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Abstract—In this letter, we propose a method for period estima-
tion in light curves from periodic variable stars using correntropy.
Light curves are astronomical time series of stellar brightness over
time, and are characterized as being noisy and unevenly sampled.
We propose to use slotted time lags in order to estimate correntropy
directly from irregularly sampled time series. A new information
theoretic metric is proposed for discriminating among the peaks of
the correntropy spectral density. The slotted correntropy method
outperformed slotted correlation, string length, VarTools (Lomb-
Scargle periodogram and Analysis of Variance), and SigSpec ap-
plications on a set of light curves drawn from the MACHO survey.

Index Terms—Correntropy, information theory, spectral anal-
ysis, time series analysis, variable stars.

I. INTRODUCTION

R ECENT advances in photometric technologies have facil-
itated the proliferation of extensive astronomical surveys

such as MACHO [1], OGLE [2], and recently Pan-STARRS
[3]. A light curve is a time series in which the measured phe-
nomenon corresponds to the brightness (magnitude or flux) of
a stellar object. Light curves are the basic tool for the analysis
of variable stars [4], whose brightness varies through time due
to internal physical processes, or to external factors such as in-
teractions with other astronomical objects. Some variable stars,
such as eclipsing binaries (EB), cepheids, and RR Lyrae, exhibit
periodic behaviors that are reflected on their corresponding light
curves. For example, EB stars are systems composed of two
stars, whose brightness shows periodic variations due to the mu-
tual eclipses between them. The period of a light curve is a key
parameter for classifying variable stars [5], [6], and estimating
other parameters such as mass and distance to Earth [7]. Light
curves are unevenly sampled due to constraints on the obser-
vation schedules: the day-night cycle, weather conditions, cali-
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bration and repositioning of instruments. Several noise sources
contaminate the measurements, e.g., the light of other stellar ob-
jects, atmospheric noise, instrument noise, etc.
The period of a time series can be estimated by analyzing

the power spectral density (PSD) of its autocorrelation func-
tion. However, conventional autocorrelation estimators cannot
be used directly if the time series is irregularly sampled. One
option is to use the slotting technique [8], in which the time
lags are defined as intervals. Some widely used techniques in
astronomy for period estimation are the Lomb–Scargle (LS) pe-
riodogram [9], [10], Epoch Folding, Analysis of Variance (AoV)
[11] and String Length (SL) methods [12]. The LS periodogram
is an extension of the Fourier transform for unevenly sampled
time series. In epoch folding, the time axis of the light curve is
split into bins of size equal to a certain trial period. All bins are
then plotted one on top of another. In analysis of variance the
standard AoV statistic is computed over the binned and folded
light curve. If the light curve is folded using its true period, the
AoV reaches a minimum value. In SL methods, the light curve
is folded using a trial period and the sum of distances between
consecutive points in the folded curve is computed. The trial
period with the shortest string length is taken as the underlying
period.
In this work, we propose to combine the information theoretic

concept of correntropy [13], [14] and signal processing tech-
niques to design an automated method for period estimation in
light-curves of periodic variable stars. In particular, we propose
to estimate the fundamental period through the spectral analysis
of the slotted correntropy. To discriminate the true period from
its submultiples and spurious spectral peaks, a new information
theoretic metric is proposed.

II. BACKGROUND ON CORRENTROPY

Correntropy [14] is a generalization of the conventional
correlation function. For a discrete-time strictly stationary
univariate random process, , where is
the length of the sequence, the autocorrentropy is defined as

(1)

where denotes the expectation operator, and is a
kernel function that satisfies the Mercer’s conditions [13]. In
this letter, we consider the Gaussian kernel

(2)

where and are samples of the scalar random variables
and , respectively; and is the kernel size.
As shown in [14], correntropy estimated with the Gaussian

kernel (2) contains all even-order moments, and in particular the
second-order moment that corresponds to the autocorrelation.
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The kernel size controls the emphasis given to higher-order mo-
ments over the second moment. The sample mean can be used
to estimate the correntropy as

(3)

for . The name correntropy comes from the fact
that it looks like correlation, but the sum of (3) over the lags is
the information potential (IP) in information theoretic learning
[13], which is defined as

(4)

The negative logarithm of the IP is the Renyi’s quadratic entropy
estimated through Parzen windows [13]. For large values of the
kernel size the IP tends towards a scaled and biased version of
the variance.
The correntropy spectral density (CSD) is defined as

(5)

where is the sample mean estimator of correntropy over
the lags and is the sampling frequency. The CSD is the
Fourier transform of the centered autocorrentropy and it can be
considered as a generalized PSD function. For further details on
correntropy and its interpretation see [13].

III. SLOTTED CORRENTROPY AND IP-BASED CRITERION

In this letter, we propose estimating correntropy directly
from an irregularly sampled time series using slotted time lags.
Slotted correntropy is computed as

(6)

for , where is the nearest integer
function, is the slot size, is the maximum lag, and
are the times of samples and , respectively; and

if
otherwise.

