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Abstract. Clustering is a fundamental task in unsupervised learning
that depends heavily on the data representation that is used. Deep gen-
erative models have appeared as a promising tool to learn informative
low-dimensional data representations. We propose Matching Priors and
Conditionals for Clustering (MPCC), a GAN-based model with an en-
coder to infer latent variables and cluster categories from data, and a
flexible decoder to generate samples from a conditional latent space.
With MPCC we demonstrate that a deep generative model can be com-
petitive/superior against discriminative methods in clustering tasks sur-
passing the state of the art over a diverse set of benchmark datasets.
Our experiments show that adding a learnable prior and augmenting the
number of encoder updates improve the quality of the generated samples,
obtaining an inception score of 9.49 ± 0.15 and improving the Fréchet
inception distance over the state of the art by a 46.9% in CIFAR10.

1 Introduction

Clustering is a fundamental unsupervised learning problem that aims to group
the input data based on a similarity criterion. Traditionally, clustering mod-
els are trained on a transformed low-dimensional version of the original data
obtained via feature-engineering or dimensionality reduction e.g. PCA. Hence
the performance of clustering relies heavily on the quality of the feature space
representation. In recent years deep generative models have been successful in
learning low-dimensional representations from complex data distributions, and
two particular models have gained wide attention: The Variational Autoencoder
(VAE) [33], [56] and the Generative Adversarial Network (GAN) [17].

In VAE an encoder and a decoder network pair is trained to map the data
to a low-dimensional latent space, and to reconstruct it back from the latent
space, respectively. The encoder is used for inference while the decoder is used
for generation. The main limitations of the standard VAE are the restrictive as-
sumptions associated with the explicit distributions of the encoder and decoder
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outputs. For the latter this translates empirically as loss of detail in the generator
output. In GAN a generator network that samples from latent space is trained
to mimic the underlying data distribution while a discriminator is trained to
detect whether the generated samples are true or synthetic (fake). This adver-
sarial training strategy avoids explicit assumptions on the distribution of the
generator, allowing GANs to produce the most realistic synthetic outputs up to
date [3], [30], [31]. The weaknesses of the standard GAN are the lack of inference
capabilities and the difficulties associated with training (e.g. mode collapse).

One would like to combine the strengths of these two models, i.e. to be able
to infer the latent variables directly from data and to have a flexible decoder
that learns faithful data distributions. Additionally, we would like to train simul-
taneously for feature extraction and clustering as this performs better according
to [71], [74], [73]. Extensions of the standard VAE that modify the prior distri-
bution to make it suitable for clustering have been proposed in [29], [9], [28],
although they still suffer from too restrictive generator models. On the other
hand, the standard GAN has been extended to infer categories [64], [39], [7].
Other works have extended GAN to infer the posterior distribution of the latent
variables reporting good results in both reconstruction and generation [5], [13],
[10], [65], [40], [41]. These models do inference and have flexible generators but
were not designed for clustering.

In this paper we propose a model able to learn good representations for clus-
tering in latent space. The model is called Matching Priors and Conditionals for
Clustering (MPCC). This is a GAN-based model with (a) a learnable mixture of
distributions as prior for the generator, (b) an encoder to infer the latent vari-
ables from the data and (c) a clustering network to infer the cluster membership
from the latent variables. Code are available at github.com/jumpynitro/MPCC.

2 Background

MPCC is based on a matching joint distribution optimization framework. Let
us denote q(x) as the true distribution and p(z) the prior, where x ∈ X is the
observed variable and z ∈ Z is the latent variable, respectively. q(x) and p(z)
stand for the marginalization of the inference model q(x, z) and generative model
p(x, z), respectively. If the joint distributions q(x, z) and p(x, z) match then it is
guaranteed that all the conditionals and marginals also match. Intuitively this
means that we can reach one domain starting from the other, i.e., we have an en-
coder that allows us to reach the latent variables p(z) ≈ q(z) = Eq(x)[q(z|x)] and
a generator that approximates the real distribution q(x) ≈ p(x) = Ep(z)[p(x|z)].
Notice that the latter approximation corresponds to a GAN optimization prob-
lem. In the case of vanilla GAN the Jensen-Shannon divergence DJS(q(x)||p(x))
is minimized, but other distances can be used [1], [19], [54], [48].

Although other classifications can be done [77], we recognize that the joint
distribution matching problem can be divided in three general categories: i)
matching the joints directly, ii) matching conditionals in Z and marginals in X ,
and iii) matching conditionals in X and marginals in Z. The straight forward

http://github.com/jumpynitro/MPCC
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approach is to minimize the distance between the joint distributions using a fully
adversarial optimization such as [13], [10], [11], which yields competitive results
but still shows difficulties in reconstruction tasks likely affecting unsupervised
representation learning. According to [40] these issues are related to the lack of
an explicit optimization of the conditional distributions.

Recent works [58], [41], [77] have shown that the VAE [33] loss function
(ELBO) is related to matching the inference and generative joint distributions.
This can be demonstrated for the KullbackLeibler (KL) divergence of p from q,
which we refer as forward KL, as follows:

DKL(q(z, x)||p(z, x))

= Eq(x)[DKL(q(z|x)||p(z|x))] +DKL(q(x)||p(x))

= Eq(x)Eq(z|x)[− log p(x|z)] + Eq(x)[DKL(q(z|x)||p(z))] + Eq(x)[log q(x)]

= Eq(x)[−ELBO] + Eq(x)[log q(x)], (1)

hence maximizing the ELBO can be seen as matching the conditionals in latent
space Z and the marginals in data space X (see the second line in Eq. 1). The
proof for the first equivalence in Eq. 1 can be found in the Appendix A.

In order to avoid latent collapse and the parametric assumptions of VAE,
AIM [41] proposed the opposite, i.e. to match the conditionals in data space
and the marginals in latent space. Starting from the KL divergence of q from p,
which we refer as reverse KL, they obtained the following:

DKL(p(z, x)||q(z, x))

= Ep(z)[DKL(p(x|z)||q(x|z))] +DKL(p(z)||q(z))
= Ep(z)Ep(x|z)[− log q(z|x)] + Ep(z)[DKL(p(x|z)||q(x))] + Ep(z)[log p(z)], (2)

where p(z) is a fixed parametric distribution hence Ep(z)[log p(z)] is constant.
Therefore [41] achieves the matching of joint distributions by minimizing
DKL(p(x|z)||q(x)) to learn the real domain, and maximizing the likelihood of the
encoder Ep(x|z)[log q(z|x)]. This allows obtaining an overall better performance
than [13], [10], [40] in terms of reconstruction and generation scores. This method
matches the conditional distribution explicitly, uses a flexible generator [17] and
avoids latent collapse problems [44].

