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ABSTRACT

We present a new method to discriminate periodic from nonperiodic irregularly sampled light curves. We introduce
a periodic kernel and maximize a similarity measure derived from information theory to estimate the periods and a
discriminator factor. We tested the method on a data set containing 100,000 synthetic periodic and nonperiodic light
curves with various periods, amplitudes, and shapes generated using a multivariate generative model. We correctly
identified periodic and nonperiodic light curves with a completeness of ∼90% and a precision of ∼95%, for light
curves with a signal-to-noise ratio (S/N) larger than 0.5. We characterize the efficiency and reliability of the model
using these synthetic light curves and apply the method on the EROS-2 data set. A crucial consideration is the speed
at which the method can be executed. Using a hierarchical search and some simplification on the parameter search,
we were able to analyze 32.8 million light curves in ∼18 hr on a cluster of GPGPUs. Using the sensitivity analysis
on the synthetic data set, we infer that 0.42% of the sources in the LMC and 0.61% of the sources in the SMC show
periodic behavior. The training set, catalogs, and source code are all available at http://timemachine.iic.harvard.edu.
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1. INTRODUCTION

Characterization of the dynamic optical sky is one of the
observational frontiers in astrophysics. Variable sources, defined
as any source whose apparent magnitude changes over time,
have historically led to fundamental insights into subjects
ranging from the structure of stars and the most energetic
explosions in the universe to cosmology. These changes and their
characteristics tell us a lot about sources such as pulsating stars
and supernovae, as well as about the interaction of the source
with its surroundings, such as active galactic nuclei (AGNs)
or light being blocked by something between the source and
the observer. However, no optical telescope to date has had the
capability to search for transient phenomena at faint levels over
enough of the sky to fully characterize variable sources.

A subcategory of the variable sources are the periodic
variables. These are variables that in general repeat at regular
intervals. While astronomers historically have been able to study
variable and transient phenomena by examining the behavior of
individual sources, the amount of data and the large number of
sources have exponentially grown in the past decade (Hodapp
et al. 2004; Ivezic et al. 2011; Larson et al. 2003; Law et al.
2009), making this task daunting.

Although most stars have at least some variation in luminosity,
current estimations indicate that 3% of the stars are varying more
than the sensitivity of the instruments and ∼1% are periodic
(Eyer 1999). EROS-2 (Tisserand et al. 2007), MACHO (Alcock
et al. 2000), and OGLE (Udalski et al. 1997) were among the
first generation of large-scale surveys, monitoring millions of
sources for many years. Pan-STARRS (Hodapp et al. 2004) is
currently monitoring the whole visible sky repeatedly, and it will
be doing this for a total of three years. In the future Sloan Digitial
Sky Survey (SDSS; York et al. 2000), LSST (Ivezic et al. 2011)

will monitor even more sources, and more frequently, generating
billions of light curves. It is because of this explosion of data
that there is a need for efficient and well-characterized period-
finding techniques.

The problem of period estimation from noisy and irregularly
sampled observations has been studied before. Most approaches
identify the period by some form of grid search. That is, the
problem is solved by evaluating a criterion Φ at a set of trial
periods and selecting the period p that yields the best value
for Φ(p). Commonly used techniques vary in the form and
parameterization of Φ, the evaluation of the fit quality between
model and data, the set of trial periods searched, and the
complexity of the resulting procedures. Two methods that are
popular are the Lomb–Scargle (LS) periodogram (Scargle 1982;
Reimann 1994) and the phase dispersion minimization (PDM;
Stellingwerf 1978), both known for their success in empirical
studies. The LS method is relatively fast and is equivalent to
maximum likelihood estimation under the assumption that the
function has a sinusoidal shape. It therefore makes a strong
assumption on the shape of the underlying function. On the other
hand, PDM makes no such assumptions and is more generally
applicable, but it is slower and is less often used in practice.

In this paper we adopted the correntropy kernelized peri-
odogram (CKP), an information theoretical criterion introduced
in Huijse et al. (2012) to assess periodicity in light curves.
The CKP combines the generalized autocorrelation function
(Principe 2010) with a periodic kernel yielding a generalized
periodogram. The CKP measures similarity over time using
statistical information contained in the probability density func-
tion (pdf) of the samples. This gives the CKP an advantage
over methods that rely on second-order statistical descriptors.8

8 To fully characterize non-Gaussian random processes, the higher-order
moments are needed.
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By adjusting the kernel parameters of the CKP, one can adapt the
metric to different noise regimes and periodicities. The selection
of these parameters for the case of light curves is thoroughly
discussed in the present work.

To fully qualify the method, we generated a large set of
synthetic light curves (110,000) using parameter distributions
motivated from the data. To do so, we used a model-free
multivariate generative model and sampled the parameters. We
also use a smaller but manageable subset from the real data in
order to compare our results with reality. These subsets were
used to optimize the free parameters of the pipeline and to
characterize the efficiency and completeness of the process.

Astronomy and many experimental sciences are now collect-
ing more data than can be possibly analyzed by human experts
in a reasonable amount of time. We are not really interested in
the data per se, but in the information they contain about the
natural phenomena. Machine learning and signal processing are
becoming an integral part of the process of extracting informa-
tion from data, because they are quantitative methods based on
statistics and function analysis methods. This synergism is in its
early stages, and this paper shows an effective methodology to
speed up the discovery of periodic stars in large databases such
as the EROS-2.

Section 2 describes the theoretical framework that this work
is based on, Section 3 describes the pipeline and methodology,
Section 4 describes the synthetic data set, Section 5 describes
the data, Section 6 contains the results obtained from our runs,
and conclusions are given in Section 9.

2. THEORETICAL FRAMEWORK

The structure of a time series can be quantified by measuring
the signal similarity over time. The first measure that comes
to mind is the autocorrelation function of the time series
(Jenkins & Watts 1968). Let us define the time series as a
realization of a stochastic process {xn, n = 0, 1, . . . , N}, where
x is a random variable in R. The autocorrelation function for
stationary processes is defined as

R[m] = E[〈xn, xn−m〉], (1)

where E[·] indicates the expectation value. The autocorrelation
coefficient (covariance normalized by the variance) normally is
estimated for stationary and ergodic time series as a simple sum
of lagged products over a window of data:

R̂[m] = 1

N + 1 − m

1

σ 2

N∑
n=m

(xn − μ)(xn−m − μ), (2)

where N + 1 is the number of measurements in the time series
and the true mean μ and true variance σ 2 are time independent.

Looking more closely at the autocorrelation definition, one
finds out that only second-order information of the random
variable x is utilized in the definition, and as is well known,
only a few distributions such as the Gaussian are fully described
by their (first- and) second-order moments. Therefore, one
compromises the simplicity of the autocorrelation definition
with a loss of a more in-depth description of the signal similarity.
This paper will use more powerful definitions of similarity
for a better quantification of time series structure, which is
pivotal to achieve the reported results. The ideas are founded
in the mathematical theory of information and a descriptor of
entropy that exploits the full statistical information from samples
(Principe 2010), which is utilized to define similarity metrics.

Let us consider a stationary stochastic process {xn} and define
the generalized autocorrelation as

V [m] = E[κ(xn, xn−m)], (3)

where κ(x, y) is a positive definite function of two arguments
called a kernel (Schölkopf & Smola 2002; Taylor & Cristianini
2004). If we define κ(x, y) = 〈x, y〉, i.e., the first-order
polynomial kernel, one obtains the autocorrelation function
of Equations (1) and (2). Instead, let us select κ(x, y) as a
translation-invariant kernel (Schölkopf & Smola 2002), i.e.,
κ(x, y) = κ(x − y, 0). For simplicity we will use κ(x − y)
for translation-invariant kernel functions. The Gaussian kernel,
defined as

Gσ (x − z) = 1√
2πσ

exp

(
−‖x − z‖2

2σ 2

)
, (4)

is a popular kernel that fits the conditions, where σ is the
covariance, and will be called in this context the kernel size. In
Principe (2010) this class of functions is called autocorrentropy,
or more simply correntropy, and here we will always assume the
use of the Gaussian kernel. One of the advantages of correntropy
is that it is still very easy to estimate directly from data assuming
that the random process is ergodic. Using the sample mean, we
can estimate Equation (3) as

V̂σ [m] = 1

N + 1 − m

N∑
n=m

Gσ (xn − xn−m). (5)

The difference between autocorrelation and autocorrentropy
seems pretty minor, but it is very significant, as fully discussed
in Principe (2010). For this work, the important correntropy
properties are the following.

1. Correntropy with the Gaussian kernel includes a weighted
sum of all the even moments of the random variable,
including the second-order moment (the autocorrelation)
of ‖xn − xn−m‖.

2. Correntropy is a positive definite function, and therefore
it can replace the autocorrelation function in the definition
of the Power spectrum, yielding the correntropy spectral
density (CSD) (Principe 2010), as

Pσ [f ] =
∞∑

m=−∞
Uσ [m] · exp

(
−i 2πf

m

Fs

)
, (6)

where Fs corresponds to the sampling frequency. The
function Uσ [m] corresponds to Vσ [m] − IP , where IP
corresponds to the mean value of the autocorrentropy
function over the lags.9

3. Correntropy has a free parameter that can be interpreted as a
scale parameter and therefore needs to be defined according
to the time series data.

