
Automatic Survey-invariant Classification of Variable Stars

Patricio Benavente1, Pavlos Protopapas2, and Karim Pichara1,2,3
1 Computer Science Department, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile

2 Institute of Applied Computational Science, Harvard University, Cambridge, MA, USA
3Millennium Institute of Astrophysics, Santiago, Chile

Received 2016 November 12; revised 2017 June 10; accepted 2017 June 30; published 2017 August 21

Abstract

Machine learning techniques have been successfully used to classify variable stars on widely studied astronomical
surveys. These data sets have been available to astronomers long enough, thus allowing them to perform deep
analysis over several variable sources and generating useful catalogs with identified variable stars. The products of
these studies are labeled data that enable supervised learning models to be trained successfully. However, when
these models are blindly applied to data from new sky surveys, their performance drops significantly. Furthermore,
unlabeled data become available at a much higher rate than their labeled counterpart, since labeling is a manual and
time-consuming effort. Domain adaptation techniques aim to learn from a domain where labeled data are available,
the source domain, and through some adaptation perform well on a different domain, the target domain. We
propose a full probabilistic model that represents the joint distribution of features from two surveys, as well as a
probabilistic transformation of the features from one survey to the other. This allows us to transfer labeled data to a
study where they are not available and to effectively run a variable star classification model in a new survey. Our
model represents the features of each domain as a Gaussian mixture and models the transformation as a translation,
rotation, and scaling of each separate component. We perform tests using three different variability catalogs,
EROS, MACHO, and HiTS, presenting differences among them, such as the number of observations per star,
cadence, observational time, and optical bands observed, among others.
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1. Introduction

Machine learning methods have been applied with success to
astronomy problems such as classification of galaxy morph-
ology (Freed & Lee 2013), spectral classification (Christlieb
et al. 2002; Bromley et al. 1998), photometric classification
(Brescia et al. 2013; Cavuoti et al. 2014), solar activity
prediction (Colak & Qahwaji 2009), photometric redshift
regression (Benitez 2000; Collister & Lahav 2004), relationship
discovery (Graham et al. 2013), anomaly detection (Nun et al.
2014), and variable star classification (Blomme et al. 2011;
Richards et al. 2011; Pichara & Protopapas 2013; Pichara et al.
2016), which is the main focus of the technique presented in
this paper.

A primary factor that enabled this accomplishment is the
availability of data, which is increasing in an accelerating
manner. Ever-larger telescopes are being built, and optical
sensor sensitivity increases every year. The advent of digital
surveys, automated telescopes, and online catalogs brought
astronomy to the big data era. The Sloan Digital Sky Survey
(SDSS),4 designed in 1990, surveyed on the visible spectrum
one-third of the sky, obtaining positions and brightnesses of a
billion stars, galaxies, and quasars, as well as the spectra of a
million objects. Still active today, it generates around 200 GB
of data every night, accumulating more than 50 TB of data to
date (Feigelson & Babu 2012). The Large Synoptic Survey
Telescope (LSST), currently under construction in Chile, is
expected to generate an average of 15 TB of data per night
upon entering operations in 2022 (Jurić et al. 2015).

As a result, not only more data are available, but each data
set comes from a different survey with distinct characteristics.
Indeed, filters and atmospheric conditions vary, and

observations differ owing to sensor sensitivity and the depth
observed in each survey, among other factors. For example, a
deep survey may be more biased toward active galactic
nucleithan a shallower survey. This means that models trained
in one survey cannot be readily used in data generated from
other surveys and must be retrained from scratch. Moreover,
labeled data are unavailable for new surveys, since labeling
must be done manually by trained astronomers in a time-
consuming effort (Sterken & Jaschek 2005). Since applying a
previously trained model to a new survey results in consider-
able losses in performance, this renders supervised learning on
new data sets unfeasible.
The latter problem arises from the assumption, often taken in

traditional learning techniques, that the distribution of the data
used to train the model is the same as the distribution of the
data to which the model is applied. However, this assumption
does not generally hold in practical applications.
Therefore, it is desirable to transfer the information learned

by a classifier in a domain where labels abound, the source
domain, to a domain where few or no labels are available, the
target domain. This problem is known as domain adaptation
(Jiang 2008) and is part of the more general problem of transfer
learning (Raina et al. 2007; Pan & Yang 2010).
In this work, we address the problem of domain adaptation

in the context of variable star classification. As such, the source
domain is a well-known astronomical survey—in which a
relatively high number of labels exist and a trained classifier
performs accurately—and the target domain is a newer or
relatively less studied survey where no or very few labels exist.
To solve this, one may use the target data set instances to

induce a change in the source domain classifier that allows it to
perform better in the target domain. This approach relies on the
creation of an adaptation objective that effectively reduces the

The Astrophysical Journal, 845:147 (18pp), 2017 August 20 https://doi.org/10.3847/1538-4357/aa7f2d
© 2017. The American Astronomical Society. All rights reserved.

4 http://www.sdss.org/

1

https://orcid.org/0000-0002-9372-5574
https://orcid.org/0000-0002-9372-5574
https://orcid.org/0000-0002-9372-5574
https://doi.org/10.3847/1538-4357/aa7f2d
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aa7f2d&domain=pdf&date_stamp=2017-08-21
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aa7f2d&domain=pdf&date_stamp=2017-08-21
http://www.sdss.org/


classification error on the target domain using no label
information. On the other hand, one might find a transforma-
tion between the feature spaces of the source and target
domains, which allows passing the instances in the target data
set to a representation suitable for training a new classifier.
Moreover, this transformation can also be applied in the
opposite direction, i.e., to transfer the labeled instances from
the source domain to the feature space of the target domain and
then train a classifier on these data. We favor the latter
approach, as it is model independent. A classifier modification
would generally depend on a model’s particularities—such as
the way a discriminative classifier models class boundaries—
while a feature space transformation has the advantage of being
model agnostic, decoupling the adaptation and classification
problems and thus allowing for the use of the best-suited model
in a given situation and applying new models as they become
available.

We propose a new probabilistic model, based on the
Gaussian mixture model (GMM). We use two GMMs to
represent the feature distributions of the source and target
domains. We then infer linear transformations of the GMM
components. We assume that the statistical descriptor shift
between the surveys can be corrected by translating, rotating,
and scaling the GMM components. Our method is unsuper-
vised, as we only require unlabeled data in both domains. We
estimate and apply a transformation to the labeled instances in
the source domain for each of the mixture components,
weighted by how much importance each component has on
each data point. In this way, we build a training set suitable for
classifying in the target domain. In doing this, we assume that
the transformation that corrects the shift in the unlabeled data
set will also correct it in the training set.

Our approach offers some advantages compared to previous
research:

1. It finds a transformation from the feature space of one
domain to the other, meaning that any data from one
domain can be used as if belonging to the other. Other
methods perform adaptation at the model level and leave
data intact.

2. Since it makes no assumptions about the classifier, our
approach is classifier agnostic. Transformed training sets
can be used with any model of choice, effectively
decoupling domain adaptation from model learning.