Lot of research has been done in unsupervised and semi supervised learning
using straight forward joint distribution optimization [10], [13], [11], [26], and
even more for conditional in latent space decomposition [33], [34], [46], [45].
In this work we explore the representation capabilities of the decomposition
proposed in [41]. Our main contributions are:

• A mathematical derivation that allows us to have a varied mixture of dis-
tributions in latent space enforcing its clustering capabilities. Based on this
derivation we developed a new generative model for clustering called MPCC,
trained by matching prior and conditional distributions jointly.
• A comparison with the state-of-the-art showing that MPCC outperforms

generative and discriminative models in terms of clustering accuracy and
generation quality.
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• An ablation study of the most relevant parameters of MPCC and a compar-
ison with the AIM baseline [41] using state of the art architectures [11].

3 Method

3.1 Model definition

MPCC extends the usual joint distribution of variables x ∈ X and z ∈ Z incor-
porating an additional latent variable, y ∈ Y, which represents a given cluster.
We specify the graphical models for generation and inference as

• p(x, z, y) = p(y)p(z|y)p(x|z, y),
• q(x, z, y) = q(y|z)q(z|x)q(x),

respectively. The only assumption in the graphical model is q(y|z) = q(y|z, x),
i.e. z contains all the information from x that is necessary to estimate y.

For generation, we seek to match the decoder p(x|z, y) to the real data dis-
tribution q(x). The latent variable is defined by the conditional distributions
p(z|y) which in general can be any distribution under certain restrictions (Sec-
tion 3.3). The marginal distribution p(y) is defined as multinomial with weight
probabilities φ. Note that under this graphical model the latent space becomes
multimodal defined by a mixture of distributions p(z) =

∑
y p(y)p(z|y).

In the inference procedure the latent variables are obtained by the condi-
tional posterior q(z|x) using the empirical data distribution q(x). The distribu-
tion q(y|z) is a posterior approximation of the cluster membership of the data.

We call our model Matching Priors and Conditionals for Clustering (MPCC)
and we optimize it by minimizing the reverse Kullback-Leibler divergence of the
conditionals and priors between the inference and generative networks as follows:

DKL (p(x, z, y)||q(x, z, y))

= Ep(z,y)[DKL(p(x|z, y)||q(x|z, y))]

+ Ep(y)[DKL(p(z|y)||q(z|y))] +DKL(p(y)||q(y)).

(3)

The proof for Eq. (3) can be found in Appendix A. In the following sections we
derive a tractable expression for Eq. (3) and present the MPCC algorithm.

3.2 Loss function

Because q(y), q(z|y) and q(x|z, y) are impossible to sample from, we derive a
closed-form solution for Eq. (3). In particular for any fixed y and z we can
decompose DKL(p(x|z, y)||q(x|z, y)) as follows:

DKL(p(x|z, y)||q(x|z, y))

= Ep(x|z,y)

[
log

p(x|z, y)

q(x)

q(z, y)

q(z, y|x)

]
= Ep(x|z,y)

[
log

p(x|z, y)

q(x)
− log q(y|z)− log q(z|x) + log q(z|y) + log q(y)

]
.

(4)
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Adding log p(z|y) + log p(y) − log q(z|y) − log q(y) to both sides of Eq. (4) and
taking the expectation with respect to p(z, y) the Eq. (3) is recovered. After
adding these terms and taking the expectation we can collect the resulting right
hand side of Eq. (4) as follows:

Ep(z,y)[DKL(p(x|z, y)||q(x|z, y)) +DKL(p(z|y)||q(z|y)) +DKL(p(y)||q(y))]

= Ep(y)p(z|y)[DKL(p(x|z, y)||q(x))]︸ ︷︷ ︸
Loss I

+Ep(y)p(z|y)p(x|z,y)[− log q(z|x)− log q(y|z)]︸ ︷︷ ︸
Loss II

+ Ep(z|y)p(y)[log p(y) + log p(z|y)]︸ ︷︷ ︸
Loss III

, (5)

where Loss I seeks to match the true distribution q(x), Loss II is related to
the variational approximation of the latent variables and Loss III is associated
with the distribution of the cluster parameters. The right hand term of Eq. (5) is
a loss function, composed of three terms with distributions that we can sample
from. In the next section we explain the strategy to optimize each of the terms
of the proposed loss function.

MPCC follows the idea that the data space X is compressed in the latent
space Z and a separation in this space will likely partition the data in the most
representatives clusters p(z|y). The separability of these conditional distributions
will be enforced by q(y|z) which also backpropagates through the parameters of
p(z|y). The connection with the data space is through the decoder p(x|z, y) for
generation and the encoder q(z|x) for inference.

3.3 Optimizing MPCC

In what follows we describe the assumptions made in the distributions of the
graphical model and how to optimize Eq. 5. For simplicity we assume the con-
ditional p(z|y) to be a Gaussian distribution, but other distributions could be
used with the only restriction being that their entropy should have a closed-form
or at least a bound (second term in Loss III). In our experiments the latent
variable z|y ∼ N (µy, σ

2
y) is sampled using the reparameterization trick [33], i.e.

z = µy + σy � ε where ε ∼ N (0, I) and � is the Hadamard product. The pa-
rameters µy, σ2

y are learnable and they are conditioned on y. Under Gaussian
conditional distribution the latent space becomes a GMM, as we can observe
mathematically p(z) =

∑
y p(y)p(z|y) =

∑
y p(y)N (µy, σ

2
y).

The distribution p(x|z, y) is modeled by a neural network and trained via
adversarial learning, i.e. it does not require parametric assumptions. The infer-
ential distribution q(z|x) is also modeled by a neural network and its distribution
is assumed Gaussian for simplicity. The categorical distribution q(y|z) may also
be modeled by a neural network but we propose a simpler approach based on the
membership from the latent variable z to the Gaussian components. A diagram
of the proposed model considering these assumptions is shown in Fig. 1. We now
expand on this for each of the losses in Eq. 5.

