar.
To obtain bootstrap samples of the lightcurves in the training

set, we adjust a GP regression model on each of them and take
n samples from the obtained posterior distribution. As
described in Section 3.1, what defines the shape of a GP is
the kernel function. In the case of photometric lightcurves, we
take from the work done by Faraway et al. (2014), and use a
GP prior similar to the one they proposed. However, because
the type of object is not known beforehand, we assume a
constant mean function equal to the average value of each
signal. Thus, the prior we use is:

x x x x

x x

x x x x

f k

n

k
l

, ,
where

1

and

, exp
1

2
.

i

n

i

p q f p q n pq

1

2
2

2 2



å

m

m

s s d

~ ¢

=
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=
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( )
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Figure 7. Illustration of the second stage of the algorithm. The different samples of each lightcurve are separated into different “sample sets.” Each of these sets
represents a different random scenario of the observed lightcurves.
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In the equations above, xm ( ) is the mean of the signal, f
2s is

the signal variance, l is the length scale, pqd is the Kronecker
delta, and n

2s is the noise variance. The last term is particularly
interesting, because for astronomical data, unlike the majority
of cases, the measurement error can be estimated for each
observation. Figure 5 shows the adjusted GP model over a
lightcurve from the MACHO catalog.

The number of samples to take is not obvious at first glance,
and it must be found empirically because it may change in
different scenarios. There is a trade-off between the accurate
representation of the curves distribution and the computational
time the method takes. In our experiments, we found that 100
samples gave optimal results while remaining computationally
feasible. Figure 6 shows two random samples taken from a GP
model adjusted over the curve on Figure 5.

4.2. Sample Sets

After taking the bootstrap samples, we form n different
training sets, where each set contains a single and different

sample for each of the original labeled lightcurves. We refer to
these as the sampled sets. An illustration of this stage is shown
in Figure 7.
Next, a group of time series features is calculated for each

curve of the sampled sets. For this task, we use the Feature
Analysis for Time Series (FATS) library (Nun et al. 2015). This
open-sourced Python library allows easy and efficient calcul-
ation of the most-used lightcurve features existent in literature.
Although this tool allows to calculate more than 50 different
time series features, we restricted our work to a subset of only
23 features that prove to be effective for classification. We
decided to discard all features that need different bands to be
calculated, because this adds further complexity to the problem
and including them goes beyond the scope of this investigation.
At this stage, because the features have been calculated for n

bootstrapped samples of each lightcurve, we now possess an
estimation of the distribution of their values for each object.
According to these distributions, features that present a high
variability in their values will be less influential on the

Figure 8. Illustration of the final stage of the algorithm. When an unknown lightcurve needs to be classified, the same process is realized. Various samples are taken
from it, have their features calculated, and then are given to a classifier different from the ones trained on the previous step.
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classification, whereas features that are more consistent will be
taken more into account by the model.

4.3. Training

After we calculate the features for each of the samples sets,
we adjust one decision tree classifier (Breiman et al. 1984;
Quinlan 1986) on each sample set. We decide to use decision
trees on the samples in order to form an RF Classifier
(Breiman 2001) when we ensemble the trees. RF has proved to
be one of the most effective classifiers for variable star
classification (Carliles et al. 2010; Richards et al. 2011; Pichara
et al. 2012; Pichara & Protopapas 2013). However, instead of
combining trees trained with different subsets of features, we
combine trees trained on different random scenarios. Each
scenario is a possible uncertain outcome of the values of the
original training set.

4.4. Classification

The final stage is to predict the class of a new unlabeled
object. The same logic presented before is used again here.
Because the values of a new lightcurve may be corrupted, the
prediction yielded by the classifiers have a greater chance of
being incorrect. Therefore, n different samples are once again

obtained and their features calculated. Each sample is then
given to a different trained model for it to cast its vote. Finally,
the votes of all models are tabulated, and the most popular class
is regarded as the final predicted class. An illustration of this
stage is shown in Figure 8.
It is important to note that, because voting is taken place, the

actual prediction of this framework only indicates a belief (not
certainty) of belonging to each of the possible classes. One can
take advantage of this quality to discard or further analyze
confusing results; for example, in the case that many models
give different predictions regarding the same object.
If a lightcurve presents very little, noisy, or unevenly

distributed measurements, the value of its features will change
greatly among different samples. Therefore, it is likely for

Table 1
Robot Training Set Composition

Class Number of Objects

1 Move-Forward 2205
2 Sharp-Right-Turn 2097
3 Slight-Right-Turn 826
4 Slight-Left-Turn 328

Figure 9. Classification F-Score for the robot training set. The results obtained by bagging the predictions of many different classifiers are less affected by noise than
both the decision tree and RF.

