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Derivation and assessment of strong coupling core-particle model
from the Kerman-Klein-Dö nau-Frauendorf theory

Pavlos Protopapas* and Abraham Klein†

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396
~Received 5 August 1996!

We review briefly the fundamental equations of a semimicroscopic core-particle coupling method that makes
no reference to an intrinsic system of coordinates. We then demonstrate how an intrinsic system can be
introduced in the strong coupling limit so as to yield a completely equivalent formulation. It is emphasized that
the conventional core-particle coupling calculation introduces a further approximation that avoids what has
hitherto been the most time-consuming feature of the full theory, and that this approximation can be introduced
either in the intrinsic system, the usual case, or in the laboratory system, our preference. A new algorithm is
described for the full theory that largely removes the difference in complexity between the two types of
calculation. Comparison of the full and approximate theories for some representative cases provides a basis for
the assessment of the accuracy of the traditional approach. We find that for well-deformed nuclei, e.g.,
157Gd and157Tb, the core-coupling method and the full theory give similar results.@S0556-2813~97!05501-5#

PACS number~s!: 21.60.Ev, 21.10.Re, 27.70.1q
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I. INTRODUCTION

We have recently undertaken the task of revitalizing a
extending a semimicroscopic theory of collective motion
odd nuclei that we shall refer to as the Kerman-Klein-Do¨nau-
Frauendorf~KKDF! model @1–4#. This model, aside from
the elements discussed for the first time in the present pa
was introduced in close to its present form by Do¨nau and
Frauendorf@5–9#, whose work was in turn stimulated by a
application@10# of the theory of collective motion develope
by Kerman and Klein@11–14#.

In the presentation of our work at seminars and con
ences, one question that has invariably arisen is the con
tion between the KKDF model and the conventional co
particle coupling model, especially for deformed nuclei,
which our published applications have so far been confin
Even if we widen the inquiry to the connection between
shell model and the core-particle model, we find that
literature on this subject is sparse. We are aware of only
publications that have been addressed specifically to
topic. The earlier of these papers@15# showed how all, then
extant, core-particle coupling models could be understoo
approximations to the work of Kerman and Klein. This pap
appears to have gone completely unnoticed, since it is
quoted in the later work@16#, which is devoted to the deri
vation of the strong coupling core-particle model from
schematic shell model. In the book by Ring and Schuck@17#,
which appeared betweentimes, the success of the strong
pling model in its domain of application is heralded but
the same time proclaimed a mystery.

The main purposes of the present work are threefold.
first is to transform the Kerman-Klein equations from t
‘‘laboratory’’ system in which they are derived and conv
niently applied to the ‘‘intrinsic’’ system, when it make
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sense to define such a system, as is done in the strong
pling core-particle model. The resulting theory is complete
equivalent to the starting one and does not yet constitute
standard phenomenological model. A second purpose i
describe and implement the approximation that leads to
standard model. We describe in most detail how this may
done in the intrinsic system, the usual choice, but empha
that the approximation may equally be defined in the labo
tory system and that the latter approach has some ad
tages.

The essential point here may be described as follows
the physical situation, which requires the inclusion of pairi
interactions, the number of solutions of the full KKDF mod
is twice as great as the number of physical states being
scribed. Hitherto, the major technical difficulty~and con-
sumption of CPU time! of this method has been the applic
tion of a criterion to select the physical solutions. For t
ground state problem there is the well-known property of
BCS theory that the physical solutions~quasiparticles! cor-
respond to positive energies and the unphysical ones to n
tive energies. In the KKDF model the strategy is to igno
initially rotational excitation energies so as to collapse ea
band to a single degenerate state to which the ground s
criterion can be applied. We then step up the excitation
ergies, returning them finally to their full values; at each s
we select the physical solutions by a projection techniq
described in our cited work, that involves an extension of
techniques introduced by Do¨nau and Frauendorf.

Another way of stating the problem that is directly relat
to the traditional core-particle model is to remark that
though only half of the solutions of the KKDF model a
related to physics, the full set of solutions is necessary
mathematical completeness. The solutions of our equat
at full excitation can be expanded in terms of the compl
set generated at zero excitation, but this expansion will
volve both physical and unphysical states of the latter lim
In the conventional core-particle model it is assumed that
physical states of the actual problem are well approxima
by a superposition of the physical solutions at zero exc
699 © 1997 The American Physical Society
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700 55PAVLOS PROTOPAPAS AND ABRAHAM KLEIN
tion. It follows from this that it suffices to solve a sing
eigenvalue problem for the problem of actual interest rat
than having to solve a sequence of such problems.