Loss I: Instead of minimizing the Kullback-Leibler divergence shown in the
first term on the right hand of Eq. (5) we choose to match the conditional decoder
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Fig. 1. Diagram of the MPCC model. The blue colored elements are associated with
Loss I (Eq. 6). The green colored elements are associated with Loss II (Equations 7
and 8). The red colored elements are associated with Loss III (Eq. 10). The dashed
line corresponds to the generator (GMM plus decoder).

p(x|z, y) with the empirical data distribution q(x) using a generative adversarial
approach. The GAN loss function can be formulated as [12]

max
D

Ex∼q(x)[f(D(x))] + Ex̃∼p(x,z,y)[g(D(x̃))],

min
G

Ex̃∼p(x,z,y)[h(D(x̃))],
(6)

where D and G are the discriminator and generator networks, respectively, and
tilde is used to denote sampled variables. For all our experiments we use the
hinge loss function [42], [67], i.e. f = −min(0, o − 1), g = min(0,−o − 1) and
h = −o, being o the output of the discriminator. The parameters and distribution
associated with Loss I are colored in blue in Fig.1.

Loss II: The first term of this loss is estimated through Monte Carlo sampling
as

Ep(y)p(z|y)p(x|z,y)[− log q(z|x)]

= Eyi∼p(y),zi∼p(z|y=yi),x̃i∼p(x|z=zi,y=yi)

 J∑
j=1

1

2
log(2πσ̃2

ij) +
(zij − µ̃ij)2

2σ̃2
ij


︸ ︷︷ ︸

Lq(µ̃i,σ̃2
i ,zi)

, (7)

where J is the dimensionality of the latent variable z. By minimizing Eq. (7)
we are maximizing the log-likelihood of the encoder q(z|x) with respect to the
Gaussian prior p(z|y). This reconstruction error is estimated by matching the
samples zi ∼ p(z|y = yi) with the Gaussian distribution (µ̃i, σ̃

2
i ) ∼ q(z|x = x̃i),

where x̃i is the decoded representation of zi.

The second term of Loss II is equivalent to the cross-entropy between the
sampled label yi ∼ p(y) and the estimated cluster membership ỹi
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Lc(yi, ỹi) = −
K∑
k=1

yik log ỹik, (8)

where K is the number of clusters and

ỹim = q(y = m|z = zi) =
N (zi|µm, σ2

m)∑K
k=1N (zi|µk, σ2

k)
, (9)

is the membership of zi to the m-th cluster. The parameters µm and σ2
m are

learnable, and m ∈ [1, . . . ,K] is the index corresponding to each cluster. The
parameters and distribution associated with Loss II are colored in green in Fig.
1. In practice Eq. 9 is estimated using the log-sum-exp trick.

Loss III: This loss is associated with the regularization of the Gaussian
mixture model parameters φ, µ and σ2 and has a closed form

Ep(y)p(z|y)[log p(y) + log p(z|y)]

=

K∑
k=1

φk

log φk −
J∑
j=1

(
1

2
+

1

2
log(2πσ2

kj)

)
︸ ︷︷ ︸

Lp(φ,σ2)

, (10)

where the first term corresponds to the entropy maximization of the mixture
weights, i.e. in general every Gaussian will not collapse to less than K modes of
the data distribution which is a solution with lower entropy. In our experiments
we fix φk = 1/K, i.e. φ is not learnable. The second term is a regularization for
the variance (entropy) of each Gaussian which avoids the collapse of p(z|y). The
parameters associated with Loss III are shown in red in Fig. 1.

Loss I scale differs from that of the terms associated with the latent variables.
To balance all terms we multiply Eq. (7) by one over the dimensionality of x5

and the second term of Eq. (10) by one over the dimensionality of the latent
variables. During training Loss III is weighted by a constant factor λp. We
explain how this constant is set in Section 5.3. The full procedure to train the
MPCC model is summarized in Algorithm 1. Note that MPCC is scalable in the
number of clusters since Eq. 7 is a Monte Carlo approximation in y and the cost
of Eq. 10 is low since J is small in comparison to the data dimensionality.

4 Related methods

In Section 3 we showed that the latent space of MPCC it is reduced to a GMM
under Gaussian conditional distribution. Because all the experiments are per-
formed based on this assumption in this section we summarize the literature of
generative and autoencoding models that consider GMMs.

5 If x is an image then its dimensionality would be channels× height× width
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Algorithm 1 MPCC algorithm
1: K, J ← Set number of clusters and latent dimensionality
2: η, ηp ← Set learning rates

3: θg, θd, θe ← Initialize network parameters

4: φ, µ, σ2 ← Initialize GMM parameters
5: θc ← [φ, µ, σ2]
6: repeat
7: for Dsteps do

8: x1, . . . , xn ∼ q(x) . Draw n samples from empirical distribution
9: y1, . . . , yn ∼ p(y) . Draw n samples from categorical prior
10: zi ∼ p(z|y = yi), i = 1, . . . , n . Draw n samples from Gaussian conditional prior
11: x̃i ∼ p(x|z = zi, y = yi), i = 1, . . . , n . Generate samples using generator network

12: θd ← θd + η∇θd
[

1
n

∑n
j=1 f(D(xj)) + 1

n

∑n
i=1 g(D(x̃i))

]
. Gradient update on

discriminator network
13: end for
14: y1, . . . , yn ∼ p(y) . Draw n samples from categorical prior
15: zi ∼ p(z|y = yi), i = 1, . . . , n . Draw n samples from Gaussian conditional prior
16: x̃i ∼ p(x|z = zi, y = yi), i = 1, . . . , n . Generate samples using generator network
17: (θg, θc)← (θg, θc)− η∇(θg,θc)

1
n

∑n
i=1 h(D(x̃i)) . Gradient update on generator network

18: for Esteps do

19: y1, . . . , yn ∼ p(y) . Draw n samples from categorical prior
20: zi ∼ p(z|y = yi), i = 1, . . . , n . Draw n samples from Gaussian conditional prior
21: x̃i ∼ p(x|z = zi, y = yi), i = 1, . . . , n . Generate samples using generator network

22: (µ̃i, σ̃
2
i ) ∼ q(z|x = x̃i), i = 1, . . . , n . Encode x̃ to obtain mean and variance

23: θe ← θe − η∇θe 1
n

∑n
i=1 Lq(µ̃i, σ̃

2
i , zi) . Gradient update on encoder network

24: if first Estep then

25: ỹi ∼ q(y|z = zi), i = 1, . . . , n

26: θc ← θc − ηp∇θc
[

1
n

∑n
i=1 Lc(yi, ỹi) + λp · Lp(φ, σ2))

]
. Gradient update on Prior

parameters
27: end if
28: end for
29: until convergence

The combination of generative models and GMMs is not new. Several meth-
ods have applied GMM in autoencoding [68], [78] or GAN [20], [57] applications
without clustering purposes. Other approaches have performed clustering but
are not directly comparable since they use mixtures of various generators and
discriminators [76] or fixed priors with ad-hoc set parameters [2].