4. Correntropy quantifies similarity using the correntropy
induced metric (CIM), defined as

CIM(x, y) = (κ(0, 0) − E[κ(x, y)])1/2 . (7)

The CIM is a metric very different from the Lp norms
that define the Minskowski spaces, where the distances are

9 This is also the argument of Renyi’s quadratic entropy (Principe 2010).
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Figure 1. Distances to the origin (contours) in a bidimensional sample space using (a) the CIM(X,0), (b) L2 norm, and (c) L1 norm. For the CIM (Equation (7)) a
Gaussian kernel function with σ = 1 is considered. Note how the CIM incorporates the L1, L2, and L0 norms at different scales.

always weighted the same (Figure 1).10 This means that
distances between the arguments of the CIM are weighted
nonuniformly, i.e., if the distance between the arguments is
small, then the CIM approximates the L2 norm, but if the
difference is larger, then it will approximate the L1 norm,
and for very large difference between the arguments, the
CIM tends to the L0 norm. The transitions between the
norms are smooth, and the assessment of small and large,
the scale in this space, is controlled by the kernel size, which
impacts drastically the assessment of similarity.

It is appropriate to present a synthetic example to illustrate
the difference between autocorrelation and autocorrentropy in
assessing similarity over time, as well as to elucidate the role
of the kernel size. Let us take the case of the stochastic pro-
cess with uniform random amplitude in [−A,A] and a random
phase in [−π, π ] defined as xn = A sin(w0n + ϕ). As is well
known, the autocorrelation function of sine waves is a sine
wave with the same period. However, should it be a sine wave
if we are interested in assessing the degree of similarity of the
signal time structure? Since the sine wave is periodic, the sim-
ilarity is maximum when the delay is exactly one period, but
for intermediate shifts, the two functions are very dissimilar,
and autocorrelation does not show this very clearly (and the
similarity is neither normalized nor always positive, hence the
use of the correlation coefficient). Therefore, if we are seek-
ing a discriminative measure of similarity, the autocorrelation
function is not exploiting optimally the information available
in the statistics of the data. It turns out that correntropy is
more discriminative, as shown in Figure 2. The autocorren-
tropy of a sine wave (or any other periodic function) is a pe-
riodic pulse train defined by the data period, where the pulses
can be made arbitrarily sharp by decreasing the kernel size to
zero. This can be easily explained by observing Equation (5).
When xn and xn−m are similar, the argument is close to zero
and the Gaussian yields a value close to the argument square;
when the difference increases, the Gaussian function produces
exponentially smaller results proportional to the difference in
arguments ; and for larger differences, the Gaussian gives back
very small values close to zero (see Figure 1(a)). Of course, if
white noise is added to the sine wave, one immediately sees
that the kernel size cannot be made arbitrarily small; otherwise,
the correntropy becomes always very small, not capturing the

10 For x ∈ R
n, the Lp norms are defined as Lp = ‖x‖p = (

∑N
i=1 x

p

i )
1
p ,

p ∈ (0,∞). In the limit p → 0, the L0 norm is defined as the number of
nonzero components in the vector (counting norm).

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

Time [samples]

si
n(

w
0 n

)

(a)

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

Lag [samples]

A
ut

oc
or

re
la

tio
n

(b)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Lag [samples]

A
ut

oc
or

re
nt

ro
py

(c)

Figure 2. (a) Plot of xn = A sin(w0n + ϕ) with unit amplitude, w0 = 2π/200,
and where ϕ is a random variable uniformly distributed in [−π, π ]. (b)
Autocorrelation of xn; note that the autocorrelation function of a sine wave
is a sine wave. (c) Autocorrentropy of xn; note that the autocorrentropy of a sine
wave is a train pulse in which the periodicity is represented by the peaks. The
sharpness of the peaks can be controlled using σ .

periodic nature of the noisy signal. However, if the kernel size
needs to be made very large to accommodate large noises, then
the autocorrentropy approaches the autocorrelation function.

2.1. Periodic Kernel

With this introduction in mind, we move on to specifying
the kernel that best encapsulates the information in the data

3
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for periodic signals. Periodic kernel functions are known to
be appropriate for nonparametric estimation, modeling, and
regression of periodic time series (Michalak 2010). A kernel
function is periodic with period P if it repeats itself for
inputs separated by P. Periodic kernel functions have also
been proposed in the Gaussian process literature (Rasmussen
& Williams 2006; Mackay 1998; Wang et al. 2012).

A periodic kernel function can be obtained by applying a
nonlinear mapping (or warping) u(t) to the input vector t. In
Mackay (1998) a periodic kernel function was constructed by
mapping a unidimensional input variable t using a periodic two-
dimensional warping function defined as

uf (t) = (cos (2πf t) , sin (2πf t)) .

The periodic kernel function GP
σ (f, tz − ty) with period 1/f is

obtained by applying this warping function to the inputs of the
Gaussian kernel function (Equation (4)). The periodic kernel
function is defined as

GP
σ (f, tz − ty) = Gσ (uf (tz) − uf (ty)) (8)

= 1√
2πσ

exp

(
− 2 sin2(πf (tz − ty))

σ 2

)
,

where the following expression is used:

‖uf (z) − uf (y)‖2 = 4 sin2(πf (z − y)).

Note that the periodic kernel is a function of δt = (tz − ty) and
frequency, the inverse of the period. The Taylor series expansion
at δt = 0 of Equation (8) is defined as

GP
σ (f, δt) = lim

N→∞

N∑
k=0

(−1)k

k!σ 2k
t 2k−1

×
[

k∑
m=0

(
2k

k − m

)
(−1)mgm cos(2πmf δt)

]
, (9)

where

gm =
{

1/2, if m = 0.

1, otherwise.

Note that for large values of σ , only the first terms contribute
to the sum, and thus the periodic kernel tends to a constant plus
cos(2πf δt), which corresponds to the real part of the Fourier
basis.

3. METHOD

We base our methodology on the work described in Huijse
et al. (2012). In this section we summarize the key points from
that work, which are based on the overall description given in
the previous sections, and then introduce the new concepts, par-
ticularly an intuitive interpretation of the parameters of the CKP,
simple rules to select these parameters, and a normalization term
that is needed to perform ensemble comparisons.

The CKP used in Huijse et al. (2012) is a period detection
function developed for unevenly sampled time series. The CKP
is computed from the available samples following a direct
quadratic estimator approach, as proposed in Marquardt &
Acuff (1984).11 For a discrete unidimensional random process

11 The basic idea is that for uneven samples, one can calculate the
periodogram without having to regularize the data.

{xn, n = 1, . . . , N} with kernel sizes σt and σy and a period
1/f , the CKP is computed as

CKP{σt ,σy }(f ) = 1

N2

×
N∑

i=1

N∑
j=1

(
Gσy

(Δyij ) − IPσy

)
GP

σt
(f, Δtij ), (10)

where Δyij = yi − yj , Δtij = ti − tj , Gσy
(·) is the Gaussian

kernel function (Equation (4)), GP
σt

(·, ·) is the periodic kernel
function (Equation (8)), and IPσy

is the information potential

IPσy
= 1

N2

N∑
i=1

N∑
j=1

Gσy
(Δyij ). (11)

Note that Equation (10) is similar to the CSD (Equation (6))
with two main differences: (1) the CKP is estimated in a direct
approach; and (2) the basis functions, exp (−i 2πf m/Fs), have
been replaced by the periodic kernel (Equation (8)). In this
sense the CKP can be interpreted as the result of transforming
the autocorrentropy function through a basis defined by the
periodic kernel.

By comparing magnitude values through the autocorrentropy
function, the CKP is effectively using a CIM (Equation (7))
metric to measure magnitude distances. The kernel size σy

has influence in the assessment of magnitude similarities, as
explained in the previous section. The CKP compares time
differences with the trial period through the periodic kernel.
The periodic kernel size σt allows the user to choose how this
comparison is made.

By summing in the time and magnitude index, a function of
the trial period is obtained; thus, the CKP can be considered
a generalized periodogram. Consequently, in order to detect
periods in light curves the CKP is maximized over the frequency
(inverse of the period) for a given combination of parameters,
namely, the two kernel bandwidths (σy, σt ).

One of the major advantages of the CKP over conventional
methods is its adaptability given by the kernel parameters. In
what follows, we describe heuristic approaches that use the
available information on the light curve to set the kernel sizes.
Without them, the maximization of the CKP would have been a
very expensive procedure.

The kernel bandwidth, σy , controls the observation window
that is used to compare the magnitude values of the light curve.
This parameter needs to be set small enough so that outliers are
filtered, but large enough to compensate for the observational
and other measurement errors. Conveniently, those errors are
usually available for most measurements in light curves (these
are the magnitude errors). For a given light curve the Gaussian
kernel bandwidth is selected as

σy = med({e}), (12)

where med is the median and {e} are the error bars of the light-
curve measurements. Figure 3(a) shows a synthetic periodic
light curve with random error bars. Samples y1 and y2 are
compared using the Gaussian kernel, where the median of the
error bars is 0.08 and the σy is set to be 0.08. Figure 3(b)
shows the equivalent Gaussian kernel value for this pair. In
reality, the observational errors are not constant, and therefore
Equation (12) should not be the same for all pairs and should be a
combination of the two observational errors added in quadrature.
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Figure 3. (a) Periodic synthetic time series cos(2πf t) + N (0, 0.5). The dotted line corresponds to the underlying signal. In this example the median of the error bars
is 0.08. Samples y1 and y2 are compared using the Gaussian kernel (b). The kernel size is set to 0.08.