2. Problem Description and Notation

We follow a notation similar to Jiang (2008). Let  be the
feature space and  the label space in our problem. Let X Î
and Y Î be random variables representing the observed
features and the observed class labels, respectively. We denote
their true underlying joint distribution as P X Y,( ). We
distinguish two domains: a source domain where a large
amount of labeled data is available and a target domain where
labeled data are unavailable or scarce. We denote the true joint
distributions of X and Y in the source and target domains as
P X Y,s ( ) and P X Y,t ( ), respectively. Consequently, we denote
the true marginal distributions of X and Y for each domain as
P Xs ( ), P Ys ( ), P Xt ( ), and P Yt ( ) and the true conditional
distributions as P X Ys ( ∣ ), P Y Xs ( ∣ ), P X Yt ( ∣ ), and P Y Xt ( ∣ ), as one
would expect.

Let D x y,s
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target domain and D x y,t
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 = Í ´={( )} be the
labeled data in the target domain. We call a value x Î an
unlabeled instance and a tuple x y,  Î ´( ) a labeled
instance.
Three types of domain adaptation problems are distinguished

based on the kind of data available (Pan & Yang 2010): (a)
supervised domain adaptation exploits labeled data both in the
source and in the target domain, (b) unsupervised domain
adaptation uses only unlabeled data, and (c) semi-supervised
domain adaptation employs only a small amount of labeled
data from the target domain.
We focus on the unsupervised domain adaptation problem;

therefore, we will generally ignore the labeled data in the target
domain, Dt

l, and use it for testing purposes only.
In our problem, the true joint distributions differ between the

two domains: P X Y P X Y, ,s t¹( ) ( ). Additionally, several
different scenarios can be considered under the domain
adaptation problem depending on the assumptions made about
the cause of the joint distribution difference between the
domains.

2.1. Covariate Shift

If we assume that the causal relationships between X and Y
remain the same and that the only difference in the joint
distributions arises from the marginal distribution of the
covariates—that is, P Y X P Y Xs t=( ∣ ) ( ∣ ) and P X P Xs t¹( ) ( )—
then the problem is known as covariate shift or sample
selection bias (Shimodaira 2000; Huang et al. 2006). This
scenario applies whenever there is a bias in the data selection
procedure. For example, consider two different telescopes, of
which one is equipped with a sensor with higher sensitivity
than the other. The data captured by the more sensitive
telescope will be more biased toward dimmer objects than
those captured by the less sensitive telescope. However, the
characteristics of the celestial objects do not change, that is,
P Y X( ∣ ) is the same. Figure 1 shows covariate shift between a
sample of the EROS and HiTS data sets when looking at the
mean magnitude and the Psi_CS feature from the FATS
package (Nun et al. 2015).

2.2. Target Shift, Conditional Shift, and
Generalized Target Shift

Zhang et al. (2013) identify three distinct scenarios that arise
if we assume that P Y X P Y Xs t¹( ∣ ) ( ∣ ). By virtue of Bayes’s
theorem, this difference is produced by the marginals P Y( ) or
the conditionals P X Y( ∣ ) being different, or both.
If the marginal distributions of the classes change and the

conditional distributions of the features given the classes stay
the same—that is, P Y P Ys t¹( ) ( ) while P X Y P X Ys t=( ∣ ) ( ∣ )—
then the problem is known as target shift (TarS) (Zhang et al.
2013), class imbalance (Patel et al. 2015), or prior probability
shift (Quionero-Candela et al. 2009). This scenario arises
whenever a class is more present in one domain than in the
other. For example, in the problem of medical diagnosis
prediction, one is interested in predicting diseases given
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symptoms. Disease prevalence varies across geographical
locations; as such, some diseases that are common in tropical
regions will be rare in areas close to the poles, and class
distributions will be different (but the probability of the
symptoms given the disease remains constant). In astronomy, if
the sensitivity of the telescope changes significantly, then we
see objects such as distant galaxies that are not in the other
data set.

Conversely, the problem is known as conditional shift
(ConS) (Zhang et al. 2013) if the conditional distribution of the
features given the classes changes and the marginal distribution
of the classes stays the same—that is, P Y P Ys t=( ) ( ) and
P X Y P X Ys t¹( ∣ ) ( ∣ ). ConS appears when the causal relationship
of one or all the classes in relation to the features changes. For
example, some diseases manifest symptoms differently
depending on the patient’s gender. The probability of having
nausea given that the patient is suffering from a heart disease
will be higher if female patients are being diagnosed. In
astronomy, variability may appear in some part of the
electromagnetic spectrum. For example, a star may be variable
in the ultraviolet but not in the optical spectrum.

Finally, if both distributions change, meaning that
P Y P Ys t¹( ) ( ) and P X Y P X Ys t¹( ∣ ) ( ∣ ), the problem is known
as generalized target shift (GeTarS) (Zhang et al. 2013). This
situation arises when both TarS and ConS are present.

Our research focuses on the domain adaptation problem
under covariate and generalized target shift. Therefore, we do
not assume that any of the marginal probability distributions
are the same. Our goal is to find a transformation from the
source feature space to the feature space of the target domain,
in order to adapt the source labeled instances to a representation

suitable for training a classifier that performs well in the target
domain.

3. Related Work

Domain adaptation has been studied extensively in the
contexts of natural language processing (NLP; Blitzer et al.
2006; Foster et al. 2010) and computer vision (Gopalan et al.
2011; Gong et al. 2012; Patel et al. 2015).
A popular approach for domain adaptation is known as

instance weighting or importance reweighting (Shimodaira 2000;
Foster et al. 2010). In instance weighting, the terms of the loss
function corresponding to each sample are weighted by the
relative density P x y P x y, ,t s( ) ( ), which effectively minimizes
the expected loss of the model over the target distribution
(Jiang 2008). However, it is generally not possible to calculate
this value, and the support of the source distribution must be
contained in that of the target distribution for this to work in
practice. In the covariate shift scenario, this weight can be
simplified to P x

P x
t

s

( )
( )

(Shimodaira 2000). Under target shift, on the

other hand, the weighting term is P y

P y
t

s

( )
( )
. See Patel et al. (2015) for

a more thorough explanation.
Daumé III (2009) proposes a feature augmentation frame-

work in which features from both source and target domains are
mapped into a feature space three times the size of the original,
which captures the feature similarities and particularities
between source and target domains. In Daumé III’s approach,
given an input vector x nÎ , two mapping functions

x x x, , 0sF =( ) [ ] and x x, 0,tF = [ ] are defined for the source
and target data sets, respectively. Here 0 0, 0 ,..., 0 n= Î[ ] is
the zero vector. In this way the enhanced feature space contains
a general version of the data (the first third of the vector where
data from both domains appear) and a version of the data
specific to one of the domains (the second third of the vector
for the source domain and the last third of the vector for the
target domain). The classifier is then expected to learn the
adaptation by, for example, assigning weights to each version
of the data depending on how well it generalizes between the
domains.
Other approaches are based on the idea of learning new

feature representations that are domain invariant. Gopalan et al.
(2011) developed a method motivated by incremental learning
in which the adaptation is performed by gradually transitioning
from one domain to the other. This is done by treating each
domain as a point in the Grassmann manifold and sampling
points along the geodesic path between them to obtain a
description of the underlying domain shift. Gong et al. (2012)
go further and integrate over an infinite number of subspaces
using a kernel-based method.
Chan & Ng (2005) use expectation maximization (EM) to

estimate the class densities under the TarS setting by assuming
that the distribution of the features given the labels stays
constant and applying the iterative procedure of the EM
algorithm.
Kulis et al. (2011) introduce a method for finding nonlinear

transformations between domains by learning in the kernel
space.
Our method is similar to the location-scale generalized target

shift (LS-GeTarS) transformation proposed by Zhang et al.
(2013). In LS-GeTarS, a transformation from P X Ys ( ∣ ) to
P X Yt ( ∣ ) is modeled as a translation and a scaling of the data