Among the related works on generative models for clustering the closest ap-
proaches to our proposal are ClusterGAN [51] and Variational Deep Embedding
[28]. ClusterGAN differs from our model in that it sets the dimensions of the
latent space as either continuous or categorical while MPCC uses a continuous la-
tent space which is conditioned on the categorical variable y. On the other hand,
Variational Deep Embedding (VADE) differs greatly in the training procedure,
despite its similar theoretical basis. VADE, as a variational autoencoder model,
matches the joint distributions in the forward KL senseDKL(q(x, z, y)||p(x, z, y))
by matching the posteriors and the marginals in data space as demonstrated in
Appendix B. MPCC optimizes the reverse KL, i.e. matching the priors in latent
space and conditionals in data space. Optimizing different KLs yield notably
different decompositions and thus training procedures. For the forward KL [28]
in addition to the challenges in scaling to larger dimension (Section 2) it is more
difficult to generalize the latent space to any multi-modal distribution, we briefly
discuss the reasons for this in Appendix B.
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5 Experiments

5.1 Quantitative Comparison

Following [71], the performance of MPCC is measured using the clustering ac-
curacy metric in which each cluster is assigned to the most frequent class in the
cluster. Formally this is defined as

ACC = max
m∈M

∑N
i=1 1{yi = m(ci)}

N
, (11)

whereN is the total number of samples, yi is the ground truth, ci = arg maxk q(y =
k|z = zi) is the predicted cluster and M is the space of all possible mappings
between clusters and labels.

To measure the quality of the samples generated by MPCC we use the in-
ception score (IS) [60] and the Fréchet inception distance (FID) [23].

5.2 Datasets

In order to evaluate MPCC we performed clustering in five benchmark datasets:
a handwritten digit dataset (MNIST, [38]), a handwritten character dataset
(Omniglot, [37]), two color image dataset (CIFAR-10 and CIFAR-100 [36]) and
a fashion products image dataset (Fashion-MNIST, [70]). For CIFAR-100 we
consider the 20 superclasses. Omniglot was created using the procedure described
in [24]. Because the task is fully unsupervised we concatenate the training and
test sets as frequently done in the area [24], [4], [71]. All datasets have 10 classes
except for Omniglot and CIFAR-20 with 100 and 20 respectively. All images were
resized to 32 × 32 and reescaled to [-1,1] in order to use similar architectures.
The CIFAR-10 experiments where IS and FID are reported (tables 1, 2 and 3)
were trained using only the training set (50,000 examples) for a fair comparison
with the literature. For all clustering experiments we use the same number of
cluster as the datasets classes.

5.3 Empirical details

Our architecture is based on optimization techniques used in the BigGAN [3]6,
we found that simpler architectures such as DCGAN [55] were not able to learn
complex distributions like CIFAR-10 while optimizing the parameters of the
prior. Architecture details are given in Appendix C. We consider parameter
sharing between the encoder and discriminator, and we test the importance
of this in Section 5.5. We set Dsteps = 4 (see Algorithm 1), we found that
using smaller values of Dsteps causes mode collapse problems when training on
CIFAR-10 (see Appendix D). A similar effect can be observed when choosing
a low number of latent dimensions, therefore we set J = 128 in all CIFAR-
10 experiments. We made small changes in the architecture and optimization
parameters depending on the dataset (see Appendix C).

6 https://github.com/ajbrock/BigGAN-PyTorch

https://github.com/ajbrock/BigGAN-PyTorch
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We observed the same relation between batch size and (IS, FID) reported
in [3]. However we found artifacts that hurt accuracy performance when using
batch size larger than 50. For simplicity we used this value in all experiments.

We consider a weighting factor λp for Loss III (Eq. 10). We observed that
if λp = 1, the standard deviation of the prior σ would increase monotonically,
hindering training. On the other hand if λp is too small, σ decreases, collapsing
at some point. We found empirically that a value of λp = 0.01 combined with a
minimum threshold for σ of 0.5 allow the algorithm to converge to good solutions.

The parameter settings indicated above were fixed for all experiments and
didn’t show a big effect in accuracy performance. In section 5.4 we explore the
parameters that most affect the training. We trained all experiments for 75,000
iterations, except for MNIST and Omniglot which iterate for 125,000. For un-
conditional and conditional training we kept the model of the last iteration.

5.4 Ablation study

We found that Esteps, the number of encoder updates per epoch, and ηp, the
learning rate of the prior parameters, are the most relevant hyperparameters
to obtain high accuracy and generation quality. Increasing Esteps improves the
estimation of q(z|x) since the prior and generator parameters are changing con-
stantly. Rows 1-3 of Table 1 show that the reconstruction error (MSE) decreases
with Esteps. Generation quality metrics (IS, FID) also improve with larger values
of Esteps due to the shared parameters between encoder and discriminator.

At initialization the GMM components might not be separated. We observed
that the clustering accuracy drops when the generators learns a good approxi-
mation of the real distribution before the clusters are separated. To avoid this we
use a larger learning rate for the parameters of the GMM prior with respect to
the parameters of the generator, encoder and discriminator. Rows 4-6 of Table
1 show that the clustering accuracy increases for larger values of ηp.

5.5 Comparison between GMM Prior and Normal Prior

Using the best configuration found in the ablation study, we performed a com-
parison with AIM [41], whose results are shown in Table 2. We can consider AIM
as a particular case of MPCC where a standard Normal prior is used instead
of the GMM prior. AIM does not perform clustering therefore we compare it
with MPCC in terms of reconstruction and generation quality. We use the same
architecture and parameter settings of MPCC for AIM and we denote this model
as AIM-MPCC. To extend our analysis further, Table 2 includes the results of
using parameter sharing between the encoder and the discriminator (Appendix
C), an idea that was considered but not fully explored in [41].