The third purpose of this paper is to carry through seve
illustrative calculations using both the KKDF model and t
approximation to it just described, in order to assess the
lidity of the latter. In the course of rethinking our algorithm
in preparation for this study, we have discovered a metho
simplifying the full calculation to a sufficient extent tha
much of the advantage of technical simplicity of the co
particle limit has been wiped out. We shall also describe
new development.

We start in Secs. II and III with a review of the funda
mental equations of the Kerman-Klein method, in order
introduce some improvements in notation and presentat
as well as to correct some phase errors made previous
the formulas for transition matrix elements. In Sec. IV w
transform our equations~without approximation! to a de-
scription in terms of an intrinsic frame of reference. Starti
from these equations, the definition and formulation of
strong coupling core-particle model in its usual form in t
intrinsic system is given in Sec. V. It is explained in Sec.
that an equivalent and possibly more effective version of
limit can perfectly well be carried out in the laboratory sy
tem. Turning to applications, our new algorithm is describ
in Sec. VII and then applied together with the standard co
particle model to some illustrative cases in Sec. VIII. Co
cluding remarks are presented in Sec. IX. Two append
provide some technical details of the derivation carried ou
Sec. IV.

II. FUNDAMENTAL EQUATIONS OF THE
KERMAN-KLEIN METHOD FOR ODD NUCLEI

In this section we shall derive a version of the Kerma
Klein equations based on the Hamiltonian given below.
essence, these equations are already a special case o
formalism presented more than thirty years ago@18#. The
original equations and the form of them derived in this s
tion, when taken literally, define a nonlinear problem for t
self-consistent study of the properties of an odd nucleus
of its immediate even neighbors. This is a problem of co
siderable complexity on which limited progress was repor
in early applications@10#. Based on more recent experien
in an application to the theory of skyrmions@19#, we believe
that the prognosis for success of such an undertaking w
be much higher today than it was a quarter of a century a

Nevertheless, we must emphasize that the present s
of papers using the KKDF version of the theory has a m
modest goal. This is to make such further approximations
as to reduce the problem to a linear eigenvalue problem
the properties of odd nuclei, assuming the required prope
of the neighboring even nuclei to be known. This can
done only if the Hamiltonian can be chosen of sufficien
simple form that the matrix elements of its ingredient mu
pole and pairing operators can be related to observed p
erties of the even neighbors. It is this specialization, which
the present paper is first introduced and utilized in Sec.
that defines the KKDF version of the Kerman-Klein theo
A main contention is that even with such simplification, t
resulting theory generalizes existing core-particle coupl
r
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models. The derivations that are presented in Secs. II,
and IV are self-contained, and therefore it should be poss
for any reader to reproduce them~with sufficient algebraic
devotion to the task!.

We start with a shell-model Hamiltonian of the form

H5(
a

haaa
†aa1

1

4(
abcd

(
LML

Facdb~L !BLML

† ~ac!BLML
~db!

1
1

4(
abcd

(
MLM

Gabcd~L !ALML

† ~ab!ALML
~cd!. ~2.1!

Hereha are the spherical single-particle energies referred
the nearest closed shell,a refers to the standard set of singl
particle quantum numbers, including in particular the p
( j a ,ma), and a refers to the same set withma omitted.
BLML

† is the particle-hole multipole operator,

BLML

† ~ab![ (
mamb

sb~ j amaj b2mbuLML!aa
†ab

5~21! j a1 j b2ML11BL2ML
~ba!, ~2.2!

andALML

† is the particle-particle multipole operator,

ALML

† ~ab![ (
mamb

~ j amaj b2mbuLML!aa
†ab̄

†
, ~2.3!

where (j 1m1 j 2m2u jm) is a Clebsch-Gordon~CG! coeffi-
cient, sa5(21) j a2ma, and a bar indicates reversal of th
sign of the magnetic quantum number. The coefficientsF are
the particle-hole matrix elements,

Facdb~L ![(
m8s

sgsb~ j amaj c2mcuLML!