Figure 1. Covariate shift between EROS and HiTS data sets. The HiTS survey
is more biased toward dimmer objects than EROS.
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given by x x W Bnew = +· , where W is the scaling matrix and
B the translation. Instead of working directly with the marginal
and conditional distributions, they use their kernel mean
embedding. A kernel mean embedding is a representation of a
probability distribution as a point in a Reproducing Kernel
Hilbert Space. In this manner, they do not need to assume a
certain distribution, but minimize the loss using the kernel
embedding and the algebraic operations it supports. The
importance weight P Y

P Y
t

s

( )
( )

is estimated along the transformation
parameters.

There are some other proposals that also use Bayesian
transfer learning. Gönen & Margolin (2014) present a multitask
learning framework in which they apply kernel-based dimen-
sionality reduction and use task-specific projection matrices to
jointly find a common subspace. They define a different
transformation of the data for each task, each of which is
modeled as a projection matrix. The classifier is also part of the
probabilistic model, and they do inference on the transforma-
tions and the classifier at the same time. Our work differs in
two substantial ways: (1) we find a transformation from the
feature space of one “task” (in our case of one survey) to the
space of another one, while this method creates a new common
space that is different from the original space of all the tasks;
and (2) the specific classification task is not part of our model,
only the transformation. This means that our method can be
used with any classifier and that if we change the classifier we
do not need to do inference again to find the transformation.

Another Bayesian method is proposed by Finkel & Manning
(2009), who present a hierarchical Bayesian framework for
multiple domain adaptation. For each domain, there is an
arbitrary probabilistic model for which a normally distributed
prior is put on its parameters. In the next level of the hierarchy,
another normally distributed prior is added to the domain-
specific parameter priors. This hierarchy can be extended
further for an arbitrary number of levels, reflecting related
super-domains, super-super-domains, and so on.

4. Background Theory

4.1. K-means

The K-means algorithm (MacQueen et al. 1967) is a method
for partitioning a set of points into a given number of clusters.
Each cluster is defined in terms of a centroid, and each point is
assigned to the cluster of the closest centroid. Note that the
clustering is completely defined in terms of the centroids. The
learning algorithm initializes the centroids of a given number K
of clusters at random and then proceeds iteratively through two
stages. In the first stage, each data instance is mapped to the
cluster with the closest centroid. Then, in the second stage,
each cluster centroid is recalculated as the mean of all the
points mapped to them. These steps are repeated until
convergence (i.e., when no or very small variations in the
centroid coordinates exist between two iterations). Figure 2
shows two iterations of an example execution of K-means.

4.1.1. Graphical Models and Plate Notation

Probabilistic graphical models are a framework for con-
veniently representing and manipulating joint probability
distributions—and thus Bayesian machine learning models—
that draw from probability theory and graph theory. By using a
graph data structure, graphical models leverage the wealth of

representations and algorithms from computer science to allow
for representation, learning, and inference of otherwise
unmanageable probability distributions.
In a graphical model, random variables are represented as

nodes in a graph, while dependence relationships are encoded
as graph edges. In this work, we are interested in a form of
directed graphical models known as Bayesian networks (Koller
& Friedman 2009), which encode a set of conditional
independencies in a joint probability distribution. In a Bayesian
network, a directed edge from variable X to variable Y indicates
that variable Y directly depends on variable X. The network
satisfies the local independency assumption, which holds that
every node X X X,...,i n1Î { } of an n node graph is conditionally
independent of its nondescendants given its parents (Koller &
Friedman 2009):

X i nNonDescendants Parents 1 ,..., . 1i X Xi i^ " Î( ∣ ) ( )
In this work, we represent graphical models using the plate

notation (Koller & Friedman 2009). Identically distributed
variables that are repeated many times are enclosed by a
rectangle or plate, capturing the notion that they correspond to
a “stack” of identical variables. Variables in a plate are indexed
and repeated according to the indication on the lower right
corner of the plate. Edges connecting two nodes in the same
plate connect variables with the same index. Edges connecting
nodes inside a plate with nodes outside of it connect the outer
variable with all the instances of the repeated variable. Edges
from one plate to a different plate connect all instances in one
plate with all the instances in the second plate. In this way,
models can be represented in a more compact way by plotting
each variable instance once. Consider a model for medical
diagnosis with P patients in which the presence of each of N
diseases D D,...,k k N,1 , depends on the manifestation on patient k
ofM symptoms S S,...,k k M,1 , and the gender Gk and age Ak of the
patient. Figure 3 shows a graphical representation for this
model, both using plates and by explicitly displaying all
variables.

4.2. Mixture Models

A mixture model is a convex combination (or superposition)
of probability distributions (i.e., the relative weights of the
distributions sum to 1; Bishop 2006). Suppose we have K
Gaussian distributions generating a set of data. We call each
distribution a component. Let Z be a binary vector indicating
which component generated a certain value of X, and give it a
one-hot encoding representation where Zk is equal to 1 if X was
generated by component k and 0 otherwise (e.g., Z 0 1 0 0= [ ]
when the value is generated by component 2). Let kP be the
mixture coefficients. Then we can write the marginal distribu-
tion of Z:

P Z . 2
k

K
k Z

1

k= P
=

( ) ( ) ( )

And the conditional distribution of X given that it was
generated by component k can be written as

P X Z X M , . 3
k

K
k k Z

1

k
= S

=

( ∣ ) ( ∣ ) ( )

Here X M ,k k L( ∣ ) is the probability density function for the
multivariate Gaussian distribution with mean vector Mk and
covariance matrix kS . Unfortunately, using covariance matrices
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is inefficient, as it involves expensive matrix inversion
operations when computing the likelihood. For this reason,
we use the inverse covariance matrix, also known as precision
matrix, k k 1L = S -( ) :

P X Z X M , . 4
k

K
k k Z

1

k
= L

=

( ∣ ) ( ∣ ) ( )

We use Equations (2) and (4) to obtain the mixture’s density
by marginalizing over Z:

P X P X Z P Z

X M

X M

X M X M

X M

,

,

, ... ,

, . 5

Z

Z k

K
k k Z

k

K
k Z

Z k

K
k k k Z

K K K

k

K
k k k

1 1

1
1 1 1

1

k k

k





 



å

å  

å 

å

=

= S P

= P S

=P S + +P S

= P L

= =

=

=

( ) ( ∣ ) ( )

( ∣ ) ( )

( ( ∣ ))

( ∣ ) ( ∣ )

( ∣ ) ( )

Thus, we can interpret each kP as the prior probability of
assigning a sample X to component k (Bishop 2006).