Note that AIM-MPCC (NS) is considered a baseline because the prior is
Gaussian and the encoder doesnt share parameters with the discriminator thus
the existence of the encoder doesnt affect the generation quality. In Table 2 we
can observe the relevance of parameter sharing, with this conguration (Esteps =
4) the baseline improves by 0.85 (IS) and 11.13 (FID) points. Adding the GMM
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Table 1. Esteps correspond to the en-
coder updates and ηp to the learning rate
of the prior parameters. The scale of MSE
is in 10−3. The statistics were obtained for
at least three runs

Esteps ηp Acc % IS FID MSE

1 2e-4 41.31
±5.74

8.82
±0.07

11.38
±0.23

1.34
±0.96

2 2e-4 38.67
±3.52

9.02
±0.05

9.66
±3.98

1.01
±1.11

4 2e-4 38.27
±2.46

9.25
±0.09

7.50
±0.43

0.331
±0.09

4 4e-4 52.58
±5.30

9.44
±0.06

6.55
±0.33

0.48
±0.22

4 6e-4 61.99
±4.96

9.49
±0.15

6.59
±0.45

1.04
±1.03

Table 2. Comparison of MPCC and
AIM-MPCC methods with sharing pa-
rameters (S) and without sharing (NS) on
the CIFAR-10 dataset. The scale of MSE
is in 10−3. The statistics were obtained
for five runs

Model Acc % IS FID MSE

AIM-MPCC (NS) - 8.24
±0.07

21.55
±1.47

1.52
±0.84

AIM-MPCC (S) - 9.09
±0.04

10.42
±0.36

1.64
±1.42

MPCC (S) 61.99
±4.96

9.49
±0.15

6.59
±0.45

1.04
±1.03

in the prior improves an additional 0.4 (IS) and 3.93 (FID) points. In total when
using the GMM Prior and parameter sharing with additional encoder updates we
improve the baseline from 21.55 to 6.59 (69.4% improvement) in terms of FID
score and 1.25 points (15.2% improvement) in terms of IS. It is important to
notice that these techniques are general and easily applied to any GAN scheme.

5.6 Generation quality of MPCC

Using the configuration of row five from Table 1 we compare MPCC with nine
state of the art methods, surpassing them in terms of IS and FID scores in both
the unsupervised and supervised setting, as shown in Table 3. The unconditional
generation is the most significant with an improvement of 46.9% (FID) over
state-of-the-art (SOTA), AutoGAN [16]. Most notably its performance is better
than the current best conditional method (BigGAN).

5.7 Clustering experiments

Table 4 shows the clustering results for the selected benchmarks. We observe
that in all the available benchmarks MPCC outperform the related methods,
VADE [28] and ClusterGAN [51]. In more complex datasets such as CIFAR10,
MPCC notably surpass discriminative based models (e.g. [24], [27]) which are the
most competitive methods in the current literature. For benchmarks with more
classes the margin is even larger obtaining improvements over the SOTA of ∼
42% and ∼ 9.7% points in Omniglot and CIFAR-20 respectively, demonstrating
empirically the scalability of MPCC when using a high number of clusters.

It can be observed that for all datasets our proposed method either achieves
or surpasses the SOTA in terms of clustering. Figures 2 and 3 show examples of
generated and reconstructed images, respectively, using the MPCC model with
the highest accuracy in the MNIST and CIFAR-10 datasets.
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Table 3. Inception and FID scores for CIFAR-10, in unconditional and conditional
training. Higher IS is better. Lower FID is better. †: Average of 10 runs. ‡: Best of
many runs. ††: Average of 5 runs. Results without symbols are not specified

Model IS FID

DCGAN [55] 6.64± 0.14 −
SN-GAN† [50] 8.22± 0.05 21.7± 2.1
AutoGAN [16] 8.55± 0.10 12.42
PG-GAN ‡ [30] 8.80± 0.05 −
NCSN [63] 8.91 25.32
MPCC†† 9.49± 0.15 6.59± 0.45

(a) Unconditional (unsupervised) gener-
ation

Model IS FID

WGAN-GP [19] 8.42± 0.10 −
SN-GAN † [50] 8.60± 0.08 17.5
Splitting GAN ‡ [18] 8.87± 0.09 −
CA-GAN † [52] 9.17± 0.13 −
BigGAN [3] 9.22 −
MPCC†† 9.55± 0.08 5.69± 0.17

(b) Conditional (supervised) generation

6 Discussion

Our results show that MPCC achieves a superior performance with respect to the
SOTA on both clustering and generation quality. We note that the current SOTA
on unsupervised and semisupervised learning relies on consistency training [72]
and/or data augmentation [27], i.e. techniques that are complementary to MPCC
and could be used to further improve our results.

To the best of our knowledge MPCC is the first deep generative clustering
model capable of dealing with more complex distributions such as CIFAR-10/20
and the first to report clustering accuracy on these datasets. Additionally we
empirically prove the scalability of MPCC showing significant improvements in
datasets with a larger number of classes, 20 in case of CIFAR-20 and 100 in case
of Omniglot, such scalability has not been proven for the current literature on
generative models [28], [51], [64], [75].

Our experiments show that MPCC’s key innovations: GMM prior, loss func-
tion and optimization scheme (e.g. extra encoder updates with parameter shar-
ing) are not only relevant to achieve a good clustering accuracy but also allows us
to obtain unprecedented results in terms of generation quality (Table 3). Which
translates in improvements of 69.4% over the baseline (Table 2) and 46.9% over
the SOTA (Table 3) in terms of FID score. We think that the exceptional gen-
eration capabilities of MPCC are related to the support that each cluster covers
of the real domain. Since each cluster learns a subset of the real distribution the
interpolation between two points within a cluster is smoother compared to the
case where no latent separation exists. The latter is explained by the learnable
shared features which exploit the similarities existing in a cluster and are not
present in a fixed global prior (i.e. ALI, AIM).

The high generation quality can be appreciated in Fig. 2 (more samples in
Appendix E), where many clusters sample consistently different classes. However
we can still see some classes mixed in some clusters, for example in columns 7-8
with cats and dogs. MPCC also presents a competitive performance in terms of
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Table 4. Clustering accuracies for several methods and datasets. All the results of
CIFAR-20 dataset were extracted from [27], the results of IMSAT and DEC from
[24], the results of InfoGAN and ClusterGAN from [51] and the remaining from their
respective papers. †: average of 5 or more runs. ‡: best of 5 runs. §: best of 10 or more
runs. ‖: best of 3 runs. Results without symbols are not specified

Datasets

Methods MNIST Onmiglot FMNIST CIFAR-10 CIFAR-20

DEC [71] 84.3§ 5.3± 0.3† − 46.9± 0.9† 18.5
VADE [28] 94.46§ − − − -
InfoGAN [5] 89.0‡ − 61.0‡ − -
ClusterGAN [51] 95.0‡ − 63.0‡ − -
DAC [4] 97.75‖ − − 52.18‖ 23.8
IMSAT (VAT) [24] 98.4± 0.4† 24.0± 0.9† − 45.6± 0.8† -
ADC [21] 98.7± 0.6† - - 29.3± 1.5† 16.0
SCAE [35] 98.5± 0.10† - - 33.48± 0.3† -
IIC [27] 98.4± 0.65† - - 57.6± 0.3† 25.5± 0.46†

MPCC (Five runs) 98.48± 0.52 65.87± 1.46 62.56± 4.16 64.25± 5.31 35.21± 1.69
MPCC (Best three runs) 98.76± 0.03 66.95± 0.62 64.99± 2.22 67.73± 2.50 36.51± 0.71

conditional distribution matching (Fig. 3). The errors observed in reconstruction
are semantic and similar to those observed in [11].