(7)

The slotted correntropy is sampled at intervals of length .
In addition, we propose a new period discrimination metric,

in order to extract the peak in the CSD associated with the funda-
mental period among spurious and multiple/submultiple peaks.
A trial period is considered spurious if it is neither the true pe-
riod nor any of its integer multiples and submultiples. The pro-
cedure to compute the IP-based discrimination metric for a cer-
tain trial period is as follows.
1) Transform the time axis of the light-curve as follows

where stands for the modulo operation. With this
procedure a folded light curve is obtained.

2) Smooth the folded light curve by taking a moving average
of 20 samples. Search for local maxima and minima using

samples in windows of size and an overlap
of half the window size. The value of is set as a com-
promise between detecting spurious peaks as local maxima
and missing true peaks.

3) Segment the folded light curve (non-smoothed) into bins
so that each local optima corresponds to the center of a
different bin. The boundaries of the bins are chosen as the
mid-points between adjacent local optima. This procedure
results in an adaptive number of bins .

4) Compute the discrimination metric as the average of the
squared differences between the IP of each individual bin,
, and the global IP:

(8)

5) Repeat steps 1–4 for each trial period. The best period is
selected as the one that maximizes the IP metric (8).

Steps 2 and 3 are referred later as dynamic binning. When
maximizing (8) we are searching for the largest difference be-
tween the information content in the dynamically chosen bins
and that of the complete light curve. The maximum occurs when
the light curve is folded using its underlying period.

IV. METHODS

A subset of 600 light-curves was drawn from the MACHO
survey [1]. It contains 200 light-curves from each of the fol-
lowing three types of variable stars: EBs, cepheids and RR
Lyrae, whose periods range from 0.2 days to 200 days. Each
light-curve has approximately 1000 samples and contains three
data columns: time, magnitude and an error estimation for the
magnitude. The periods of these light-curves were estimated
by expert astronomers from the Harvard Time Series Center
(TSC) using epoch folding, AoV, and visual inspection. In this
letter, we consider the TSC periods to be the gold standard.
We propose the following method for automatic period esti-

mation in light curves.
1) Normalize the light curve’s magnitude to have zero mean
and unit standard deviation. Discard samples having an
error estimation greater than the mean error plus two times
its standard deviation (usually less than 1% of the samples
of a light curve are discarded).

2) Select a window of half the length of the light curve con-
taining the maximum number of samples per day. The se-
lected window and the whole light curve are independently
analyzed in the next stages in order to generate the pool of
trial periods.

3) Compute the slotted correntropy using (6). The maximum
lag is set to 0.1 N, where N is the light curve length. This
value is chosen as a trade-off between having enough sam-
ples to estimate correntropy with longer lags and bounding
the longer period that could be detected.

4) Compute centered slotted correntropy by removing its
mean value in the interval . Multiply this
result by a Hamming window in the same interval, and
compute the CSD.

5) Store the periods associated with the highest peaks of
the CSD. For each trial period compute the IP metric
in the interval with step size 1e-3,
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Fig. 1. Light-curve analysis of object 1.3449.948 from the MACHO survey. The dashed lines mark the position of the known period. a) PSD of the slotted
autocorrelation function. The true period appears very attenuated. b) CSD of the slotted autocorrentropy function for a kernel size of 0.1. The true period appears
as the second largest peak.

by applying steps 1–5 described in Section III. Save the
fine-tuned period that maximizes (8).

6) Save the fine-tuned period with highest among all the
periods obtained from both windows selected in Step 2.

Our method has the following user-defined parameters:
• Gaussian kernel size : If is set too large the higher-
order moments in correntropy will be ignored. If it is set
too small then correntropy will not be able to discriminate
between signal and noise. Steps 1–6 of our method are
repeated for 25 values of the kernel size in the interval

. Each kernel size provides trial periods.
• Correntropy slot size : The slot size defines the time
lag resolution of correntropy. If it is set too small, it will
be harder to satisfy condition (7). If it is set too large short
periods may not be found. We set days to
capture the shorter periods present in the data set.

• Number of peaks analyzed from the CSD : In our
experiments we found that setting is a good
trade-off between obtaining the biggest hit rate and having
less computational load.