Practically the difference of this approximation and the correct
approach is insignificant.

The kernel bandwidth, σt , controls the observation window
that is used to compare the time differences of the light curve
with the trial period. When σt → 0, only the samples whose
time differences are equal to the trial period will be picked by
the periodic kernel. The smaller the σt is, the more precise the
estimation will be, although in practice fewer samples will be
available. When σt grows large, the exponential in Equation (8)
has less relevance and the periodic kernel tends to a sinusoidal
function (as shown in Section 2.1 through the Taylor expansion
of Equation (8)). Intuitively, this parameter has influence on the
periodicity’s shape. A smaller σt is beneficial to pick up shapes
that have many features or abrupt changes, such as the narrow
eclipses of an Algol-type eclipsing binary. On the contrary, a
large σt is used for smoother shapes, i.e., wiggles and high
derivatives are ignored. In summary, the σt needs to be set
small enough so that the features of the periodicity will not be
missed, but large enough so that there will be enough samples
representing the period and to avoid picking up structures due
to the noise.

Since σt describes the smoothness of the shape of the light
curve, a way to estimate σt is to find the variation of δt values
in a given y band. Empirically, we observed that for almost all
periodic light curves, the CKP is maximized for σt ∼ 0.1–0.6
and that the value of σt is strongly correlated with the third
moment or the skewness of the distribution of the magnitudes
of the light curves. Light curves with skewed distributions,
such as those corresponding to eclipsing binaries (Figure 4(a)),
get a small σt value. On the other hand, light curves with
very symmetric distributions (Figure 4(b)) will get a larger
σt . Finally, we will address ensemble comparisons for period
discrimination. The kernel sizes are selected for each light curve
differently as described above, and in order to compare different
light curves, the CKP is required to be invariant under σy , σt ,
and the sample size.

For that we propose a properly normalized CKP metric as

nCKP{σt ,σy }(f ) =
√

Nσt

IPσy

1

N2

×
N∑

i=1

N∑
j=1

(
Gσy

(Δyij ) − IPσy

)
GP

σt
(f, Δtij ), (13)

where 1/IPσy
normalizes against σy ,

√
σt normalizes against

σt , and
√

N normalizes against the number of samples. The

normalization factors were confirmed empirically by comparing
the distribution of the CKP across different sets of surrogate light
curves, generated with the procedures described in Section 4.
Figure 5(a) shows a histogram of max CKP{σt ,σy }(f ) for three
sets of surrogates generated with different N values. In this
figure the unnormalized CKP is used (Equation (10)). For
the histogram shown in Figure 5(b) the normalized CKP
(Equation (13)) is used. In this case the distribution of the
CKP is equivalent; thus, it is invariant to the different N of
the surrogates.

3.1. Trial Period Extraction, the Bands Method

The parameter to be estimated by maximizing the CKP is the
period. Unfortunately, the dependence of CKP on period is not
uniform and is difficult to model (Huijse et al. 2012); therefore,
any clever optimization technique fails to converge faster than
the brute-force approach.

To alleviate this problem, a fast search algorithm is adopted.
The basic idea is that two points in an ideal light curve having the
same magnitude have to be apart in time by an integer multiple
of the period. For the ideal light curve case, finding the period is
as simple as finding the greatest common divisor of the times of
two points with the same magnitude.12 However, the ideal case
is not applicable to astronomical data because (a) light curves
are composed of a nominal part and a signal part, as in the case
of planetary transits and eclipsing binaries; (b) the observations
are not performed continuously; and (c) measurements are not
perfect but suffer from observational errors.

What follows is an approximation tailored for real light
curves. Instead of looking at pairs of points with the same
magnitude, subsets of points with similar magnitudes are se-
lected. These subsets, called bands, should contain points that
have time differences that are multiples of the period; therefore,
in Fourier space these periods are enhanced. To avoid bands
where the light curve is in its nominal state, we select bands
where the derivatives are higher.

The details of the method are as follows.
For a unidimensional time series {ti , xi} with i = 1, . . . , N ,

1. compute the first derivatives di = (xi+1 − xi)/(ti+1 − ti);
2. divide the ordinate axis into 10 uneven-width bands, such

that each band has 10% of the light curve samples;
3. compute the sum of the first derivatives that belong to band

j (Bj), Dj = ∑
i∈Bj

|di |, with j = 1, . . . , 10;

12 This is the famous Euclid algorithm (oldest known).
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Figure 4. (a) Light curve lm0090l7821 folded with a period of 1.4255 days. This light curve has a highly positive skewed distribution. A time kernel bandwidth of
σt = 0.115 is selected for this light curve. (b) Light curve lm0090n9337 folded with a period of 4.3949 days. This light curve has a symmetric distribution. In this
case a time kernel bandwidth of 0.475 is selected.
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Figure 5. Distribution of the maximum CKP values on a set of 1500 synthetic
light curves. The light curves are generated with the same period and S/N but
using a different number of samples (N). Three sets of 500 light curves are
generated using N = 200, 400, and 600. (a) Distribution of the unnormalized
CKP. It is clear the CKP is not invariant to N. Light curves with higher N have
higher CKP values. (b) Distribution of the normalized CKP.

4. sort the bands in descending order of Dj and keep the first
Nb bands;

5. for each band compute the spectral window function
(Jenkins & Watts 1968) on a linearly spaced frequency
grid from 0.00125 1/days to 3 1/days (periods between
0.3 days and 800 days),

Sj (f ) =
∣∣∣∣∣∣
∑
i∈Bj

exp (j2πf ti)

∣∣∣∣∣∣
2

; (14)

6. save the frequencies associated with the Nt highest local
maxima of Sj (f ). Periods that comply with ‖P − 1‖ <

1e − 4 are omitted.13 This gives a total of Nb Nt trial
frequencies.

The number of analyzed bands, Nb, and the amount of trial
periods extracted per band, Nt, are user-defined parameters that
represent a trade-off between efficiency and computational time.
We expect to find the correct period in the first sorted bands;
however, the true period may be captured by different bands
although with different amplitudes, i.e., the rank of the true
period may vary across bands. For example, the true period
may be ranked 100th in the first band and 10th in the third
band. Synthetic light curves (see Section 4) are analyzed with
the period detection pipeline using different combinations of Nt
and Nb.

13 The one day pseudo-sampling period is strongly represented in all the
bands.
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Figure 6. Hit rate as a function of the parameters of the bands methods. These parameters are the number of bands Nb and the number of trial periods extracted per
band Nt.
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Figure 7. Computational time in seconds required to process one light curve (600 samples) as a function of the parameters of the bands methods. These parameters
are the number of bands Nb and the number of trial periods extracted per band Nt.

Figure 6 shows a contour plot of the hit rate as a function of
Nb and Nt. As expected, hit rates increase with Nb and Nt. For
every Nt, the hit rate gain obtained by adding additional bands
decreases with Nb, which indicates that the bands are correctly
sorted. Figure 7 shows a contour plot of the computational time
required to analyze one light curve as a function of Nb and
Nt. For two points with equal NbNt the point with lower Nb
requires less computational time. In terms of computational
time, adding bands is less desirable than increasing Nt. The
maximum hit rate achieved is 98.1%. We find the best operation
point to be Nb = 3 and Nt = 150, which yields a hit rate
of 95.1% with a computational time of 0.162 s per light curve.
This point represents the best compromise between efficiency
and computational time and is found by maximizing HR + 1/ct ,
where ct is the computational time.

Figure 8(a) shows a plot of an EROS-2 light curve,
lm0090m4818. Figure 8(b) shows the same light curve folded
with a period of 1.54192 days. The black dotted lines mark the
band divisions on the magnitude axis. The shaded region shows
the best band in terms of the first derivatives criterion. Figure 9
shows a plot of the spectral window function of the time in-
stants extracted from the best band of lm0090m4818. The true
period of the light curve is associated with the eighth-highest
local maximum of the spectral window. In this case, if Nt > 8,
then the underlying period will be within the trial period set that
is to be evaluated by the CKP in the next step of the pipeline.

3.2. Performance Criteria

The task of discriminating periodic light curves can be
viewed as a binary classification problem where the classes
are periodic (true) and nonperiodic (false) light curves. In this
case, true positives (TPs) are the periodic light curves classified
as periodic, false positives (FPs) are the nonperiodic light curves
classified as periodic, true negatives (TNs) are the nonperiodic
light curves classified as nonperiodic, and false negatives (FNs)
are the periodic light curves classified as nonperiodic.