MPCC opens the possibility of future research in many relevant topics which
are out of the scope of this paper. Based on our experiments the most important
extensions are: 1) Experiment with other conditional distributions p(z|y), e.g.
other exponential-family distributions or other flexible distributions by bounding
their entropy (Section 3). This can be suitable for more expressive priors as it’s
shown in recent work [69]. 2) Experiment with imbalanced distribution of classes
by changing φ accordingly, we consider this to be a relevant problem in the
unsupervised setting which only a few works have addressed [66]. 3) Experiment
with higher resolution datasets such as ImageNet [8] or CelebA [43]. Current
works on clustering have not focus their attention to higher-resolution due to its
complexity, MPCC is a promising approach to tackle this task from a semantic
perspective [11].

7 Conclusions

We developed a new clustering algorithm called MPCC, derived from a joint
distribution matching perspective with a latent space modeled by a mixture dis-
tribution. As a deep generative model this algorithm is suitable for interpretable
representations, having both an inference and a generative network. The infer-
ence network allows us to infer the cluster membership and latent variables from
data, while the generator performs sampling conditioned on the cluster category.

An important contribution of this work lays in the solid mathematical and
optimization framework on which MPCC is based. This framework is general
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(a) MNIST samples (b) CIFAR-10 samples

Fig. 2. Generated images for a) MNIST and b) CIFAR-10 datasets, respectively. Every
two columns we set a different value for the categorical latent variable y. i.e. the samples
shown correspond to a different conditional latent space z ∼ p(z|y).

(a) MNIST reconstruction (b) CIFAR-10 reconstruction

Fig. 3. Reconstructions for a) MNIST, and b) CIFAR-10 datasets, respectively. Odd
columns represent real data and even columns correspond to their reconstructions.

and we recognize several opportunities to further enhance our model. The results
obtained with MPCC improve over the state of the art in clustering methods.
Most notably, our model is able to generate samples with an unprecedented
high quality, surpassing the state of the art performances in both conditional
and unconditional training in the CIFAR-10 dataset.
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A Matching marginals and conditionals is equivalent to
matching joints

In the following sections we demonstrate that for the KullbackLeibler divergence
matching the marginals and conditionals is equivalent to matching the joint
distributions. In Section A.1 we demonstrate this equivalence for the two variable
case using the forward KL [33], this can be trivially demonstrated for the reverse
KL [41] interchangeably replacing the variables z and x, and the models p and q.
In Section A.2 we demonstrate the equivalence for the three variable case using
the reverse KL (MPCC). The demonstration for the three-variable forward KL
is equivalent requiring only to replace the variables y and x, and the models p
and q.

A.1 Matching marginals and conditionals, two variable case

In Section 2 of the paper we show that maximizing the VAE objective (ELBO)
can be interpreted as matching the conditional distributions in observed space
and the marginal distributions in latent space. Let p(x, z) and q(x, z) be the
decoder (generation) and encoder (inference) joint distributions, respectively,
where x represents the observed variable (data) and z represents the continuous
latent variable. The dependencies in these distributions are expressed as p(x, z) =
p(z)p(x|z) and q(x, z) = q(z|x)q(x). In what follows we prove, for the two variable
case, that matching conditionals and marginals is equivalent to matching the
joint distributions in terms of the Kullback-Leibler divergence. Starting from
the KL divergence between the joint distributions we can show that

DKL (q(x, z)||p(x, z))

=

∫
x

∫
z

q(x, z) log
q(x, z)

p(x, z)
dz dx

=

∫
x

q(x)

∫
z

q(z|x) log
q(z|x)

p(z|x)
dz dx+

∫
x

q(x) log
q(x)

p(x)
dx

= Ex∼q(x) [DKL (q(z|x)||p(z|x))] +DKL (q(x)||p(x)) , (12)

i.e. the forward KL divergence between the joints is indeed equivalent to the
forward KL between the marginals in data space plus the expected value under
the data distribution of the forward KL between the conditionals in latent space.

A.2 Matching priors and conditionals for three variables a.k.a
MPCC case

In Section 3 of the paper we define the MPCC model starting from a joint distri-
bution matching perspective. Let p(x, z, y) and q(x, z, y) be the decoder (genera-
tion) and encoder (inference) joint distributions, respectively, where x represents
the observed variable (data), z represents the continuous latent variable and y
represents the cluster membership. The dependencies in these distributions are
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expressed as p(x, z, y) = p(y)p(z|y)p(x|z, y) and q(x, z, y) = q(y|z)q(z|x)q(x).
The only assumption is that q(y|x, z) = q(y|z). In what follows we prove, for the
three variable case, that matching conditionals and marginals is equivalent to
matching the joint distributions in terms of the Kullback-Leibler divergence.

Starting from the (reverse) KL divergence between the joint distributions we
show that

DKL (p(x, z, y)||q(x, z, y))

=

∫
x

∫
y

∫
z

p(x, z, y) log
p(x, z, y)

q(x, z, y)
dx dy dz

=

∫
y

∫
z

p(z, y)

∫
x

p(x|z, y) log
p(x|z, y)

q(x|z, y)
dx dy dz

+

∫
y

p(y)

∫
z

p(z|y) log
p(z|y)

q(z|y)
dz dy +

∫
y

p(y) log
p(y)

q(y)
dy

= Ez,y∼p(z,y) [DKL (p(x|z, y)||q(x|z, y))]

+ Ey∼p(y) [DKL (p(z|y)||q(z|y))] +DKL (p(y)||q(y)) , (13)

i.e. the KL between the joints is the sum of the KL divergences for x|(z, y), z|y
and y, respectively. The KL divergence is non-negative so if we match the priors
and conditionals then the joints have to match too.