We can derive the corresponding posterior probability Γ
using Bayes’s theorem:

X P Z X
X M

X M
1

,

,
. 6k k

k k k

l

K l l l
1



å
G = = =

P L

P L
=

( ) ( ∣ ) ( ∣ )
( ∣ )

( )

kG is referred to as the responsibility of component k, and it
represents how strongly component k contributed to generating
sample X (Bishop 2006).

Figure 4 shows a Gaussian mixture model in plate notation.

4.3. Precision Matrix Modeling

As we are developing a Bayesian model, we assign priors to
the mixture component’s parameters. For the components’
means a Gaussian prior is commonly used. As for the
precisions, the Wishart distribution is a popular choice owing
to its conjugacy to the multivariate Gaussian distribution when
a dependency to the mean is introduced. However, as Barnard
et al. (2000) point out, when specifying a prior it is more
convenient to work in terms of standard deviation and

Figure 2. K-means example in 2D space. (a) Cluster centroids are initialized at
random positions. (b) First step: each data point is mapped to the closest
centroid. (c) Second step: the centroids are moved to the mean of each cluster’s
mapped points. (d–f) The steps are repeated iteratively until convergence.

Figure 3. Example of a graphical model in plate notation. The top panel shows
the model in plate notation. Indexed variables are displayed once. The bottom
panel shows the same model using no plates. Each variable is explicitly
displayed.
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correlation. For this purpose, they suggest a separation strategy,
decomposing a covariance matrix Σ into a standard deviation
vector σ and a correlation matrix C:

Cdiag diag . 7s sS = ( ) ( ) ( )

Here vdiag( ) represents the square diagonal matrix whose main
diagonal contains the elements in vector v. This provides the
advantage that we can express our prior knowledge of the
standard deviation and correlation separately on the original scale
of the standard deviation (Barnard et al. 2000).

A random value for σ can be generated using any continuous
distribution. We generate the correlation matrix C using the method
proposed by Lewandowski et al. (2009), from which we can get a
random correlation matrix C of any given dimension with density
proportional to C 1l-∣ ∣ for a shape parameter 1l > . We will refer
to this distribution over the space of correlation matrices as LKJ. In
Section 5.1 we explain how we use this principle to model the
precision matrix priors for the mixture components.

4.4. n-dimensional Rotations

Rotations in 2D and 3D space are commonly understood as
rotations about an axis by a certain angle. Duffin & Barrett (1994)
argue that it is better to think about them as occurring in a plane:
the plane perpendicular to the axis of rotation in 3D, and the
only plane in 2D. They generalize the concept to rotation in
n-dimensional space in principal planes formed by two
coordinate axes.

The rotation matrix for the rotation of axis Xa in the direction of
axis Xb by an angle of θ is as follows (Duffin & Barrett 1994):

R r

r i a i b
r
r
r
r
r

1 ,
cos
cos

sin
sin

0 elsewhere

. 8ab ij

ii

aa

bb

ab

ba

ij

q

q
q
q

q

=

= ¹ ¹
=
=
= -
=
=

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

⎫

⎬

⎪⎪⎪

⎭

⎪⎪⎪

( ) ( )

An arbitrary rotation in n-dimensional space can then be
specified as the composition of rotations in the d

2( ) principal
planes.

5. Method Description

We propose a probabilistic model based on the GMM to
describe the P X Y,s ( ) and P X Y,t ( ) distributions. We model
mixture weights, component mean vectors, and precision
matrices for the source distribution in the usual manner.
However, each of the target distribution mixture parameters is
modeled as a separate transformation of the respective
parameter of the source mixture: each target mean vector is
equal to the respective source mean vector plus a translation,
and each target precision matrix is equal to a scaling and a
rotation of the respective source precision matrix. Note that
each component need not undergo the same transformation as
the others, since there are separate transformation variables for
each one. Here, we are making the assumption that we can
capture the domain shift between the data sets as a mixture of
transformations in the subspaces defined by each multivariate
Gaussian. That is, we propose a model that describes a mixture
of Gaussians over the source data set and a linear transforma-
tion for each of its components, which result in a transformed

mixture of Gaussians over the target data set. Note that since
the target mixture is fully determined by the source mixture and
the transformation, the mapping between the corresponding
components is given implicitly—the target component that
corresponds to a source component is simply the one resulting
from applying the component’s transformation. Furthermore,
we assume that the training set suffers the same shift between
the domains as the unlabeled data set and that by inferring it
from the latter we will be able to correct it for the former as
well. The latter implies that we assume that there is no
significant unrepresented population in the unlabeled data.
Our method comprises five steps, as shown in Figure 5: (1)

the model is set up using the unlabeled data from the source
and target domains (the detailed model specification follows in
Section 5.1). An optional step of randomly sampling from the
data sets may be performed here, depending on the amount of
data and computational resources available. (2) The mixture
and transformation parameter variables are sampled using the
Metropolis Hastings MCMC method. (3) The samples are used
to make a point estimate of the parameters. Steps 2 and 3 are
explained in Section 5.2. (4) The estimated parameters are used
to apply the modeled transformation to the training set that is
available for the source domain, in order to correct the shift.
The transformation is explained in detail in Section 5.3. (5)
Using the transformed training data, a classifier expected to
perform well on the target domain is trained. In our
experiments, presented in Section 7, we perform an additional
step (shown with an asterisk in Figure 5) of testing on a target
domain labeled data set in order to assess the method’s
performance. This data set is not used at any moment in the
previous steps.

Figure 4. Gaussian mixture model in plate notation. Each data point X is
generated by the component indicated by Z. Each of the K components has
mean vector and precision matrix priors Mk and kL , respectively. Black squares
indicate prior hyperparameters.
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5.1. Model Specification

First, we specify the mixtures that represent the source and
target data sets. Let Xs

i and Xt
j be random variables for the ith

and jth unlabeled sample in the source and target data sets,
respectively, and let d be the dimensionality of the data. Let Zs

i

and Zt
j denote the component assignments for source sample i

and target sample j, Ms
k and Mt

k the mean for component
k K1 ..Î , and s

kL and t
kL the precision for component k in the

source and target domains, respectively. Let sP and tP be the
priors for the component weights.

The following distributional assumptions are made:

H

Z i Z j
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X M i X M j

,

, , .

s

s
i

s t
j

t

s
k

s
i

s
Z

s
Z

t
j

t
Z

t
Z

s
i

s
i

t
j

t
j

 

 



 

a h

m w

P ~ ~

~ P " ~ P "

~ "

~ L " ~ L "

( ) ( )
( ) ( )

( )

( ) ( )

Here  a( ) denotes the Dirichlet distribution with concentra-
tion parameter vector α and dimension K,  p( ) represents the
categorical distribution with event probability vector π of
dimension K, and , m L( ) represents the normal distribution
of dimension d with mean vector μ and precision matrix Λ.

The target component weights are determined by the source
component weights and the Dirichlet distributed variable H,
which scales each weight like so:

H H k. 9t
k

s
k k

l

K

s
l l

1
åP = P P "
=

( )

Higher values for the hyperparameter η will favor small
differences in component weight between domains.

As explained in Section 4.4, the source domain components’
precision matrices s

kL are generated using the separation
strategy defined in Equation (7). Each resulting covariance
matrix is then inverted to yield the corresponding precision

matrix:

L k l l k

L k

,

diag diag
.

k k

s
k k k k

0 1

1

 l~ " S ~ "

L = S S "-

( ) ( )
( ( ) ( ))

Here l l, 10( ) denotes the uniform distribution of dimension
d with minimum value l0 and maximum value l1, and  l( )
denotes the LKJ distribution of dimension d with shape
parameter λ.