9

The Astronomical Journal, 155:16 (15pp), 2018 January Castro, Protopapas, & Pichara



different classifiers to be confused and cast contradicting votes.
On the other hand, if a lightcurve is well sampled, and thus
very well described, the voting of the different classifiers is
likely to be more consistent.

5. Experimental Results

In this section, our experimental results are presented. First, we
detail a synthetic experiment based on the robot navigation data
set. The goal of this example is to show first how classification
results are affected when the values of the variables are affected
by randomness, and then how this problem can be reduced by
using bagging techniques like the one proposed. Next, we present
the classification results obtained by working with photometric
lightcurve data. In order to generate an experimental setup for the
problem of automatic classification with incomplete lightcurves,
the lightcurves are truncated into smaller versions of themselves
by selecting only the first few observations. In this way, we
simulate the scenario of surveys that are barely beginning their
measurement process. The difference between the real case and
the synthetic one (and one of the key contributions of this
investigation) is how the method proposed in Section 3.2 is used
to obtain the bootstrapped samples of noisy lightcurve features. In
both the synthetic and real cases, we compare how a bagging
scheme classifier improves the classification of standard models.
Classifier performance is measured with a tenfold stratified cross-
validation F-Score on each of the classes present in the
corresponding data set. We choose the classic decision tree
(Breiman et al. 1984; Quinlan 1986; Quinlan et al. 1996) and the
RF (Breiman 2001) as the classifiers with which to compare our
model. We compare with the decision tree to validate that the
bagging realized in our method improves the results of this simple
model. Second, we compare with the RF because this is the
classifier of choice in much of the recent literature (Kim et al.
2011a; Richards et al. 2011; Pichara et al. 2012; Pichara &
Protopapas 2013; Nun et al. 2014) regarding automatic
classification of variable stars; it is also the most precise,
according to our tests. All three models work with exactly the
same set of features.

5.1. Robot Data Set

The data set used for this experiment is taken from the UCI
machine-learning repository (Lichman 2013). It is called a “wall

following robot” data set (Freire et al. 2009), as it was collected
from a mobile robot that navigates along the walls of a room
without colliding. The robot is equipped with a belt of 24
ultrasound sensors that measure the proximity of objects in a
360°radius at evenly timed steps. Each entry of the data set thus
contains the readings of the 24 sensors together with a class that
corresponds to the specific movement the robot must make,
selected from a group of four defined possible movements.
The robot’s training set is composed of 5456 readings, and

the class composition is detailed in Table 1. We choose to work
on this data set as a synthetic example because it does not have
any missing values; it also has a number of attributes and
instances similar to the photometric data sets we work with.
To evaluate the effects that feature noise has on classification

results, we first test the performance of two regular classifiers
over a normal data set with increasing levels of noise in its
variables. These results are then compared with an ensemble of
classifiers working on synthetic bootstrapped samples of the
same training set. The experiment is conducted as follows.
The robot data set is taken and the range of each feature is

calculated (the difference between the maximum and the
minimum value it takes on the data set). A white noise kernel
with standard deviation equal to a randomly chosen value
between zero and a fixed percentage of the amplitude is then
added to each feature of each instance. For example, to
generate a data set with 5% noise, we take a sample from all of
those kernels by using 5% of the corresponding feature range
as the maximum possible standard deviation. The advantage of
doing this is that it allows us to generate any number of
randomly sampled sets from the same feature distribution.
It is important to choose a different white noise kernel for the

same feature in different instances. That way, the obtained data
sets will resemble the ones used for photometric classification.
As shown in Figure 1, the same variable may behave
differently on different lightcurves.
The regular classifiers (a decision tree and an RF) are trained

on a single data set for each level of noise, whereas our method,
as described in Sections 4.3 and 4.4, trains a model on each
different sampled set and then uses a voting scheme
classification to make predictions.
We did this test for various levels of added noise, ranging

from 5% to 20%. The results obtained are shown in Figure 9.
We can see how, for all of the classes, the voting scheme
classifier gives better results than both the decision tree and RF,
trained over a single observed random set.