To evaluate the performance of our method, we use the
definitions of recall, r, precision, p,

r = TP

TP + FN
, p = TP

TP + FP
(15)

and F-score,

Fβ = (1 + β2) p r

βp + r
. (16)

The denominator of r in Equation (15) corresponds to the
number of periodic light curves in the data set. Recall is the
ratio of recovered periodic light curves over the total number
of periodic light curves in the data set. The denominator of
p in Equation (15) corresponds to the number of light curves
that are classified as periodic. Precision, or completeness, is the
ratio of recovered periodic light curves over the total number
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Figure 8. (a) EROS-2 light curve lm0090m4818. The dotted lines show the band
divisions. The shaded region shows the best band in terms of the first derivatives
criterion. (b) Same light curve folded with a period of 1.54192 days.

of light curves that are classified as periodic. The F-score
(Equation (16)) is a weighted average of recall and precision.
The parameter β controls the importance of recall over precision
on the weighted average. In what follows we use the F1 score
(β = 1).

We also define hit rate as

HR = TP∗

TP∗ + FN
, (17)

where TP∗ are the periodic light curves classified as periodic
and at the same time the true period is recovered.14

4. SYNTHETIC LIGHT CURVES

In order to evaluate the actual efficiency of the system and
determine the true number of periodics in our data set, we build
a synthetic set containing both nonperiodic and periodic light
curves.

Periodic set. The periodic synthetic light curves are generated
using a multivariate Gaussian generative model with a covari-
ance matrix similar to the periodic kernel in Equation (8). To
generate a periodic synthetic light curve, with period P, signal-
to-noise ratio (S/N) S, and smoothness σ , we follow the proce-
dure below.

1. Randomly select a light curve from the database and extract
its time instants {ti} and error bars {ei}. This defines the
number of samples, N, of the generated light curve.

14 Note that a light curve can be classified as periodic even if the true period is
not recovered, such as when a multiple of the true period is found.
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Figure 9. Spectral window of the tenth band from light curve lm0090m4818.
The red dotted line shows the location of the underlying period (1/P = 0.6485).
The underlying period is associated with the eighth-highest local maximum of
the spectrum.

2. Use the time instants {ti}, period P, and smoothness σ and
generate an N × N covariance matrix as

Σ1(i, j ) = 1√
2πσ

exp

(
− 2 sin2(π (ti − tj )/P )

σ 2

)
.

3. Generate a random periodic vector, Ys, of length N using
a multivariate normal random generator with N × 1 zero
mean vector and Σ1 covariance matrix.

4. Use the error bars to generate an N×N diagonal covariance
matrix with diagonal elements,

Σ2(i, i) = e2
i .

5. Generate a random noise vector Yn of length N using a
multivariate normal random generator with an N × 1 zero
mean vector and Σ2 covariance matrix.

6. The synthetic light curve Y is obtained by summing the
noise vector and the signal vector as follows:

Y = S
med(ei)

0.7413iqr(Ys)
Ys + Yn, (18)

where S is the desired signal-to-noise ratio, med is the
median function, and iqr is the interquartile range. Note
that the resulting light curve has S/N S by construction.

For our purpose we generated a set of 10,000 synthetic
periodic light curves, using the following parameter ranges.

1. Ten linearly spaced values for σ in the range [0.1, 0.6].
2. Twenty logarithmically spaced values for P in the range

[0.4, 1000] days.
3. Ten values for S extracted from the distribution of the S/N

of EROS-2 light curves.

Five synthetic light curves are generated for each combination
of S, P, and σ .

We present examples of the synthetic light curves generated
using this procedure in Figure 10. Figure 10(a) shows a synthetic
light curve with a period of 2.432 days, a smoothness value of 0.2
and an S/N of 10. Using a low smoothness value yields a shape
with many features. Owing to the high S/N, the periodicity is
very clear. Figure 10(b) shows a synthetic light curve with a
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Figure 10. Example of synthetic periodic light curves. (a) Light curve created using P = 2.432 days, σt = 0.2, S/N = 10, and N = 642. (b) Light curve created using
P = 10.24 days, σt = 0.5, S/N = 4, and N = 342. (c) Light curve created using P = 154 days, σt = 0.4, S/N = 2, and N = 932.

period of 10.42 days, smoothness of 0.5, and S/N of 4. In this
case, a higher σ value yields a smoother shape, as seen in the
folded light curve. Figure 10(c) shows a synthetic light curve
with a period of 154 days, smoothness of 0.4, and S/N of 2.

Nonperiodic set. The nonperiodic synthetic light curves
are generated using block-bootstrap surrogates (Schmitz &
Schreiber 1999; Schreiber & Schmitz 1999; Buhlmann 1999).
The procedure to generate a nonperiodic synthetic light curve is
as follows.

1. Randomly select a light curve and extract its time instants
{ti} and error bars {ei}. This defines the number of samples
N of the generated light curve.

2. Compute the slotted autocorrelation function (ACF;
Edelson & Krolik 1988) of the light curve.

3. Find the time lag associated with the ACF value of exp(−1);
this time lag is used as the block length (BL) for the block
bootstrap method below.

4. Until at least N magnitude values have been created, do the
following.
(a) Randomly select the block starting point is, such that

is ∈ [1, N −N ′). Find N ′ as the last light curve sample
that complies with

t(N ) − t(N ′) > BL.

(b) Find the end point of the block ie as the first time instant
that complies with

t(ie + 1) − t(is) > BL.
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Figure 11. (a) Periodic light curve EROS-2 lm0090l27524 folded with the period of 0.337443 days; this period has a CKP value of 2.7424. (b) Slotted autocorrelation
function of light curve lm0090l27524. Using the slotted ACF, a window length of 3.67 days is selected to create the surrogates. (c) Surrogate created from lm0090l27524.
The CKP value of the surrogate is 0.4532, which is below the corresponding periodicity threshold.

(c) Grab the time instants, magnitudes, and error bars of
the original light curve segment in [is, ie + 1].

(d) Subtract the initial time tis from the selected time
instants. After this, the block starts at zero days.

(e) Add the time from the previous block tPB to the selected
time instants (tPB = 0 for the first block). After this,
the block starts where the last block ended.

(f) Update tPB = t(ie + 1). Delete the time instant,
magnitude, and error bar of sample ie + 1 from the
block.

(g) Add the newly constructed block to the surrogate.

For each EROS-2 light curve selected, 10 surrogates were
created. A total of 10,000 EROS-2 light curves were used to
create a training set of 100,000 nonperiodic synthetic light
curves. To demonstrate that the resulting surrogates are not
periodic and to retain the same spectra characteristics as the
original light curves, we perform the procedure described above
with a light curve of a periodic star. Figure 11(a) shows

EROS-2 light curve lm0090l27524 folded with a period of
0.337443 days. The associated CKP value is 2.7424. The block
bootstrap method was used to create a nonperiodic synthetic
light curve. Figure 11(b) shows the slotted ACF, and the block
length selected for this light curve is 3.67 days. Ten surrogates
are generated using the procedure described above. Figure 11(c)
shows one of the surrogates. The surrogate is folded with its best
period, and clearly the periodicity of the original light curve is
not retained by the surrogate.

4.1. Obtaining the Periodicity Discrimination Thresholds

A light curve is labeled as periodic if the CKP value associated
with its best trial period is above a given periodicity discrimi-
nation threshold. We determine the threshold by optimizing the
F1 score (Equation (16)) with a training set created as described
above and following the guidelines in Section 3.2. The period-
icity threshold is a function of the S/N, and therefore we obtain
a periodicity threshold per S/N. To do so, the S/N values are
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Table 1
Periodicity Thresholds and Associated Precision and Recall

Values for Each S/N Bin

S th(S) max F-score p(S) r(S)
[%] [%]

[0, 1.5] 0.4584 0.92 94.26 89.15
[1.5, 2] 0.4565 0.94 95.14 92.15
[2, 2.5] 0.4537 0.95 96.42 92.98
[2.5, 3.5] 0.4581 0.96 96.82 94.26
[3.5, 5] 0.5875 0.97 97.52 96.12
[5, 10] 1.1153 0.98 98.12 97.51
[10, 20] 1.6464 0.98 98.22 97.81
[20,∞] 2.4112 0.97 98.54 96.15

discretized in nine bins, S = {[0, 1.5], [0, 1.5], [1.5, 2], [2, 2.5],
[2.5, 3.5], [3.5, 5], [5, 10], [10, 20], [20,∞]}, and we compute
the periodicity threshold according to the following procedure.

1. Evaluate the CKP values for each light curve in the training
set whose S/N falls in bin S.

2. Construct a threshold array of 5000 points in [min(CKP),
max(CKP)].

3. Compute the F1 score (Equation (16)) at each threshold
value.

4. Select the threshold th(S) as the CKP value that maximizes
the F1 score.

Once the thresholds have been computed, a light curve whose
S/N falls in bin S is labeled as periodic if

CKP(Pbest) > th(S),

where Pbest is the detected period that maximizes the CKP for
the given light curve.

4.2. Estimating the True Number of Periodic Light Curves

In this section, we elaborate on how to estimate the number of
periodic light curves in a data set. This is not to be confused with
the number of light curves labeled as periodic by the proposed
method. The true number of periodic light curves in a data set,
Np, is the number of true positives plus the false negatives,
which is equivalent to the denominator of r in Equation (15).
The number of light curves classified as periodics, Ñp, is the
number of true positives plus false positives, which is equivalent
to the denominator of p in Equation (15).