Figure 5. Domain adaptation method overview. (1) The probabilistic model is constructed according to the specification and the unlabeled input data. (2) MCMC
techniques are used to sample from the posterior distributions of the transformation parameters. (3) The transformation parameters are estimated by averaging the
samples. (4) The transformation is applied to the source training data according to the estimated parameters. (5) A classifier is trained on the transformed input data
from the source domain. In our experiments, the classifier is tested on labeled data from the target domain to assess performance (shown with an asterisk).

Figure 6. Proposed model in plate notation. Random variables are shown in
circles. Variables derived deterministically from other variables are shown in
squares. Prior hyperparameters are shown as small black squares.
Observed variables are shaded in gray. Some hyperparameters are omitted
for clarity.
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Second, we introduce random variables for the component
transformations. Each component suffers a translation of its
mean vector and a rotation and a scaling of its precision matrix.
The translation of a component’s k mean, Tk, and the resulting
target mean vectors Mt

k are as follows:

T I k

M M T k

0,

.

k

t
k

s
k k

 k~ "

= + "

( )

Here 0 represents the zero vector of dimension d and I
represents the d×d identity matrix. The κ hyperparameter
specifies the a priori belief about the magnitude of the
translations, so that smaller κ values will favor larger
translations.

Each precision matrix rotation is modeled as a d

2( )-dimen-

sional vector of angles kQ , representing the rotation of each
principal plane. The precision matrix scalings are modeled as
factors multiplying each dimension centered at the compo-
nent’s mean:

k S k

k

, , 0.5

2 1 .

k
d

k d

k k

2   b b
r

F ~ " ~ + "
Q = F - "

( )( ) ( )
( )

The notation ,d a b( ) corresponds to the beta distribution of
dimension d with shape parameters α and β. We abuse the
notation ,d a b d+( ) to represent the same beta distribution
with its range offset by δ, resulting in a support in the range

, 1.0d d+[ ]. We let the rotation in each principal plane be in
the interval ,r r-[ ]. In order to do so, we draw from each kF

Figure 7. Model visualization on simulated data. Left two panels: simulation under ConS. Right two panels: simulation under GeTarS. Top panels show the fitted
models. The dashed level curves represent the mixture components for the source data set, and the solid lines show the components after applying the transformation
found. Bottom panels show the transformation. The source data set points are shown in blue along with their image after applying the transformation in yellow. The
class distributions for each data set are shown in the lower right corner.
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prior d

2( ) values between 0 and 1 and use them to interpolate

between the rotation limits and get kQ , the angles of rotation. The
hyperparameter β represents the a priori belief about the
magnitude of the rotations. Larger values of β mean a more
tight distribution around 0.5, which equals a null rotation. Then,
for each of the d

2( ) main planes of rotation we use Equation (8) to
build a rotation matrix and compose them like so:

R R k, 10k

a

d

b a

d

ab l
k

1

1

1
 =   Q "
=

-

= +

( ) ( )

l a d a b a1 2 . 11= - - + -( )( ) ( )
Here denotes aggregated left side matrix multiplication,

so that Equation (10) expands to

R R R

R R R
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k

d d
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The scaling factors for each dimension are allowed in the
range 0.5, 1.5[ ]. The  determines how tightly around a scaling
factor of 1 the distribution will be.

We get the precision matrix that would result from scaling
the data in each component k by S k and then rotating it
according to Rk as

R S S R k. 13t
k k k

s
k k k1 1 1L = L "- - -( ) ( ) ( ) ( )

Figure 6 shows the proposed model in plate notation.

5.2. Parameter Estimation

In order to apply the transformation, we first estimate the Tk,
Sk, and kQ transformation parameters and the sP , tP , Ms

k, and

s
kL model parameters by sampling from their posterior

distributions using the Gibbs MCMC sampler. To accelerate
convergence, we run K-means on the source data set to find
centroids for the source components and initialize the mean
vectors to their values. We step through MCMC iterations until
the standard deviation of the samples is below a certain
threshold. We then use the mean point estimate of the samples
as the parameter values.

5.3. Feature Transformation

Let sP̂ and tP̂ be the estimates for the source and target
component weights sP and tP , respectively. Let the K×d
matrix T̂ contain the estimate of the translation Tk of each
component as rows, the K×d matrix Ŝ contain the estimates
of the component scalings S k as rows, and the K d

2
´ ( ) matrix

Q̂ contain the estimate for the rotation angles of the d

2( )
principal planes of each component as rows. Similarly, let Ms

kˆ

and s
k

L̂ be the estimates for the mean vector and the precision
matrix for each component k, respectively.
We then apply a transformation Ψ to the source domain

training set Ds
l in order to obtain a labeled data set

D x y,l
i
sl

i
sl

i
N

1
s
l

 = Y ={( ( ) )} suitable for training a classifier for
the target domain. Let X be an N ds

l ´ matrix containing the
source training samples, such that X xi i

sl= for i N1 ,..., s
l= .

We compute the N Ks
l ´ matrix W containing the component

transformation weights for each instance given by Equation (6):

W X i k, . 14ik
k

i= G " "( ) ( )

The translation for each instance is given by the weighted
average of the component responsibilities and the component

Figure 8. SVM classifier adaptation visualization. Decision boundaries for RBF kernel SVMs trained on the source training set and the transformed source training
set. Left panel: simulation under ConS. Right panel: decision boundaries in a second simulation under GeTarS. The class distributions for each data set are shown in
the lower right corner.

Table 1
F1 Scores for Simulated ConS and GeTarS Experiments

ConS GeTarS

Classifier Original Transformed Original Transformed

SVM 88% 95% 87% 93%
RF 84% 94% 85% 91%
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Table 2
Features Used in the Experiments

Name Description

1 Color Difference between the mean magnitude of observations from two different bands
2 Mean Mean magnitude; arithmetic mean of all the light-curve observations
3 Psi_CS Range of a cumulative sum applied to the phase-folded light curve (using the period estimated from the Lomb–Scargle method)
4 Skew Skewness of the observed magnitudes

Note. Names and descriptions are as in the FATS package. See Nun et al. (2015) for a detailed definition.

Table 3
Telescope and Survey Comparison

EROS MACHO HiTS

Instrument “MarLy” Ritchey–Chrétien Telescope Great Melbourne Telescope (Renovation) Víctor M. Blanco Telescope
Institution European Southern Observatory Australian National University Cerro Tololo Interamerican Observatory
Location La Silla, Chile Mount Stromlo, Australia Cerro Tololo, Chile
Altitude (masl) 2,375 770 2,207
Diameter (m) 0.98 1.27 4
Aperture f/5 f/3.8 f/2.7
Field of view 0°. 7 (R.A.) 1° 2°. 2

1°. 4 (Decl.)
Bands (Å) Blue (4200–6500) Blue (4500–6300) Blue-green (4000–6200)

Red (6500–9000) Red (6300–7800) Red (4850–7650)
Far-red (6200–9200)
Near-infrared (7900–10,000)

Limiting mag. 20 20.5 24.5
Observed areaa Magellanic Clouds Magellanic Clouds Southern Galactic Cap

Note.
a Of the data used in the experiments. See the survey description for the complete observation area.