5.2. MACHO Data Set

The MACHO catalog is the result of a project that aimed to
find dark matter in the form of MACHOs. The project made

Table 2
MACHO Training Set Composition

Class Number of Objects

1 Non-variable 4768
2 Quasar 34
3 Be Star 112
4 Cepheid 101
5 RR Lyrae 606
6 Eclipsing Binary 255
7 Microlensing 393
8 Long Period Variable 358

Figure 10. GP regressor adjusted over a lightcurve from the MACHO catalog.
The model gives greater uncertainty to regions where no observations are
recorded.
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photometric observations of tens of millions of stars, for almost
six years, in the LMC, Small Magellanic Cloud (SMC), and
Galactic bulge (Alcock et al. 2001).

The photometric training sets are labeled subsets of the actual
surveys. The MACHO training set is composed of 6627 curves
(Kim et al. 2011b). Its class composition is detailed in Table 2.

Figure 10 shows a GP model adjusted over a lightcurve from
the MACHO catalog. It is important to notice that the model
assigns greater uncertainty to regions where no observations are
recorded, while regions with better measurements are regarded
as more accurate. This is very important because lightcurves
with greater gaps in their measurements will produce boot-
strapped samples with greater differences in their values, while
better sampled curves will result in more consistent ones.

Figure 11 shows three samples taken randomly from the
previous model. It is evident that all the samples present very
similar values on regions with higher density of observations. On
the other hand, regions where the original time series has less
information are very different among the samples. This behavior
is expected for this stage of the process.

Every statistical estimate has an inevitable degree of error in
its estimation. Therefore, finding methods to assign measures
of accuracy in their values is crucial. Variables whose values
present high degrees of error (just as some photometric
measurements) are normally dismissed in favor of more precise

ones when using them for analyses. The bootstrapping
technique used in this investigation allows for the same logic
to be applied to the time series features used for classification.
Figure 12 shows a graphical comparison of the distribution of
the MaxSlope variability feature for two different curves from
the MACHO catalog. The MaxSlope corresponds to the
maximum absolute magnitude slope between two consecutive
observations present on the represented series of points. It is
evident that one curve presents much more error in the
estimation of the MaxSlope variability feature.
The curve that presents more consistency in its values will be

more influential in the classification process than the other one.
Because as the values will be given to different classifiers,
inconsistent behaviors are dismissed by the voting of the
majority, while consistent ones are reinforced.
Table 3 show the classification results obtained by the model

proposed in this paper, an RF, and a decision tree, applied to
the MACHO training set. Compared with the decision tree, our
method shows better results for all of the classes training set,
except the Cepheids. These results show that combining the
votes of many decision trees over different samples of the same
objects effectively improves the classification performance.
Compared with the RF, although there are specific differences

on the per class performance, both models have similar results
on the MACHO training set. Our method gets better results for

Figure 11. Three random samples taken from a GP model of a MACHO lightcurve. Samples taken from empty spaces are more dispersed. Therefore, lightcurve with
poorer sampling, both in total number and uniformity of observations, will present a greater dispersion in the value of their calculated features.
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RR Lyrae stars and quasars, while the RF does better at
identifying Cepheids and microlensings.

5.3. OGLE-III Data Set

The OGLE-III catalog of variable stars (Udalski et al. 2008)
contains photometric data obtained during the third phase of
the Optical Gravitational Lensing Experiment. This wide-field
sky survey was designed with the objective of finding dark
matter through the microlensing technique. It contains regular
measurements of the brightness of more than 200 million
objects from the large and SMCs, Galactic bulge. and Galactic
Disk, taken since 2001.

The OGLE training set is composed of 4733 labeled curves.
Its class composition is detailed in Table 4. This training set is
chosen as a subset of the most represented variable star classes
in the catalog, and is of comparable size to the MACHO data
set. Also, in order to make the classification more difficult, we
choose objects from different locations in space, namely the
LMC, SMC, and Galactic Disk.
Figure 13 shows the fitting of the GP model over a

lightcurve from the OGLE catalog. The model again is able to
describe the general behavior of the curve, but this time it
shows a greater dispersion along most of the curve. This result,
as described in Section 4.1, is the effect of the noise variance
component of the kernel used by the GP. Because the
observations of this curve present a higher measurement error,
the model automatically assumes the regression must not fit
that close to those observations.
Figure 14 shows three random samples taken from the fitted

model. In this case, due to the general dispersion of the model,
the samples tend to be more different from one another.

Figure 12. Distribution for the values of the MaxSlope variability measure for two lightcurves from the MACHO catalog. It is clear that the the blue values are more
concentrated and thus present lower variability. On the other hand, the green values show a greater error in the estimation of its value.