Using Equation (15), we can estimate the actual number of
periodics in a given S/N bin S as

Np(S) = Ñp(S)
p(S)

r(S)
, (19)

where p(S) and r(S) are the precision and recall values for
bin S, respectively, which we assume we can determine from
the training set. The precision and recall values are computed
following the procedure given in Section 4.1. Given an Ñp, we
can estimate the true number of periodic light curves in a data
set as

Ñp =
∑

S

Ñp(S)
p(S)

r(S)
. (20)

Table 1 shows the thresholds th(S), associated F-score, and
recall and precision values obtained for each S/N bin S. The
overall precision and recall (across the S/N bins) are 95.3% and
92.7%, respectively.
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Figure 12. Hit rate in the synthetic periodic light curves as a function of the
value of the parameters used to generate the set. The parameters are (a) the
number of samples, (b) the smoothness, (c) period over total time span, (d) and
S/N. The proposed method is compared with the LS periodogram.

4.3. Efficiency as a Function of Parameters

In the following tests, we assess the efficiency of the proposed
method as a function of the parameters of the synthetic light
curves. Hit rate (Equation (17)) is measured as a function of
the total time span divided by the period, number of samples,
smoothness, and S/N for the 10,000 synthetic periodic light
curves. Hit rates are computed as a function of one of the
parameters while summing for the other three. The CKP is
compared with the LS periodogram on each test.

Figure 12(a) shows a plot of the HR as a function of the
ratio between the total time span of the light curve and its
period (T/P). The total time span of the light curves in the
EROS-2 survey is approximately 2500 days, and the sampling
rate is approximately 1.2 samples per day. The ratio T/P can
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be viewed as the number of times the underlying signal repeats
itself. The period range in the training set goes from 0.4 days to
1000 days. HR is stable across the given range except for T/P
below 10 and above 2300. Intuitively, the fewer times a signal is
repeated across T, the more difficult it is to assess its periodicity.
This can be seen in the plot for periods above 280 days. There
is also a limit in the resolution due to the sampling rate, which
is reflected as a hit rate drop for periods below 0.5 days. The
same hit rate drop can be observed for the LS periodogram.

Figure 12(b) shows a plot of HR as a function of the number
of samples of the synthetic light curve. HR increases with the
number of samples. The hit rate rises by 5% when the number of
samples increases from 300 to 600. In comparison with the LS
periodogram, the CKP is less affected by N. Intuitively, the less
information available on the process, the harder it is to assess
its periodicity.

Figure 12(c) shows a plot of the hit rate as a function of the
smoothness (σ ) of the synthetic light curves. The hit rate is stable
across the given range, decreasing slowly for the very large and
very small values of σ . Overall, the smoothness does not have
great influence on the CKP hit rate. The LS-periodogram hit
rate increases with σ . This is expected, as smaller values of σ
produce light curves with highly nonsinusoidal shapes, as shown
in Figures 10(a), (b) and (c).

Finally, Figure 12(d) shows a plot of the hit rate as a function
of the S/N (Equation (22)) of the synthetic light curves. HR
is stable for the given S/N range, dropping abruptly for S/N
below 1.8. For S/N of 1.2 the hit rate has decreased by almost
25%. A similar behavior can be seen for the LS periodogram.

5. DATA

5.1. Description of the Data

The EROS-2 project (Tisserand et al. 2007; Rahal et al. 2009)
was designed to search for gravitational microlensing events
caused by massive compact halo objects (MACHOs) in the halo
of the Milky Way. To do this, 32.8 million stars in the Magellanic
Clouds were surveyed over 6.7 yr. The objective of the EROS-2
survey was to test the hypothesis that MACHOs were a major
component of the dark matter present in the halo of our galaxy.

The EROS-2 project surveyed 28.8 million stars in the Large
Magellanic Cloud (LMC) and 4 million stars in the Small
Magellanic Cloud (SMC), distributed in 88 and 10 observa-
tional fields, respectively. Each field is divided into 32 chips
(8 CCDs and 4 quadrants per CCD). Each light curve file has
five columns: time instant, red channel magnitude, red channel
error bars, blue channel magnitude, and blue channel error bars.
In what follows, only the blue channel is used. The average
number of samples per light curve is 430 and 780 in the LMC
and SMC, respectively.

5.2. Preprocessing and Intricacies of the Data

Fixing the error bars. As described above, the kernel size
was estimated using the error bars of the magnitudes or the
estimate of the observational errors. If these observational errors
were underestimated or overestimated (as is often the case), the
kernel size will be also wrongly estimated. For example, if the
error bars are for some reason underestimated, then the kernel
bandwidth will also be underestimated and will not account of
the true scatter of the light curve, resulting in low CKP values.

For a light curve that is not variable the sample variance and
the error bars should have very similar values. Another way of
expressing this is that for a given nonvariable light curve the
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Figure 13. (a) Median of the magnitude’s error bars as a function of the
interquartile range of the magnitudes for chip lm0090k. The dotted line has
a slope of 1. The error bar correction factor for lm0090k is 0.42. (b) Same plot
after correcting the error bars.

median of the error bars should be equal to the interquartile
range. Since we know that most sources are not variable, a
plot of those two quantities should be distributed around the
bisector (line with slope of 1). Figure 13(a) shows a plot of
the median of the error bars as a function of the interquartile
range of the magnitudes for a randomly selected chip, lm0090k.
Each dot corresponds to a light curve. The locus of the points
(light curves with magnitudes between 17 and 21) is over the
bisector, i.e., the error bars are larger than the dispersion of the
light curve. This is an example of a field with overestimated
error bars.

For a given field with Nlc light curves, the error bar correction
factor is defined as the constant that minimizes

αcf = arg min
α

Nlc∑
k=1

(iqr({y}k) − αmed({e}k))2 , (21)
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Figure 14. Median of the magnitude’s error bars as a function of the interquartile
range of the magnitudes for chip lm0140k. The error bar correction factor for
lm0140k is ∼1.

where {y}k and {e}k are the magnitudes and error bars of light
curve k, respectively, iqr is the interquartile range, and med is
the median.

For the field shown in Figure 13(a) an error bar correc-
tion factor of 0.42 is obtained. Figure 13(b) shows the plot
of the same field after correcting the error bars. Figure 14 shows
the same plot for chip lm0140k. This chip is on the periphery
of the LMC. The error bar correction factor for this field is ∼1,
i.e., there is no need for correction.

Using the error bar correction factor, we define the pseudo-
signal-to-noise ratio (pS/N) of a given light curve as

pS/N = 0.7413iqr({y})
αmed({e}) , (22)

where y and e are the magnitudes and error bars, respectively,
and α is computed per field using Equation (21).

Removing outliers and bad points. The mean ē and the
standard deviation σe of the error bars are computed per light
curve, and samples that do not comply with

ei < ē + 3σe,
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Figure 16. (a) Histogram of the periodic light curves detected with the proposed
method on the LMC. The spurious periods have not been filtered in these results.
The vertical columns correspond to the spurious periods, their multiples, and
their aliases. (b) Histogram of the periodic light curves detected in the LMC
after carrying out the spurious period removal scheme.

where ei is the error bar of a sample i, are removed from the
light curve. At this point, light curves with less than 50 samples
are discarded from the analysis.

Simple detrending. After that, the coefficients of a least-
squares linear χ2 regression on the magnitudes are computed:

χ2 =
N∑

i=1

(a0 + a1ti − xi)2

e2
i

, (23)

where a0 is the intercept and a1 is the slope. The coefficients of
the linear fit are obtained by differentiating Equation (23) with
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Figure 15. (a) Light curve lm0324k13673 from the EROS-2 survey. A linear χ2 fit is computed for this light curve (blue dotted line). The correlation coefficient for
the linear fit is 0.9493. (b) Light curve lm0324k13673 after the linear trend subtraction.
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Figure 17. Maps of the (a) EROS-2 LMC and (b) SMC fields. The percentage of periodic light curves is shown below the name of the field.

respect to a1 and a0. The linear χ2 fit is subtracted from the light
curve only if the correlation coefficient between the light curve
and its linear fit is above 0.5 (goodness of fit). Figure 15(a) shows
EROS-2 light curve lm0324k13673. The signal is mounted
on a monotonically increasing linear trend. The dotted line in
Figure 15(a) shows the χ2 linear fit. Figure 15(b) shows the light
curve after the linear fit subtraction; further evaluation shows
that the light curve is periodic with a period of 120.38 days.

6. RESULTS

6.1. Filtering of Spurious Periods

The set of trial periods obtained with the bands method and
evaluated using the CKP (Equation (13)) contain spurious peri-
ods related to the solar day, the moon phase, the year, and their
multiples. These spurious periods need to be filtered in order to
find the true underlying periodicity of the light curve. Additional
spurious periods were found by analyzing the histogram of the
periodic light curves detected by the proposed method (Fig-
ure 16(a)). These additional spurious periods, which are given
in Table 2, correspond to aliases of the known spurious periods.