3~ j dmdj b2mbuLML!Vabgd , ~2.4!

which satisfies the relation

Facdb~L !5~21! j a1 j b1 j c1 j dFbdca~L !, ~2.5!

andG the particle-particle matrix elements

Gabcd~L ![(
m8s

~ j amaj b2mbuLML!

3~ j cmcj d2mduLML!Vab̄g d̄ , ~2.6!

which satisfies the conditions

Gacdb~L !5~21! j a1 j c2L11Gcadb5~21! j b1 j d2L11Gacbd.
~2.7!

Our initial task is to obtain equations for the states a
energies of an odd nucleus assuming that properties of
mediately neighboring even nuclei are known. The states
the odd nucleus~particle numberA) are designated a
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uJmn&, wheren denotes all quantum numbers besides
angular momentumJ and its projectionm. The states of the
neighboring even nuclei with particle numbers (A61) are
written, in a parallel notation, asuIMn(A61&. The corre-
re
ac

sa
io
th
r
y

io
E
le

o
in
on
esponding eigenvalues areEJn andEIn
(A61) , respectively. The

operator equations of motion~EOM! are obtained by form-
ing commutators between the single-fermion operators
the Hamiltonian,
@aa ,H#5ha8aa1
1

2(bdg
(
LM

sg~ j amaj c2mcuLM !Facdb~L !agBLM~db!1
1

2(bdg
(
LM

~ j amaj c2mcuLM !Gacbd~L !a ḡ
†ALM~bd!,

~2.8!

@aā
† ,H#52ha8aā

†2
1

2(bdg
(
LM

sḡ ~ j a2maj cmcuLM !Facdb~L !BLM
† ~db!a ḡ

†1
1

2(bdg
(
LM

~ j a2maj cmcuLM !Gacbd~L !ALM
† ~bd!ag .

~2.9!
he

f

a

Here

ha85ha2
1

4(L j c
Facac~L !

2L11

2 j a11
~2.10!

are modified single-particle energies.
The matrix elements of these equations provide exp

sions that determine the single-particle coefficients of fr
tional parentage,

VJmn~a;IMn !5^JmnuaauIMn~A11!&, ~2.11!

UJmn~a;IMn !5^Jmnuaā
† uIMn~A21!&. ~2.12!

To find equations for these quantities, we form the neces
matrix elements of the EOM and evaluate the interact
terms by inserting the completeness relation between
single-fermion operators and the multipole or pair operato
In order to obtain equations that are expressed completel
means of the amplitudes defined in Eqs.~2.11! and~2.12!, it
is necessary to interchange the order of the single-ferm
operator and the pair operator in the interaction terms of
~2.9!. This leads to further contributions to the single-partic
energy in this equation, in thatha8 is replaced byha9 with

ha95ha82(
L j c

2L11

2 j a11 SGacac1
1

2
FacacD . ~2.13!

In terms of a convenient and physically meaningful set
energy differences and sets of multipole fields and pair
fields defined below, we obtain generalized matrix equati
of the Hartree-Bogoliubov form

EJnVJmn~a;IMn !5~e81v~A11!

1G~A11!!aIMn,gI 8M8n8VJmn~g;I 8M 8n8!

1DaIMn,gI 8M8n8UJmn~g;I 8M 8n8!,

~2.14!
s-
-

ry
n
e
s.
by

n
q.

f
g
s

EJnUJmn~a;IMn !5~2e91v~A21!2G~A21!†! ā IMn, ḡ I 8M8n8

3UJmn~g;I 8M 8n8!1Dā IMn, ḡ I 8M8n8
†

3VJmn~g;I 8M 8n8!. ~2.15!

Here

EJn52EJn1
1

2
~E0

~A11!1E0
~A21!!, ~2.16!

eaIMn,gI 8M8n8
8 5dagd II 8dMM8dnn8~ha82lA!, ~2.17!

lA5
1

2
~E0

~A11!2E0
~A21!!, ~2.18!

vaINn,gI 8M8n8
~A61!

5dagd II 8dMM8dnn8~EIn
~A61!2E0

~A61!!,
~2.19!

GaIMn,gI 8M8n8
~A61!

5
1

2(
LML

(
bd

sg~ j amaj c2mcuLML!Facdb~L !

3^I 8M 8n8~A61!uBLML
~db!uIMn~A61!&

~2.20!

DaIMn,gI 8M8n85
1

2(
LML

(
bd

~ j amaj c2mcuLML!Gacdb~L !