V. EXPERIMENTAL RESULTS

A. Analysis of a Single Light-Curve

We illustrate our method by using as an example the light
curve 1.3449.948 from the MACHO survey, which has a re-
ported period of 14.0063 days. As a reference the PSD of slotted
correlation is illustrated in Fig. 1(a), with a global maximum at
7.0024 days, half of the true period. The true period appears to
be very attenuated in the PSD [dashed vertical line in Fig. 1(a)],
even smaller than spurious peaks. The CSD of slotted corren-
tropy is illustrated in Fig. 1(b). The true period appears clearly
as the second highest peak in the CSD. The IP metric allows
us to correctly select the second highest peak as the funda-
mental period, because is larger than

.
Fig. 2 shows a contour plot of the CSD as a function of the

frequency and kernel size. This plot shows that for a kernel size
greater than , only the peak associated with half the true
period remains in the spectrum. This result supports the theory
that when is large, correntropy approximates correlation and
the CSD approximates the PSD [13]. On the other hand, for a
kernel size smaller than , several submultiples but also
some spurious peaks are more outstanding than the true period
(Fig. 2 cut c).

Fig. 2. CSD of light curve 1.3449.948 as a function of frequency and kernel
size. In cut (a) correntropy and CSD approximate correlation and PSD, respec-
tively (see Fig. 1(a)). In cut (b) the true period appears as the second highest peak
in the spectrum (see Fig. 1(b)). In cut (c) the true period is the fourth highest
peak, even lower than a spurious peak.

B. Comparison Between AoV, SL and IP-Based Metric

Estimation results are classified as hits, multiples and misses
by comparing them with the true periods reported by the TSC
team. A given period is considered a hit if its relative difference
from the true period is less than 0.5%; a multiple if its differ-
ence with any integer multiple/submultiple of the true period
is less than 0.5%; otherwise it is a miss. Two versions of the
IP-based metric are compared: fixed binning and dynamic bin-
ning. The IP-based metric is compared to AoV and the string
length method using the Lafler–Kinman statistic (SLLK) [12].
In our first experiment all three metrics are applied to discrimi-
nate the correct period among the top 10 peaks of the CSD using
200 EB light-curves. Table I shows the results obtained by using
the different strategies. The dynamic binning strategy allows ob-
taining more hits than the fixed binning strategy, achieving an
increase of 3.5% to 6% in the hit rate. The IP-based metric ob-
tained 3.5%more hits than the AoV criterion and 14%more hits
than SLLK.

C. Comparison With Related Methods

The performance of the proposed method was compared with
widely used applications for period estimation in astronomy.We
considered two software solutions available on the internet: Var-
Tools [15] and SigSpec [16]. VarTools includes LS and AoV
light curve analyses. SigSpec combines Fourier based methods
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TABLE I
COMPARISON BETWEEN DISCRIMINATION METRICS APPLIED TO THE

TOP TEN PEAKS OF CSD, USING A SUBSET OF 200 EB
LIGHT CURVES FROM THE MACHO SURVEY

TABLE II
PERFORMANCE OF THE PROPOSED PERIOD ESTIMATOR

VERSUS CONVENTIONAL TECHNIQUES
IN A SUBSET OF 200 EB LIGHT CURVES FROM THE MACHO SURVEY

with statistical metrics of spectral significance. We also consid-
ered the SLLK string length method [12]. For Vartools LS, the
highest peak of the periodogram gives the estimated period. In
Vartools , the IP metric is used to discriminate among
the top 10 peaks obtained with the LS periodogram. Likewise,
in , the IP metric is used to discriminate among the
top 10 smallest strings found by SLLK. For SLLK and Vartools
AoV, the corresponding statistics are minimized in an array of
periods ranging from 0.2 to 200 days with a step size of 1e-4.
For slotted we compute the top 10 peaks of the
PSD, and then apply the IP metric to discriminate among them.
Table II shows the results obtained with each of the de-

scribed methods in a subset of 200 EB light curves. The
slotted method obtained the highest hit
rate (74%), followed by (65%), and slotted

(50%). Table III shows the results obtained
in a subset of 400 cepheids and RR Lyrae light curves. The
slotted method, Vartools LS and Vartools
AoV obtained the highest hit rate (97%), followed by SigSpec
(95.5%). SLLK enhanced by the IP metric achieved 90.25%.

VI. CONCLUSIONS

An automated method for period estimation in light curves
of periodic variable stars has been proposed and tested. The
method is based on the spectral analysis of the slotted cor-
rentropy. The proposed method obtained a hit rate of 74% in
a subset of 200 light curves from eclipsing binaries from the
MACHO survey, outperforming slotted correlation (50.0%) and
conventional methods. Our method obtained a hit rate of 97% in
a subset of 400 light curves from cepheids and RR Lyrae stars,
where Vartools LS and AoV achieved the same performance. A
new information theoretic metric for trial period discrimination

TABLE III
PERFORMANCE OF THE PROPOSED PERIOD ESTIMATOR

VERSUS CONVENTIONAL
TECHNIQUES IN A SUBSET OF 400 CEPHEIDS AND RRL

LIGHT CURVES FROM THE MACHO SURVEY

has been proposed, which is computed on dynamically binned
folded light curves. The IP criterion performed better than AoV
and SLLK in the trial period discrimination task. Future work
will include among other issues, devising a better metric for
trial period discrimination, and testing our method on massive
astronomical databases.
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