A Gaussian mask centered around the spurious period is
created for each of the spurious periods. Periods whose CKP
falls inside the masks are filtered as spurious periods. The

Table 2
Description of the Spurious Periods

Period Description
(days)

1 Solar day (Pd)
29.5305 Moon phase or Synodic month (Pm)
365.24 Tropical year (Py)
2, 335 Average time span of EROS-2 light curves (T)
0.4917 ((Pd/2)−1 + P −1

m )−1

0.5086 ((Pd/2)−1 − P −1
m )−1

0.9672 (P −1
d + P −1

m )−1

1.0351 Lunar day, (P −1
d − P −1

m )−1

0.9973 Sidereal day, (P −1
d + P −1

y )−1

1.0027 (P −1
d − P −1

y )−1

27.31 Sidereal month, (P −1
m + P −1

y )−1

32.13 (P −1
m − P −1

y )−1

315.65 (P −1
y + T −1)−1

432.63 (P −1
y − T −1)−1

standard deviation and the amplitude of the masks are set so
that the associated spurious peak in the period histogram is
flattened.15 The trial period that maximizes the CKP and does

15 The parameters of the filters can be found alongside the catalogs at
http://timemachine.iic.harvard.edu.
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Figure 18. These light curves are examples of the false positives found in the catalogs. (a) Light curve lm0090n29655, folded with the detected period of 278 days,
is an example of quasi-periodic behavior. (b) Light curve lm0091l19300, folded with the detected period of 264 days, is mounted on a polynomial trend in the mean.
(c) Light curve lm0090n6107, folded with the detected period of 144 days, varies in amplitude across the time span.

Table 3
Characteristics of Selected Fields

Field Number of Light Curves Average N Average S/N

lm009 109,802 548 1.628
lm012 95,010 447 0.959
sm001 92,666 830 1.505

not fall in any of the spurious period masks is selected as the
best trial period for the light curve.

6.2. Results for Selected Fields

In this experiment the proposed method is evaluated on three
fields from the EROS-2 survey. The objectives are to measure the
accuracy of the method and to compare the number of periodic
light curves in the fields with the expected number of periodic
light curves computed from the synthetic results by performing
visual inspection to a large but manageable number of light
curves. The first six chips from fields lm009, lm012, and sm001
are used in this experiment. Table 3 shows the number of light
curves, the average number of samples, and the average S/N
from the selected fields.

Table 4
Results in the Selected EROS-2 Survey Fields

Field Ñp FP Prec. FN Recall Observed Np Synthetic Np

(%) (%)

lm009 1160 41 96.47 66 94.43 1185 1189
lm012 718 30 95.82 51 93.10 739 743
sm001 1564 69 95.59 99 93.79 1594 1637

Table 4 shows the results obtained for the selected fields.
Column (2) (Ñp) corresponds to the number of light curves
labeled as periodic by our method. These light curves are folded
with the detected period and visually checked in order to find
the number of false positives (Column (3)). Column (4) is the
precision in the detected periodic light curve set. Column (5)
gives an estimate of the false negatives (FNs) in the field. The
FNs are estimated by visually inspecting the folded light curves
of the objects that are below the periodicity thresholds. Because
it is impracticable to check all the nonperiodic objects, the search
for FNs is stopped if 50 consecutive nonperiodic light curves
are found for each S/N bin. Column (6) is the recall calculated
using the observed number of true positives (Ñp-FP) and the

15
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Figure 19. Examples of overlapping and blending. A period of 2.4796 days is detected for light curves (a) sm0077n17908 and (b) sm0010k3199. The angular distance
between these light curves is 0.′′5. Their differences in magnitude and CKP value are 0.03 and 0.23, respectively. These light curves are associated with a star that is in
an overlapped region between fields sm001 and sm007. Light curves (c) sm0023n10183 and (d) sm0023n10325 are also found to have the same period (1.2535 days),
but they reside in the same field. Their angular distance, δ-magnitude, and δ-CKP are 4.′′9, 4.5, and 4.1, respectively. In this case the light from sm0023n10183
(c) introduces a periodicity in its neighbor (d).

FN. Column (7) corresponds to the observed number of periodic
light curves (Ñp -FP+FN). Column (8) shows an estimation of
the true number of periodic variables (Np) using the synthetic
precision and recall values given in Section 4.2. Column (7)
is also an estimation of Np because the true amount of FNs is
not known.

A grand total of 1160 periodic light curves is recovered
from field lm009, which corresponds to 1.06% of the field.
The percentage of periodic light curves in lm012 and sm001

is 0.75% and 1.69%, respectively.16 The overall precision and
recall in all the fields are within 2% of the overall precision
and recall found in the synthetic data set. For comparison we
ran the LS periodogram17 on the lm009 field. The spurious
periods are filtered as described in previous sections. The filtered

16 These chips have a higher number of periodics than the average found in
the LMC and SMC, as can be seen in Figure 17(a). This issue is discussed in
the next section.
17 The vartools software with the -LS option is used.
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Figure 20. Histogram of the periods found in the (a) LMC and (b) SMC blue channel data. The regions marked with dotted boxes are associated with clusters of a
given type periodic variable star.

periods found with the LS periodogram are sorted according to
their normalized LS statistic. By imposing a threshold on this
statistic, the periodic light curves obtained the CKP plus 298
false positives, and 14 additional true positives are obtained.
This corresponds to a drop of 16.5% in precision and a negligible
increase in recall (1%) with respect to the CKP.

It is important to note that there are periodic behaviors that
are not captured in the proposed synthetic light curve set. Ex-
amples of these are periodicities mounted on polynomial trends,
objects with more than one oscillation period, objects that are
not periodic in the whole time span, and objects whose oscil-
lation amplitude changes irregularly or following a modulation
pattern, such as semiregular and irregular long period variables
(LPVs). These cases are considered as nonperiodic during the
inspection. Examples of these cases are shown in Figures 18(a),
(b), and (c), which correspond to false positives found in field
lm009. Currently, the proposed method is not able to discrimi-
nate quasi-periodicities or other irregular periodics.

6.3. Results on EROS-2 LMC and SMC Fields

A total of 32.8 million light curves from the EROS-2 survey
were processed with the proposed periodicity discrimination
pipeline, 28.8 million from the LMC and 4 million from the
SMC. Table 5 shows the summary of the results for the LMC
and SMC. Ñp corresponds to the number of light curves labeled
as periodic by our method. The Discarded column corresponds

Table 5
Periodic Light Curve Discrimination Result Summary on the EROS-2 Survey

NLC Ñp Discarded Np Periodics
(%)

LMC 28,797,305 120,983 2,663 121,147 0.42
SMC 4,064,179 24,920 1,817 24,855 0.61

to the number of periodic light curves that appear twice in
the list, owing to field overlapping and blending. Column Np
corresponds to an estimation of the true number of periodic
variables using the synthetic precision and recall values given
in Section 4.2.

To select the duplicate light curves, the nearest neighbor for
each object in terms of angular distances is first identified. If
the distance to the nearest neighbor is less than 10′′ and both
objects have the same period, then the light curve with the lowest
magnitude is added to the discarded set. Using this criterion,
2663 pairs of light curves are selected from the LMC. From this
set 336 correspond to light curves that reside in different chips.
The average delta magnitude in this set is 0.281, and the average
delta CKP is 0.744. Each pair of light curves corresponds to
the same star that appears twice in the survey owing to the
overlapping in the observational fields. The other 2327 cases
correspond to light curves that are neighbors in the same chip.
The average delta magnitude in this set is 2.15, and the average
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(a)

(b)

Figure 21. Color–magnitude diagram showing the periodic light curves found in the (a) LMC and (b) SMC. BMS corresponds to blue main sequence. LRGB
corresponds to lower red giant branch. Black boxes mark the location of Cepheid, RR Lyrae, LPV, and ellipsoidal variable populations.

delta CKP is 3.02, much higher than in the previous set. In this
set the more luminous star of the pair injects its periodicity in
the light curve of the less luminous star (blending). Figure 19
shows an example of an overlapped pair and blended pair. It is
interesting to note that 72% of the blended light curves are found
in the fields within the LMC bar where the star density is the
highest, while the overlapped light curves are equally distributed
between bar and nonbar fields. In the SMC 1817 pairs of light
curves are selected to be discarded. In this case 386 are due to
field overlapping and 1431 are due to blending. The average
delta magnitude in the overlapped light curves is 0.21, and the
average delta CKP is 0.78. The average delta magnitude in the
blended light curves is 2.34, and the average delta CKP is 4.86.
The percentage of discarded light curves in the SMC is 7.2%,
which is higher than the 2.3% found in the LMC. This again
was attributed to the fact that SMC seeing is worse than LMC
seeing, resulting in an overlapping PSF, which in turn resulted
in correlated light curves.

Figure 17(a) shows a map of the 88 fields of the LMC. The
shaded fields correspond to the LMC bar. The percentage of
periodic light curves is shown for each field below its name. The
fields corresponding to the LMC bar have a higher percentage of
periodics. The percentage of periodics tends to drop the farther
the field is from the LMC bar. Figure 17(b) shows a map of

the 10 fields of the SMC where the same pattern is apparent.
Because the cores of the LMCs have an older population of
stars, it is known that one would expect more periodic stars in
those regions.