B Variational Deep Embedding (VaDE)

B.1 Variational Deep Embedding matches conditionals and
marginals in data space

Here we show that Variational Deep Embedding (VaDE) [28] is in fact matching
the joint distributions of the encoder and decoder by matching posteriors and
marginal in the space of the observed variable x (data). We start by expanding
the divergence between the joint distribution of the encoder and decoder as:

DKL (q(x, z, y)||p(x, z, y))

=

∫
x

∫
y

∫
z

q(x, z, y) log
q(x, z, y)

p(x, z, y)
dx dy dz

= Ez,x∼q(z,x) [DKL (q(y|z, x)||p(y|z, x))]

+ Ex∼q(x) [DKL (q(z|x)||p(z|x))] +DKL (q(x)||p(x)) . (14)

The first divergence in the right hand side of Eq. (14) is

DKL (q(y|z, x)||p(y|z, x)) =

∫
q(y|x) log

q(y|x)p(z)

p(z|y)p(y)
dy

= Ey∼q(y|x)

[
log

q(y|x)

p(z|y)p(y)

]
+ log p(z), (15)
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where we used the replacements q(y|z, x) = q(y|x) and p(y|z, x) = p(x|z)p(z|y)p(y)
p(x|z)p(z) ,

which come from the graphical model assumptions considered in [28].
The second divergence in the right hand side of Eq. (14) is

DKL (q(z|x)||p(z|x)) =

∫
q(z|x) log

q(z|x)p(x)

p(x|z)p(z)
dz

= Ez∼q(z|x)

[
log

q(z|x)

p(x|z)
− log p(z)

]
+ log p(x), (16)

and the third divergence in the right hand side of Eq. (14) is

DKL (q(x)||p(x)) = Ex∼q(x) [log q(x)− log p(x)] . (17)

If we add the expectation over q(z, x) = q(z|x)q(x) of Eq. (15) with the expec-
tation over q(x) of Eq. (16) and Eq. (17) we obtain:

Ez,x∼q(z,x) [DKL (q(y|z, x)||p(y|z, x))] + Ex∼q(x) [DKL (q(z|x)||p(z|x))]

+ DKL (q(x)||p(x))

= Eq(x)[log q(x)− Ez,y∼q(z,y|x)[log p(x|z)− log q(z|x)− log q(y|x)

+ log p(z|y) + log p(y)]]

= Eq(x) [log q(x)− LVaDE(x)] ,

where LVaDE(x) corresponds to Eq. (9) in [28]. This means that by maximizing
VaDE’s loss function one is matching the conditionals and marginals between
encoder and decoder in data space. Note that the entropy of the data distribution
Eq(x) [log q(x)] is constant during optimization.

B.2 Why extending VaDE to any multi-modal distribution is
harder than MPCC?

In MPCC the latent space can be naturally extended to any mixture of dis-
tributions, the only requirement being that the entropy of each distribution
component p(z|y) should have a closed-form or at least a bound. In general any
model decomposed by the reverse KL enjoy this property.

Forward KL decompositions, such as the case of VAE and VaDE, need a
closed-form solution for the divergence between the posterior and the prior. In
VaDE this term corresponds to

Eq(x)Eq(z,y|x)[log q(z|x)− log p(z|y)] = Eq(x)Eq(y|x)[DKL(q(z|x)||p(z|y))], (18)

which has a closed-form since q(z|x) and p(z|y) are Gaussians. Other dis-
tributions can be used however they need to be from the exponential family
and to have the same distribution [53], although some exceptions exists [62], [6].
In addition to the exponential family requirement, a reparameterization trick is
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needed for the posterior distribution further limiting the distributions that can
be used and requiring other forms of reparameterization [15], [59], [25].

Alternatively, adversarial training can be used to match the marginal poste-
rior with more flexible priors. However it has been observed [58] that this kind of
optimization [47], [49] underestimates its Kullback-Leibler divergence and also
worsen the likelihood of the decoder likely affecting its clustering capabilities.

C Details on neural network architectures

In MPCC we use the BigGAN model techniques [3] as a base for all our ex-
periments. This architecture employs ResNet [22] and Spectral Normalization
[50]. The residual block components of the generator and discriminator/encoder
are shown in Fig. 4 (a) and (b), respectively. All the 3× 3 Conv use a padding
equal to one while 1×1 Conv have no padding. The upsampling operation of the
generator is done using bilinear interpolation. A general scheme of the genera-
tor, discriminator and encoder architecture is shown in Fig. 5. The first residual
block of the discriminator/encoder inverts the order of the 1 × 1 Conv and the
average pooling and omits the first ReLU activation. Residual blocks with an
asterisk correspond to the ones that do not perform average pooling and as a
consequence they do not use 1× 1 Conv.

Fig. 5 (a) shows the generator used for the CIFAR10/20 datasets. Fig 5 (b)
shows the unconditional architecture of the discriminator. In the case of the
conditional discriminator a term Embed(y) · h is added where h is the output
of the global sum pooling (see Table 6). We can write the architectures for all
datasets in a general way as in Fig. 5 or more specific as in Tables 5, 6 and 7,
where C, J and D change between datasets.

As we observed in the paper (Table 3) we found an improvement in terms of
sampling quality and reconstruction error when parameters between the discrim-
inator and the encoder are shared. We experimented on the number of residual
blocks shared and found that the best performance was obtained when sharing
the first three residual blocks.

We use the Adam optimizer [32] with its default parameters β1 = 0 and β2 =
0.999. We use exponential moving average (EMA) with a decay rate of 0.9999 for
the Generator for both sampling and reconstruction task. EMA is applied after
the 1000th iteration. All generator, discriminator and encoder parameters use
Spectral Normalization and are initialized with N (0, 0.02I), while an orthogonal
initialization is used for prior parameters [61]. With the exception of the prior
parameters we use a learning rate of 2e − 4 for all networks and experiments.
For evaluation we use standing statistics [3] i.e. in evaluation mode we run
many times (in our case 16) the forward propagation of the generator model
x̃ ∼ p(x, z, y) storing the means and variances aggregated across all forward
passes.

We use three techniques depending on the dataset to deliver the latent infor-
mation z and y into the decoder distribution p(x|z, y). The first two correspond
to a hierarchical latent space architecture [3] which concatenate Embed(y) with
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a subset of z, and then a linear transformation to estimate the statistics of the
batch norm layers is applied (see Fig. 4). The first method is the one observed
in Fig. 5 which splits the latent variable z into equal chunks, delivering each
one to a different part of the network. In this case we have four chunks (1 entry
+ 3 residual blocks). The second method is similar to first, the only difference
being that all z is shared and no split operation is done. The schematic of this
generator is equivalent to Fig. 5 (a) except that the purple box performs a copy
instead of split operation. The third method passes all the latent z as usual [55]
and uses conditional batch normalization [14]. This method learns embeddings
conditioned on y which are different for each layer, i.e. the linear transforma-
tion in the yellow boxes of Fig. 4 correspond to an embedding, and the shared
embedding should be ignored.