Table 4
Data Set Class Composition

Class Description # EROS # MACHO # HiTS

1 CEP Cepheids 472 14 35
2 EB Eclipsing binaries 12,061 207 15
3 QSO Quasars 217 55 2309
4 RRLYR RR Lyrae 11,787 611 105
5 LPV Long-period

variables
1468 217 0

Total 26,005 1104 2464

Table 5
Baseline F1 Scores for Variable Star Classification in EROS

Random Forest Support Vector Machine

Class Two Features Three Features Four Features Two Features Three Features Four Features

1 CEP 53% 72% 79% 32% 16% 72%
2 EB 75% 80% 85% 76% 78% 84%
3 QSO 1% 21% 24% 0% 0% 0%
4 RRLYR 74% 80% 84% 77% 79% 83%
5 LPV 90% 92% 92% 91% 91% 92%

Weighted Average 74% 80% 85% 76% 77% 83%
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translations:

W T. 15D = ˆ ( )

Here Δ is an N ds
l ´ matrix containing the translation for

each instance.
Scaling proportional to component responsibility is applied

by computing the translation iX that results from scaling
centered under each component:

W S I X M idiag . 16i
k

K

ik
k

i s
k

1
åX = - - "
=

( ( ˆ ) )( ˆ ) ( )

Here I is the d×d identity matrix and vdiag( ) is the square
diagonal matrix whose main diagonal contains the elements in
vector v.
Finally, we rotate the data with respect to each component

center. First, we compose the rotation matrices for each
instance and component similarly as in Equation (10), but using
weighted transformation angles:

R R W i k, , 17i
k

a

d

b a

d

ab ik l
k

1

1

1
 =   Q " "
=

-

= +

ˆ ( ˆ ) ( )

with l as given by Equation (11).

Table 6
Baseline F1 Scores for Variable Star Classification in MACHO

Random Forest Support Vector Machine

Class Two Features Three Features Four Features Two Features Three Features Four Features

1 CEP 52% 61% 69% 13% 13% 80%
2 EB 73% 74% 82% 65% 66% 82%
3 QSO 33% 67% 59% 0% 0% 10%
4 RRLYR 89% 91% 93% 89% 89% 93%
5 LPV 98% 98% 98% 98% 98% 98%

Weighted Average 84% 88% 90% 81% 81% 87%

Table 7
Baseline F1 Scores for Variable Star Classification in HiTS

Random Forest Support Vector Machine

Class Two Features Three Features Four Features Two Features Three Features Four Features

1 CEP 35% 41% 35% 10% 10% 33%
2 EB 0% 42% 33% 0% 0% 0%
3 QSO 97% 97% 98% 97% 97% 97%
4 RRLYR 24% 36% 46% 22% 23% 19%

Weighted Average 92% 94% 94% 92% 92% 93%

Table 8
F1 Scores for Classification Experiments with Two Features

EROS  MACHO EROS  HiTS

Classifier Original Transformed Original Transformed

RF 51% 68% 6% 27%
SVM 48% 65% 0% 0%

MACHO  EROS MACHO  HiTS

Classifier Original Transformed Original Transformed

RF 47% 70% 13% 50%
SVM 59% 72% 1% 0%

HiTS  EROS HiTS  MACHO

Classifier Original Transformed Original Transformed

RF 1% 10% 2% 7%
SVM 1% 4% 1% 6%

Note. Column “Original” displays the score obtained when training in the untransformed source data set and testing on the target data set. Column “Transformed”
shows the score when training on the transformed source data set and testing on the target data set.
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Then the transformation X Xi
Y =( ) is given by the

following algorithm:

X X
k K

X R X M M

X X

for 1 do

end for
,

i i

i
k

s
k

s
k

i



 

 

= + X
= 

= - +

= + D

ˆ ( ˆ ) ˆ

which applies the offset produced by the scalings, rotates the
data according to each component, and finally applies the
weighted translation.

6. Implementation

For our implementation we used PyMC3 (Salvatier et al.
2016) for the model specification and MCMC sampling. For
data manipulation, linear algebra, and statistical and numerical
computation we used NumPy (Walt et al. 2011), SciPy (Walt
et al. 2011), Pandas (McKinney 2010), and Theano (Al-Rfou
et al. 2016). The plots shown in this paper were generated using

Matplotlib (Hunter 2007). We also used the SVM, RF, and
metrics implementations of Scikit-learn (Pedregosa et al. 2011).
The implementation of our model and the data used in our

experiments is available as a Python package at https://goo.gl/
EPgnkk.

7. Experimental Results

7.1. Methodology

We transfer the training knowledge from the source to the
target catalog by performing the steps illustrated in Figure 5:

1. Build the Bayesian model with the source catalog and
target catalog unlabeled data sets.

2. Perform MCMC sampling from the posterior distribu-
tions of the transformation parameters until convergence.

3. Estimate the transformation parameters using the mean of
the samples.

4. Take the source catalog’s training set and transform it
using the parameters obtained in the previous step.

5. Train a classifier using the adapted training set.

Figure 9. Main transformation components from EROS to MACHO. The four components with the highest weights for a 2D transformation from the EROS to the
MACHO data set are shown. The source components are shown with a blue dashed line and the target components with a green solid line. Point transparency
represents the responsibility of the plotted component for that point, with higher opacity representing higher responsibility.
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We then measure the performance of our method by testing
the classifier on a labeled data set from the target catalog left
out for this purpose.

The classifiers used in our experiments are the Radial Basis
Function (RBF) kernel Support Vector Machine (SVM; Boser
et al. 1992) and the Random Forest (RF; Breiman 2001)
classifier.

Table 10
F1 Scores for Classification Experiments with Four Features

EROS  MACHO EROS  HiTS

Classifier Original Transformed Original Transformed

RF 71% 84% 8% 21%
SVM 84% 90% 1% 1%

MACHO  EROS MACHO  HiTS

Classifier Original Transformed Original Transformed

RF 60% 70% 11% 30%
SVM 78% 78% 45% 44%

HiTS  EROS HiTS  MACHO

Classifier Original Transformed Original Transformed

RF 3% 11% 3% 16%
SVM 0% 0% 1% 1%

Note. Column “Original” displays the score obtained when training in the untransformed source data set and testing on the target data set. Column “Transformed”
shows the score when training on the transformed source data set and testing on the target data set.