A grand total of 118,320 and 23,103 periodic light curves are
found from the LMC and SMC blue channel data, respectively.
Using the recall and precision from the training data set, we
estimate that the true number of periodic light curves is 121,147
for the LMC and 24,855 for the SMC. The percentage of light
curves that are periodic is 0.42% in the LMC and 0.61% in
the SMC.

Figure 20(a) shows the histogram of the periods found in
the LMC blue channel data. Some of the known populations
of periodic variables are identified in the histogram. The most
notable populations correspond to c-type RR Lyrae (period
centered in 0.3 days) and ab-type RR Lyrae (period centered
in 0.6 days). These results are consistent with the RR Lyrae
period histogram from the MACHO survey results on the LMC
(Cook et al. 1995).

Figure 21(a) shows a color–magnitude diagram of the pe-
riodic light curves found in the LMC blue channel. The third
axis corresponds to the detected period. The regions of interest
are marked with black dotted squares. Examples of the periodic
variable stars found in these regions are shown in Figures 29–32.
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Figure 22. Examples of periodic light curves detected only in one of the EROS-2 channels. Panels (a) and (b) correspond to light curve lm0012k17912. (a) Blue
channel light curve folded with the detected period of 0.48004 days. Using the red channel data, no strong periodicity is found. (b) Red channel light curve folded
with the 0.48004 day periods. Panels (c) and (d) correspond to light curve sm0010l10270. (c) Blue channel data folded with the period detected in the red channel.
(d) Red channel data folded with the detected period of 10.4453 days. Using the blue channel data, no strong periodicity is found.

These results are consistent with the color–magnitude diagram
of the LMC periodic variables from the OGLE survey (Spano
et al. 2009).

Figures 20(b) and 21(b) show the histogram of periods
and the color–magnitude diagram of the periodic light curves
found in the SMC blue channel, respectively. By comparing
the histogram and color–magnitude diagram with those of the
LMC, the following differences arise: the relative size of the
Cepheid population is larger in the SMC, and the relative size
of the c-type RR Lyrae population is larger in the LMC.

The red channel light curves are also analyzed for comparison
purposes. A grand total of 87,025 and 14,501 periodic light
curves are collected from the LMC and SMC red channel data,
respectively. This represents a decrease of 30% with respect
to the amount of periodics collected from the blue channel. By
cross-matching the lists obtained from the blue and red channels

in the LMC, we found that 68,179 objects appear in both lists,
50,141 objects are found only in the blue channel, and 18,846
objects are found only in the red channel. For the SMC, 12,536
objects appear in both lists, 1965 appear exclusively in the red,
and 10,567 appear exclusively in the blue. For a given object the
S/N may change between channels, as shown in the examples of
Figure 22. By inspecting the histogram of the color (B − R)eros
of the EROS-2 light curves, it is clear that it is skewed to the
blue side. The average color value in the LMC and SMC is 0.46
and 0.31, respectively, and therefore the S/N is higher in the
blue channel; this explains why more periodics are found in the
blue channel data.18

18 Another reason could be related to the training scheme, in which only blue
channel light curves where used to create the synthetic database.
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Figure 23. Light curves in which the reported period is in disagreement with the OGLE period. The EROS and OGLE labels, along the periods, are shown in the title
of each light curve.
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Figure 24. Examples of LPVs in which the reported period is in disagreement with the OGLE period. The EROS and OGLE labels, along the periods, are shown in
the title of each light curve.
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Figure 25. Examples of periodic light curves not found by OGLE. Panel (a) corresponds to a Cepheid variable with high S/N not found by OGLE. The majority of
these light curves have a low CKP value, which translates roughly to low S/N. Panels (b)–(d) are low-S/N examples.

The catalogs are compared with existing periodic variable
star catalogs for the LMC and SMC. We first test against
the published OGLE catalogs for Cepheids (Soszynski et al.
2008a; Soszyñski et al. 2010a), type II Cepheids (Soszyński
et al. 2008b; Soszyñski et al. 2010c), RR Lyrae (Soszyński

et al. 2009b; Soszyñski et al. 2010b), and LPV (Soszyñski et al.
2009a; Soszyński et al. 2011) in the LMC and SMC. The OGLE
team performed an extent period search using Fourier-based
methods, analysis of variance, and visual inspection. In this test
the objective is to reveal how many of the periodic variables
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Figure 26. Light curves (a) lm0356k24082 and (b) lm0100m7313 are selected as dual-mode candidates. On each plot, the first and second rows correspond to the
original and whitened light curve, respectively. In (a) the original light curve is folded with P0 = 244.06 days. The whitened light curve is folded with P1 = 3.6399
days. In (b) the original light curve is folded with P0 = 6.3419 days. The whitened light curve is folded with P1 = 84.19 days.

Table 6
Cross-matching with OGLE Periodic Variable Catalogs in the LMC and SMC

OGLE Catalog Ncatalog NinEROS Nmatch Agree Multiple Disagree
(%) (%) [%]

OGLE-LMC-CEPH 3,375 2,727 2,711 98.8 1.0 0.2
OGLE-LMC-t2CEPH 203 161 148 94.6 4.1 1.3
OGLE-LMC-RRLyr 24,906 18,092 17,272 92.0 6.8 1.2
OGLE-LMC-LPV 91,995 74,960 20,430 77.2 2.0 20.8
OGLE-SMC-CEPH 4,630 3,413 3,395 99.3 0.6 0.1
OGLE-SMC-t2CEPH 43 30 30 93.4 3.3 3.3
OGLE-SMC-RRLyr 2,475 1,392 1,360 97.7 1.7 0.6
OGLE-SMC-LPV 19,384 14,103 4,413 70.3 2.6 27.1

reported by the OGLE team can be found in our catalogs and to
analyze the discrepancies between the detected periods. Table 6
summarizes the results of the cross-matching. First, for each
OGLE object, a nearest neighbor in the EROS catalog is found.
Neighbors with a separation larger than 1.′′5 are not considered.
Column NinEROS corresponds to the number of OGLE objects
that were found in the EROS set within the search distance.
The OGLE objects that did not have an EROS neighbor were

either out of EROS bounds, located on interchip EROS zones, or
located on corrupted EROS chips. Column Nmatch corresponds
to the number of cross-matched OGLE–EROS objects that
appear in our periodic variable catalog. The differences between
NinEROS and Nmatch are due to OGLE objects whose CKP is
below the periodicity threshold (low-S/N light curves). There
are cases in which the true period is within the spurious
filter areas and was missed in our search. Finally, the periods
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Figure 27. Light curve lm056518888 is selected as a triple-mode candidate. In the plot the first, second, and third rows correspond to the original, first whitened, and
second whitened light curves, respectively. The original light curve is folded with the detected period P0 = 2.4725 days. The first whitened light curve is folded with
P1 = 3.4455 days. The second whitened light curve is folded with P2 = 1.4395 days.
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Figure 28. Petersen diagram of the 1165 dual-mode candidates found in the LMC. The triangles mark the location of 116 triple-mode candidates. Clear structures
arise in the diagram.

reported by OGLE are compared with the periods found with our
method. The agreement column corresponds to the percentage
of light curves in which the OGLE period is equal to the
period found in our catalog (a 1% relative error is considered).
The Multiplecolumn corresponds to the cases in which the
reported period is either a multiple, submultiple, or alias
of the OGLE period. The Disagreementcolumn corresponds
to the cases in which the reported period is not related to
the OGLE period.

There is a high level of agreement between the reported and
OGLE periods for Cepheids, type II Cepheids, and RR Lyrae

classes, in both the LMC and SMC. The periods labeled as
multiples were visually inspected. In these cases the OGLE
period is the correct period, but it was not found by the proposed
method because it was either below 0.3 days or filtered in the
spurious period rejection stage. Examples of the light curves in
which the reported period is in disagreement with the OGLE
period are shown in Figure 23.

For the LPV class the difference between NinEROS and Nmatch
is larger than in other classes (i.e., more objects with CKP below
periodicity threshold). This is expected as the LPVs are known
to suffer from irregularities that affect their period. Additionally,
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(a) (b)

(c) (d)

(e) (f)

Figure 29. Examples of EROS-2 periodic light curves folded with their estimated period. (a)–(c) are Cepheids taken from the CEPH cluster (see Figure 21(a)). (d)–(f)
are RR Lyrae taken from the RRL cluster. (d) and (f) are examples of RRab class stars. (e) is an example of an RRc class star.

the level of agreement between periods is lower than the other
classes. Figure 24 shows examples of disagreeing periods in the
LPV class.

There are 80,304 objects in our periodic catalog that do not
have a neighbor from the OGLE periodic variable catalogs
(within 2.′′5). Some of these objects may not have been surveyed
by the OGLE project, or they could belong to classes with
currently unavailable catalogs such as eclipsing binaries. A total
of 60% of these light curves have a low CKP value, which
translates roughly to low S/N. This could indicate that the
proposed method is more sensitive than the method used by
the OGLE team. Figure 25 shows examples of periodic light
curves found in the EROS catalog that do not appear in the
OGLE catalogs.