• For CIFAR10 and CIFAR20 we use the first method since this is the default
architecture used in BigGAN. For simplicity we kept this configuration for
all ablation and clustering experiments with these datasets. We found that
mode collapse problems would appear if the third method is used in these
datasets. The configuration of the parameters for these datasets is C = 96,
D = 3 (RGB), J = 128 and ηp = 6 · 10−4.

• For datasets with simpler distributions such as MNIST and Omniglot, the
third method is more stable and yields the best results. We found that if
we use hierarchical latent space architectures poor results were obtained. In
particular we observed that the chunks in the first method are decorrelated,
which is particularly bad for simpler datasets such as MNIST and Omniglot
because the network gains lot of capacity ignoring the embedding y and
learning the full real distribution in all the clusters. The configuration of the
parameters for these datasets isD = 1 (grayscale), J = 24 and ηp = 1.6·10−3.
For MNIST C = 12 and for Omniglot C = 16.

• For FMNIST we observed that a poor performance was obtained with both
the first and third method. The best results for this dataset were obtained us-
ing the second method. The configuration of the parameters for this dataset
is C = 24, D = 1 (gray), J = 16 and ηp = 1.6 · 10−3.

We develop a Pytorch implementation for MPCC based on the implemen-
tation of BigGAN7. The IS and FID scores are calculated using the official
implementations8. We run each model in a GeForce RTX 2080 Ti, the amount
of time that MPCC iterates depends on the dataset but it is within the range
of 12-24 hours.

7 https://github.com/ajbrock/BigGAN-PyTorch
8 https://github.com/bioinf-jku/TTUR

https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/bioinf-jku/TTUR
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(a) Generator block (b) Discriminator/Encoder
block

Fig. 4. Residual blocks used for MPCC generator, discriminator and encoder networks.
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(a) Generator (b) Discriminator

(c) Encoder

Fig. 5. Architectures of MPCC generator, discriminator and encoder networks, re-
spectively
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yi ∈ {0, . . . ,K − 1} ∼ Cat(φ)
zi ∈ RJ ∼ N (µyi , σ

2
yi)

Share Embed(y) ∈ RJ

Linear(J) → 4× 4× 4C

Resblock up 4C → 4C

Resblock up 4C → 4C

Resblock up 4C → 4C

Output Layer:
BN, ReLU, 3× 3 Conv C → 3

Tanh

Table 5. Generator

x ∈ R32×32×D

Resblock down 4C → 4C

Resblock down 4C → 4C

Resblock 4C → 4C

Resblock 4C → 4C

ReLU, Global sum pooling

(linear → 1)
if conditional :+ Embed(y)·h

Table 6. Discriminator

x ∈ R32×32×D

Resblock down 4C → 4C

Resblock down 4C → 4C

Resblock 4C → 4C

Resblock down 4C → 4C

Resblock down 4C → 4C

Flatten

×2 : Linear (32//24 × 4C)→ (32//24 × 4C)//2

×2 : Linear ((32//24 × 4C)//2)→ J

Table 7. Encoder

D Optimization problems

We observed two types of errors which restrict the architecture and the optimiza-
tion techniques. Theses difficulties are particularly relevant for the CIFAR10 and
CIFAR20 datasets which present the more complex distributions. We used the
default parameters of the CIFAR10 architecture unless otherwise stated.

The first problem is associated with the batch size. We found that we can’t
optimize MPCC with a big batch size while using a large learning rate of the
prior parameter ηp. Note that the latter is necessary to obtain good accuracy
performance as it was shown in the paper (Table 2 in the paper). The batch
size is relevant to increase the IS and FID scores [3]. Artifacts or saturation
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problems would appear when doing a small modification in the optimization.
The examples shown in Fig. 6 (a) use a batch size slightly larger than the one
used in the paper (50). We observe that using a slightly larger batch size (64)
with a prior learning rate of ηp = 8 · 104 the results change drastically and the
generated images show notable saturation.

Mode collapse is an important topic in GANs research and is the second
problem that we observed in MPCC. Usually it is associated with the limitations
in generation quality caused by the model, which memorize only a small part of
the real distribution affecting the performance of the GAN. In MPCC the mode
collapse problem can make an entire cluster collapse. Setting Dstep = 4 solves
this problem partially for a large amount of models and is sufficient to obtain
good performance. In Fig. 6 (b) we show samples from a model trained with
bs = 64 and ηp = 2 · 10−4 where we can see how a mode collapse problem looks
in MPCC. We observed that when using a large prior learning rate ηp = 6 · 10−4

this problem would regularly appear after 150,000 iterations. This doesn’t occur
for the best configuration of MPCC (the one reported in the paper) and setting
ηp = 2 · 10−4 even after a large number of iterations, however we would like
to increase ηp further as we observed that it correlates with better clustering
accuracy (Table 2 in the paper).

(a) Saturation problems (b) Mode collapse problems

Fig. 6. Generated images with bad optimization setting at iteration 50000. Sub-figure
(a) shows images associated with saturation problems and (b) with mode collapse
problems. Each row represents a different cluster.
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E Additional qualitative results

In this section we provide additional reconstructions and samples for the CIFAR-
10 dataset in Figures 7 and 8, and for the MNIST dataset in 9 and 10. To
give more insight about MPCC’s capacity we also include samples for datasets
with a high number of classes, CIFAR-20 and Omniglot in Figures 11 and 12
respectively.

Fig. 7. Generated images for the CIFAR-10 dataset. Every two columns we set a
different value for the categorical latent variable y. i.e. the samples shown correspond
to a different conditional latent space z ∼ p(z|y).

Fig. 8. Reconstructions for rhe CIFAR-10 dataset. Odd columns represent real data
and even columns correspond to their reconstructions. The real label is used to sort
the column pairs.
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Fig. 9. Generated images for the MNIST dataset. Every two columns we set a different
value for the categorical latent variable y. i.e. the samples shown correspond to a
different conditional latent space z ∼ p(z|y).

Fig. 10. Reconstructions for the MNIST dataset. Odd columns represent real data
and even columns correspond to their reconstructions. The real label is used to sort
the column pairs.
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Fig. 11. Generated images for CIFAR-20 dataset. In every row we set a different value
for the categorical latent variable y, i.e. the samples shown correspond to a different
conditional latent space z ∼ p(z|y).
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Fig. 12. Generated images for Omniglot dataset. In every row we set a different value
for the categorical latent variable y, i.e. the samples shown correspond to a different
conditional latent space z ∼ p(z|y). 30 cluster were randomly chosen.
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