Table 11
F1 Scores for Classification Using Two Features

to Transfer from EROS to MACHO

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 3% 4% 7% 4%
2 EB 31% 37% 31% 36%
3 QSO 0% 0% 0% 0%
4 RRLYR 48% 79% 43% 77%
5 LPV 93% 90% 94% 81%

Weighted
Average

51% 68% 48% 65%

Table 12
F1 Scores for Classification Using Three Features

to Transfer from EROS to MACHO

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 13% 0% 7% 5%
2 EB 36% 45% 48% 59%
3 QSO 48% 40% 53% 38%
4 RRLYR 63% 79% 80% 90%
5 LPV 96% 95% 95% 94%

Weighted
Average

63% 73% 75% 81%

Table 9
F1 Scores for Classification Experiments with Three Features

EROS  MACHO EROS  HiTS

Classifier Original Transformed Original Transformed

RF 63% 73% 2% 35%
SVM 75% 81% 0% 1%

MACHO  EROS MACHO  HiTS

Classifier Original Transformed Original Transformed

RF 50% 62% 19% 63%
SVM 68% 74% 56% 60%

HiTS  EROS HiTS  MACHO

Classifier Original Transformed Original Transformed

RF 1% 26% 2% 7%
SVM 0% 5% 1% 4%

Note. Column “Original” displays the score obtained when training in the untransformed source data set and testing on the target data set. Column “Transformed”
shows the score when training on the transformed source data set and testing on the target data set.
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7.2. Simulations

We generated data sets and simulated domain shifts of
different nature in order to study the performance and behavior
of our model under conditional shift and generalized target
shift.

First, we simulated covariate and conditional shift. The left
two panels in Figure 7 show a simulated data set generated
using two multivariate Gaussians. In the top panel, the target
data set, shown in green, was generated by translating, scaling,
and rotating the source data set distribution, shown in blue. The

Table 13
F1 Scores for Classification Using Four Features

to Transfer from EROS to MACHO

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 7% 33% 12% 44%
2 EB 54% 73% 71% 81%
3 QSO 19% 37% 50% 60%
4 RRLYR 74% 91% 89% 95%
5 LPV 95% 93% 96% 94%

Weighted
Average

71% 84% 84% 90%

Table 14
F1 Scores for Classification Using Two Features

to Transfer from EROS to HiTS

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 15% 0% 15% 0%
2 EB 2% 1% 2% 2%
3 QSO 6% 29% 0% 0%
4 RRLYR 3% 6% 0% 8%

Weighted
Average

6% 27% 0% 0%

Table 15
F1 Scores for Classification Using Three Features

to Transfer from EROS to HiTS

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 0% 0% 0% 0%
2 EB 1% 2% 1% 1%
3 QSO 2% 37% 0% 0%
4 RRLYR 11% 15% 5% 21%

Weighted
Average

2% 35% 0% 1%

Table 16
F1 Scores for Classification Using Four Features

to Transfer from EROS to HiTS

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 0% 0% 0% 0%
2 EB 1% 2% 1% 1%
3 QSO 8% 21% 0% 0%
4 RRLYR 10% 14% 17% 16%

Weighted
Average

8% 21% 1% 1%

Table 17
F1 Scores for Classification Using Two Features

to Transfer from MACHO to EROS

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 10% 50% 5% 46%
2 EB 57% 68% 67% 67%
3 QSO 2% 3% 0% 1%
4 RRLYR 42% 73% 55% 77%
5 LPV 31% 85% 43% 91%

Weighted
Average

47% 70% 59% 72%

Table 18
F1 Scores for Classification Using Three Features

to Transfer from MACHO to EROS

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 4% 3% 11% 0%
2 EB 59% 62% 72% 72%
3 QSO 12% 16% 25% 21%
4 RRLYR 45% 64% 70% 80%
5 LPV 36% 73% 52% 82%

Weighted
Average

50% 62% 68% 74%

Table 19
F1 Scores for Classification Using Four Features

to Transfer from MACHO to EROS

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 14% 25% 28% 7%
2 EB 63% 76% 80% 81%
3 QSO 16% 2% 27% 5%
4 RRLYR 63% 69% 82% 81%
5 LPV 32% 58% 48% 76%

Weighted
Average

60% 70% 78% 78%

Table 20
F1 Scores for Classification Using Two Features

to Transfer from MACHO to HiTS

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 12% 9% 18% 0%
2 EB 1% 2% 0% 1%
3 QSO 14% 53% 1% 0%
4 RRLYR 1% 2% 1% 1%

Weighted
Average

13% 50% 1% 0%
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components of the fitted model are represented as level curves.
The bottom panel shows the transformed source data set in
yellow, along with the original source data set in blue.

Then, we simulated the GeTarS scenario by having a
different class distribution between the source and target data
sets. The two right panels in Figure 7 show the generated data
sets and the fitted model in the same manner.

Figure 8 shows how the decision boundary of a radial basis
kernel (RBF) support vector machine (SVM) adapts to classify
better in the target data set when trained with the trans-
formed data.
The classification F1 scores for both experiments are shown

in Table 1.
Note that even though each mixture component suffers a

linear transformation, the overall transformation is not necessa-
rily linear since the transformation under each component is

Table 21
F1 Scores for Classification Using Three Features

to Transfer from MACHO to HiTS

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 17% 0% 5% 0%
2 EB 1% 1% 1% 3%
3 QSO 20% 67% 59% 63%
4 RRLYR 2% 6% 9% 9%

Weighted
Average

19% 63% 56% 60%

Table 22
F1 Scores for Classification Using Four Features

to Transfer from MACHO to HiTS

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 22% 3% 15% 0%
2 EB 1% 3% 2% 2%
3 QSO 11% 38% 47% 47%
4 RRLYR 16% 9% 13% 10%

Weighted
Average

11% 36% 45% 44%

Table 23
F1 Scores for Classification Using Two Features

to Transfer from HiTS to EROS

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 22% 7% 38% 2%
2 EB 0% 13% 0% 0%
3 QSO 2% 2% 2% 2%
4 RRLYR 0% 7% 0% 7%

Weighted
Average

1% 10% 1% 4%

Table 24
F1 Scores for Classification Using Three Features

to Transfer from HiTS to EROS

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 15% 10% 9% 2%
2 EB 0% 37% 0% 0%
3 QSO 2% 2% 2% 2%
4 RRLYR 0% 15% 0% 11%

Weighted
Average

1% 26% 0% 5%

Table 25
F1 Scores for Classification Using Four Features

to Transfer from HiTS to EROS

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 26% 19% 5% 0%
2 EB 4% 20% 0% 0%
3 QSO 2% 2% 2% 2%
4 RRLYR 0% 1% 0% 0%

Weighted
Average

3% 11% 0% 0%

Table 26
F1 Scores for Classification Using Two Features

to Transfer from HiTS to MACHO

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 11% 6% 18% 0%
2 EB 6% 9% 0% 0%
3 QSO 12% 11% 12% 13%
4 RRLYR 0% 6% 0% 8%

Weighted
Average

2% 7% 1% 6%

Table 27
F1 Scores for Classification Using Three Features

to Transfer from HiTS to MACHO

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 10% 0% 9% 0%
2 EB 0% 7% 0% 0%
3 QSO 12% 14% 12% 13%
4 RRLYR 2% 7% 0% 5%

Weighted
Average

2% 7% 1% 4%

Table 28
F1 Scores for Classification Using Four Features

to Transfer from HiTS to MACHO

Class Unadapted RF Adapted RF
Unadapted

SVM
Adapted
SVM

1 CEP 18% 9% 32% 0%
2 EB 10% 68% 0% 0%
3 QSO 12% 8% 12% 11%
4 RRLYR 0% 0% 0% 0%

Weighted
Average

3% 16% 1% 1%
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combined with the others. For example, it is possible to rotate or
scale some parts of the space while keeping others relatively
constant. This suggests that it is possible to capture more
complex transformations, such as non-affine transformations
where collinearity, line parallelism, convexity, length and area
ratios, etc., are not preserved.