The periodic variable catalogs are also compared to
the lists of beat Cepheids found in the EROS-2 data by
Marquette et al. (2009). The catalog contains Cepheids pul-

Table 7
Cross-matching with EROS-2 Beat Cepheid Catalogs

for the LMC and SMC

Beat Cepheids Catalog Ncatalog Nmatch Agree Multiple Disagree
(%) (%) (%)

F/FO pulsation 115 109 100.0 0.0 0.0
FO/SO pulsation 302 300 99.0 0.66 0.33

sating on their fundamental and first overtone (F/FO) and first
and second overtone (FO/SO), respectively. The periods were
obtained using a combination of Fourier decomposition, anal-
ysis of variance, and visual inspection. The results are summa-
rized in Table 7. There are eight cases that do not appear in
our catalog owing to their CKP value being below the thresh-
old. In the remaining 409 cases, only three cases show dis-
agreement with the reported period. The one case in which
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Figure 30. Examples of EROS-2 periodic light curves folded with their estimated period. These light curves correspond to eclipsing binary stars found in the blue
main sequence (see Figure 21(a)).

the period is not a multiple of the EROS-2 period was shown
in Figure 23(a).

7. BEYOND CKP

7.1. Multimodes

It is known that periodic stars exhibit multimode oscillations
that are manifested in the morphology of the light curves.
Despite the fact that the methodology presented in this paper
was not designed to find multimodes, we have explored the
multimodes in a two-level search approach. For each periodic
light curve the prime light curve P0 is used to remove the periodic
signal. This procedure is known as whitening and is performed
as follows.

1. Fold the light curve with P0.
2. Obtain a template of the periodicity by smoothing the folded

light curve using a moving average of 30 samples.
3. Subtract the template from the folded light curve.

4. Rearrange the light curve samples to their original time
order.

If the whitened light curve is found to be periodic with period
P1, that is, not multiple/submultiple or alias of P0, then the
light curve is selected as a dual-mode candidate. Subsequent
oscillation modes can be found by repeating the procedure
above.

This procedure is applied on 34,000 periodic light curves
from the LMC with CKP values above 2.0.19 From this set
1165 light curves are selected as dual-mode candidates. After
evaluating the double-mode candidates, 116 are found to have
a third oscillation mode. Examples of dual-mode and triple-
mode candidates are shown in Figures 26 and 27, respectively.
The lists of double- and triple-mode candidates can be found at
http://timemachine.iic.harvard.edu.

19 We only selected the most prominent periodic light curves.
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(a) (b)
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Figure 31. Examples of EROS-2 periodic light curves folded with their estimated period. (a)–(c) correspond to long-period variables found in the LPV cluster (see
Figure 21(a)). (d)–(f) correspond to periodic variable stars found in the lower red giant branch.

Figure 28 shows a Petersen diagram of the 1165 light curves
selected as dual-mode candidates. The triangles in the plot mark
the 116 light curves in which a third mode was found. The pe-
riods are sorted so that P0 > P1 in all cases. The triple-mode
candidates occupy two horizontal lines at period ratios of 0.72
and 0.8. These values are close to the known ratios associ-
ated with the first and second overtones (Moskalik 2013). A
prominent horizontal line appears at P1/P0 ∼ 2/3 for fun-
damental periods above 10 days. According to Smolec et al.
(2012), this ratio is associated with the period doubling phe-
nomenon. Another interesting feature, shown in the lower left
part of the diagram, are two curves that follow an inversely pro-
portional relationship between the period ratio and fundamental
period.

7.2. Odd Periodic Stars

The method presented here is a not a classification method,
and therefore the method does not distinguish between types of

periodic variables. Most of the periodic objects found in this
work can be classified to known classes, as is clearly shown
in Figures 29–32. It is also expected that there should or could
be stars with periodic behavior that does not fall in one of the
known categories. It is the scope of a different paper to identify
those rare or novel phenomena. Right here we only present a
number of objects that we could not obviously attribute to any
known classes or combination of classes. Figure 33 shows two
such cases.

8. COMPUTATIONAL ISSUES

The proposed periodicity discrimination pipeline has been
programmed for computational architectures based on graphical
processing units (GPUs). The implementation is programmed
in CUDA NVIDIA (2012), which is a variation of C developed
by GPU manufacturer NVIDIA.

To evaluate the CKP metric (Equation (10)), one requires
the N (N − 1)/2 interactions between the N samples of the time
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Figure 32. Examples of EROS-2 periodic light curves folded with their estimated period. (a)–(c) correspond to long-period variables found in the LPV-2 cluster (see
Figure 21(a). (d)–(f) correspond to ellipsoidal variables found in the ELL cluster.

series.20 The CKP can be computed efficiently by mapping each
of these interactions to a single GPU thread. The final value
of the CKP is obtained through a log(N )-step sum reduction
performed on the GPU. The computational time required to an-
alyze one light curve using our periodic discrimination pipeline
is shown in Figure 34. These times include the importation and
transferring of the light curves to the GPU device. Times were
measured on an NVIDIA Tesla C2070 GPU.

The 32.8 million light curves from the EROS-2 survey are
processed on the NSCA Dell/NVIDIA cluster Forge. Forge
is part of the Extreme Science and Engineering Discovery
Environment (XSEDE). Forge has a total of 288 NVIDIA
Tesla C2070 accelerators distributed on 44 nodes; however, the
maximum number of nodes that can be used at a time is 26. Each

20 The kernel matrices given by Equations (4) and (8) are symmetric; thus,
only the upper triangular part needs to be computed. The diagonal of the kernel
matrices is constant and is omitted from the computations.

Table 8
Total Computational Time Required to Process the 32.8 Million

EROS-2 Light Curves (LMC plus SMC)
on XSEDE Forge Cluster

Hardware Computational Time

Using 1 GPU 52.2 days
Using 6 GPUs (1 node) 8.71 days
Using 12 nodes (6 GPUs/node) 17.41 hr
Using all available nodes 7.28 hr

Note. GPUs in all nodes are NVIDIA Tesla C2070.

GPU processes one chip from EROS-2. Table 8 shows the total
computational time required to process the 32.8 million light
curves from the LMC and SMC. These times does not include
the time required to transfer the data set to the cluster or the time
a job is waiting on the queue.
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Figure 33. Examples of EROS-2 periodic light curves folded with their
estimated period. A priori these objects cannot be attributed to any known
class.

9. CONCLUSIONS

We presented and described a fully automated pipeline for
periodic light curve discrimination. The method is based on the
CKP, a robust information theoretic metric that discriminates
periodic behavior by analyzing the similarities between light-
curve samples. The method is computational efficient; the
pipeline takes 0.16 s to discriminate whether a light curve is
periodic or not. The 32.8 million light curves were processed
using a GPU cluster in less than 24 hr. This suggests that
with a few additional optimizations and up-to-date hardware
the methods may scale well for modern and larger light curve
databases.

The periodicity discrimination pipeline was tested on light
curves from the EROS-2 survey. The methods were calibrated
using synthetic time series that preserve the characteristics of
EROS-2 light curves. The calibration procedure is general and
could be applied to other astronomical time series databases
easily. In total, 32.8 million light curves from the LMC and
SMC were processed, finding a grand total of 121,147 and
24,855 periodic variables in the LMC and SMC, respectively.
The results obtained are consistent in terms of period distribution
and localization of the periodic variables in the color–magnitude
diagram. The observed results suggest that the periodic variable
catalogues generated by our method could be used to find
multimode variables and periodic variables that do not fall in
any known category. It is also hinted that higher-order analysis,
such as stellar classification and clustering, may be carried out
straightforwardly using the provided periods.
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Figure 34. Computational time per light curve as a function of the number of
samples.

Using the synthetic data set and visually inspecting a small
subset of the data set, we were able to characterize the com-
pleteness and efficiency of the pipeline. We infer that 0.5% of
the light curves with S/N > 0.5 are periodic.

Future work involves quasi-periodic and semiregular behav-
ior discrimination, more in-depth analysis of nonstationarities
(trends), and developing more general kernel size selection
schemes.
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R. Garrido, L. A. Balona, & J. Christensen-Dalsgaard (Berlin: Springer), 103

NVIDIA. 2012, CUDA C Programming Guide version 4.2 (NVIDIA)
Principe, J. 2010, Information Theoretic Learning: Renyi’s Entropy and Kernel

Perspectives (New York: Springer)
Rahal, Y. R., Afonso, C., Albert, J.-N., et al. 2009, A&A, 500, 1027
Rasmussen, C. E., & Williams, C. K. I. 2006, Gaussian Processes for Machine

Learning (Cambridge, MA: MIT Press)
Reimann, J. D. 1994, Frequency Estimation Using Unequally-Spaced Astro-

nomical Data (Berkeley, CA: University of California)
Scargle, J. 1982, ApJ, 263, 835
Schmitz, A., & Schreiber, T. 1999, PhRvE, 59, 4044
Schölkopf, B., & Smola, A. 2002, Learning with Kernels (Cambridge, MA:

MIT Press)
Schreiber, T., & Schmitz, A. 1999, PhyD, 142, 346
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