Table 3
Classification F-Score on the MACHO Training Set

Class
Random
Forest Our Method Decision Tree

1 Be Star 0.570 0.546 0.461
2 Cepheid 0.931 0.790 0.870
3 Eclipsing Binary 0.474 0.465 0.392
4 Long Period

Variable
0.877 0.856 0.850

5 RR Lyrae 0.737 0.762 0.671
6 Microlensing 0.823 0.775 0.690
6 Non Variable 0.930 0.936 0.910
6 Quasar 0.041 0.247 0.130

Table 4
OGLE-III Training Set Composition

Class Number of Objects

1 Cepheid 724
2 Type 2 Cepheid 575
3 RR Lyrae 998
4 Eclipsing Binary 794
5 Delta Scuti 656
6 Long Period Variable 986

Figure 13. GP regressor adjusted over a lightcurve from the OGLE catalog.
When observations contain higher instrumental error, the model assigns more
dispersion to the general distribution.
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Figure 14. Three random samples taken from a GP model of an OGLE lightcurve. Due to the higher instrumental error these observations present, the sampled
lightcurves present considerable dispersion everywhere.

Figure 15. Distribution for the values of the eta variability measure for two lightcurves from the OGLE catalog. It is clear that the blue values are much more
concentrated—and thus present lower variability. On the other hand, the green values show many escaped higher values.
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Figure 15 shows the distribution of the eh variability feature
(Kim et al. 2014), but this time for two lightcurves from the
OGLE catalog. Again, we can see that the difference in
variability of the values for the two curves is considerable.

Table 5 shows the classification results obtained by the
model, but this time working on the OGLE training set.
The results obtained are very similar to the ones shown in the
MACHO data set. When compared with the decision tree, all
classes except for the eclipsing binaries see their F-Score
improved by our model. This again validates the potential of
the model.

Compared with the RF, the results again are similar—with
the difference that our method gives better results for Cepheids
and RR Lyrae stars, which are extremely valuable to find,
compared with the rest of the classes.

Although the proposed model does not outperform the
random forest classifier, it is important to notice the high
precision the model presents for some important variability
classes. For example, RR Lyrae stars have a 0.89 F-Score,
which is excellent, even though the model is only working with
5% of the available observations. Long period variables are
even more impressive, with a 0.96 F-Score. These results show
that astronomers may not need to wait long periods of time to
identify these types of objects reliably.

6. Conclusions

In this work, we present a new way of bootstrapping features
for lightcurve classification where, instead of making sub-
samples of the instances of the training set, we sample the
original time series used to estimate them.

A GP regression is used to form a probabilistic model of the
values observed for each lightcurve. In Bayesian terms, this is
called a posterior distribution because it combines the evidence
the data gives with a prior that reflects the beliefs we have
about the behavior of stellar variability. The prior also
considers the measurement error each observation presents,
and adjusts the model accordingly. We performed tests on the
MACHO and OGLE catalogs, and our results show that
the regression model correctly describes the behavior of the
lightcurves. Because the GP is a generative model, it uses all of
the observations to form new samples, instead of only
considering the information of preceding points. This preserves
the long-term patterns underlying the data. The model also
assigns greater deviation to the regions where no observations
are recorded. Therefore, samples taken from empty spaces are
more dispersed than the ones taken near other observed points.
We have also shown how to obtain an empirical distribution of
the value of any feature. Lightcurves with poorer sampling—in
total number, uniformity of observations, or both—present a

greater dispersion in the value of their calculated features. This
allow for a model to discard the instances where values have
higher variability, in favor of others with more consistency in
their values. We show that combining the votes of many
different classifiers across different samples of the same objects
increases the overall classification accuracy. Although it does
not outperform the random forest classifier on every class, both
models show that they are able to recognize some classes with
surprising precision, despite working with only a fraction of the
observations. Finally, we have shown that our method is able to
classify some variability classes with only a fraction of the
observations of the original lightcurve. For example, RR Lyrae
stars and long period variables can be identified with more than
80% accuracy, using only the first 5% of the observations
available in MACHO and OGLE. This could allow better
utilization of the early stages of survey exploration. We believe
this framework constitutes the first attempt to include the error
of time series features into the automatic classification process.
In this sense, it proves that better results can be obtained by
using simpler models, like decision trees, when this issue is
taken into account. We hope that this research encourages the
astronomical community to give greater consideration to the
error associated with feature calculation, how the measurement
process impacts it, and how to develop more ways to
overcome it.

This work is supported by Vicerrectoría de Investigación
(VRI) from Pontificia Universidad Católica de Chile, the
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