7.3. Real Data Sets

We apply our method to variable star classification using
light curves from three different survey catalogs: the Expéri-
ence pour la Recherche d’Objets Sombres II (EROS) survey,
the Massive Compact Halo Object (MACHO) survey and the
High Cadence Transient Survey (HiTS). Sections 7.3.1–7.3.3
contain a brief description of each survey, followed by a
comparison in Section 7.3.4.

We extract features from the light curves using the Feature
Analysis for Time Series (FATS) Python package (Nun et al.
2015). In addition to the two top features according to the
importance ranking presented by Nun et al. (2015), we selected
the mean observed magnitude (herein referred to as “Mean”)
and the skewness of the observed magnitudes (herein referred
to as “Skew”). We know that the mean magnitude is a proxy of
the absolute magnitude for MACHO and EROS. Since these
two surveys observe the Magellanic Clouds, the distance to the
observed stars is approximately constant. We found that using
five mixture components was enough to get reasonable results.
The extracted features are described in Table 2.

7.3.1. The EROS Survey

The Expérience pour la Recherche d’Objets Sombres II
(EROS-II or simply referred to as EROS in this paper)
collaboration is an astronomical survey that started operation in
1990 at the European Southern Observatory at La Silla, Chile.
Its main purpose was to search for microlensing events in the
directions of the Magellanic Clouds, the Galactic center, and
four areas within the Galactic plane (Beaulieu et al. 1995). The
EROS-II instrument was a 0.98 m diameter Ritchey–Chrétien
telescope located at the European Southern Observatory in La
Silla, Chile. It operated at f 5 with a 0°.7 R.A. and 1°.4 decl.
field of view. The telescope featured a dichroic beam splitter
that allowed for simultaneous observations in two wide
passbands—a blue one and a red one (Perdereau 1998; Bauer
et al. 1998; Observatory 2017).

7.3.2. The MACHO Survey

The Massive Compact Halo Object (MACHO) project is a
gravitational microlensing survey whose main goal was to find
massive compact halo objects in the Milky Way halo to assess
their mass contribution (Alcock et al. 1997). Observations were
made in the direction of the Large Magellanic Cloud (LMC),
the Small Magellanic Cloud (SMC), and the Galactic bulge.
The MACHO project instrument was the 1.27 m telescope at
Mount Stromlo Observatory, Australia. It operated at f 3.8
with a 1° diameter field of view. A dichroic beam splitter and
filters allowed image capture in the “red” (∼6300–7800Å) and
“blue” bands (∼4500–6300Å). Each image has a sky coverage
of 0.72×0.72 degrees. The exposure times were 300 s for the
LMC, 600 s for the SMC, and 150 s for the bulge (Cook 1995;
Hart et al. 1996; Alcock et al. 1997).

In this paper we only consider the LMC data.

7.3.3. The HiTS Survey

The High Cadence Transient Survey (HiTS) first campaign
started in 2013 with the objective of exploring transient and
periodic objects with characteristic timescales between a few
hours and days. This discovery survey uses high-cadence data
obtained from the Dark Energy Camera (DECam) mounted on
a 4 m telescope at Cerro Tololo Inter-American Observatory
(CTIO). The large etendue (product of collecting area and field
of view) of the DECam allows the observation of apparent
magnitudes as low as 24.5 mag. It operated at f 2.7 with a 2°.2
field of view (Fukugita et al. 1996; Flaugher 2006; Förster et al.
2016).

7.3.4. Data Set Comparison

Among the three surveys studied, MACHO and EROS are
the most similar. They observed along two comparable bands,
had an analogous limiting magnitude, and we used data from
the same observed area for our experiments. However, as we
can see from Tables 5, 6, and 10, the classification performance
drops significantly when training in one of these data sets and
classifying in the other. F1 score drops from 85% to 60% when
training in MACHO and classifying in EROS using Random
Forest with four features, versus training and testing in
MACHO. When training in EROS and classifying in MACHO,
the drop is from 90% to 71%.
In contrast, EROS and MACHO are comparatively more

dissimilar than HiTS. Some differences are as follows: HiTS
observed in four bands instead of two, it had a limiting
magnitude around four points higher, it had a wider field of
view, and it observed a different region of the sky. Table 3
shows a comparison of the three surveys and their instruments.
Unsurprisingly, the classification performance drops dramati-
cally when using HiTS as a training set for classifying in EROS
or MACHO, and vice versa. When classifying in HiTS using
Random Forest and four features, the F1 score drops from 94%
to 8% when training in EROS and to 11% when training in
MACHO. When using HiTS to train, the F1 score using
Random Forest and four features drops from 85% to 3%
classifying in EROS and from 90% to 3% classifying in
MACHO.
The data sets used in our experiments are also different in the

amount of labeled data available. While our labeled data set for
EROS has more than 25,000 labeled stars, the MACHO and
HiTS data sets have only about 1000 and 2500, respectively.
Moreover, the class representation is different in each data set.
Table 4 shows a description and the amount of instances for
each class present in the labeled data sets of each survey.

7.3.5. Baseline Results

Tables 5–7 present the per-class classification F1 scores
obtained by cross-validation in each data set. These results
serve as a baseline for the performance that can be achieved by
both training and testing in the same data set using the same
features we transfer in our experiments.

7.3.6. 2D Experiment Visualization

To illustrate the functioning of the model, we first apply it to
a 2D space using the Mean and Color features (see Table 2).
We use EROS as the source data set and MACHO as the target.

16

The Astrophysical Journal, 845:147 (18pp), 2017 August 20 Benavente, Protopapas, & Pichara



Hence, our goal is to classify MACHO instances using the
transformed EROS training set. We use 10,000 unlabeled
instances from each of the domains to fit our transformation
model with five components. Figure 9 shows the transforma-
tion found for the four components with the highest weights.
Note how each component “focuses” on a different region of
the distribution and then transforms instances to “‘match” the
target distribution region.

7.3.7. Further Experiments

We continue applying the method to an increasing number
of features from Table 2. We repeat the experiments using all
possible data set pairs. Tables 8–10 show the F1 scores for
this experiment when transforming two, three, and four
features, respectively. The “Original” column displays the
score obtained when training in the untransformed source data
set and testing on the target data set. The “Transformed”
column shows the score when training on the transformed
source data set and testing on the target data set.

Tables 11–28 show the F1 scores for each class in each
experiment when transforming two, three, and four features.

8. Conclusion

We present a method for survey-invariant classification of
variable stars by transforming feature representations between
surveys. Our probabilistic model does not assume a particular
classifier and can be used to work with the data of one survey
as if it belonged to the other, allowing for the reuse of existing
training sets in related domains where no, or not enough,
labeled data are available. This will become increasingly
important for practical applications as the volume of
unlabeled data keeps growing, surpassing the rate at which
labeled data become available. No explicit assumptions are
made of the domain shift, which we consider to follow a
generalized target shift. We apply our method to simulated
data and to three astronomical surveys. First, we do inference
in our model to find the transformation parameters. Then, we
apply the transformation to the source domain’s training set,
train a classifier, and test in the target domain. Our results
show that a significant performance gain in classification can
be obtained by adapting a training set with our model, only
making use of unlabeled data in both domains.
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