3^I 8M 8n8~A21!uALML
~db!u

3IMn~A11!&. ~2.21!

FurthermoreE0
(A61) refer to the ground state energies of t

neighboring even nuclei, the matrix elements ofG† are de-
rived from those of Eq.~2.20! simply by the replacement o
the operatorB by B†, and the matrix elements ofD† are
similarly derived from those ofD by the replacement ofA by
A† together with the interchangeA61→A71. Finally ea9 is
obtained fromea8 by the replacement ofha8 by ha9 .

In order to specify a scale for the solutions, we take
suitable matrix element of the summed anticommutator,
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702 55PAVLOS PROTOPAPAS AND ABRAHAM KLEIN
(
a

$aa ,aa
†%5V, ~2.22!

V5(
j a

~2 j a11!. ~2.23!

We thus find

1

V (
aIMn

@ uUJmn~a;IMn !u21uVJmn~a;IMn !u251.

~2.24!

All of the above equations are still exact and are not n
essarily restricted to deformed nuclei. In order to do phys
however, we shall have to impose restrictions on the num
and nature of the core states included in any application
well as on the size of the single-particle space. An essen
property of the formalism developed is that the restrictio
just listed can be introduced in such a manner that the
damental symmetries of the Hamiltonian, rotational inva
ance, and number conservation can be maintained.~If the
interaction was translationally invariant, this property cou
also be guaranteed@11,12#.! In fact the main stimulus for
introduction of our method in the first place was to resto
the broken symmetries of mean-field solutions of the ma
body problem. Later it was realized that many other appli
tions, such as the one studied in this paper, were possib

With the inclusion of generalized pairing, we encounte
property of our equations that they share with the quasip
ticle solutions of the Hartree-Fock-Bogoliubov theory@20#,
namely a doubling of solutions, such that only half descr
physical states. In contrast to the well-known case, where
eigenvalues occur as oppositely signed pairs, and the pos
energy solutions are the physical ones, in the general the
-
s,
er
as
ial
s
n-
-

e
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.
a
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e
e
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ry,

because we are also describing excited states, the clean
ration of solutions by the sign of the energy fails, and alt
natives for identifying physical solutions must be form
lated. One of the results in this paper will be a considera
simplification in the method used to make this separation

III. MATRIX ELEMENTS OF SINGLE-PARTICLE
TRANSITION OPERATORS

We continue the exposition of the general Kerman-Kle
formalism by deriving formulas for transition amplitudes
a general one-body operator. We choose this operator to
tensor of rankL, TLML

, that we write in the form

TLML
5(

bg
tbgab

†ag . ~3.1!

The notation is such that the quantitiestab include a product
of matrix elements of single-particle operators and of as
ciated coupling strengths~charges, gyromagnetic ratios
etc.!. We wish to calculate the matrix elemen
^J8m8n8uTLML

uJmn&. To carry through the calculation, w
substitute for the ket a formally exact expression in terms
the action of single-particle operators on the states of
core @21#,

uJmn&5
1

V (
a,IMK

@UJmn~a,IMK !aā
† uIMK &

1VJmn~a,IMK !aauIMK &], ~3.2!

where an underline identifies the lighter of the two cores a
an overline the heavier one. By using the commutation re
tions and completeness, this leads to the following expr
sion for the transition element:
ments:
^J8m8n8uTLML
uJmn&5

1

V (
a,IMK ,I 8M8K8

@UJ8m8n8~a,I 8M 8K8!UJmn~a,IMK !^I 8M 8K8uTLML
uIMK &

1VJ8m8n8~a,I 8M 8K8!VJmn~a,IMK !^I 8M 8K8uTLML
uIMK &#

1
1

V (
a,g,IMK

tag@UJ8m8n8~ ā,IMK !UJmn~ ḡ,IMK !2VJmn~a,IMK !VJ8m8n8~g,IMK !#. ~3.3!

This is now evaluated by use of the Wigner-Eckart theorem with the following definitions of the reduced matrix ele

^J8m8n8uTLML
uJmn&5

~21!J2m

A2L11
~J8m8J2muLML!^J8n8uuTLuuJn&, ~3.4!

^I 8M 8K8uTLML
uIMK &5

~21! I2M

A2L11
~ I 8M 8I2M uLML!^I 8K8uuTLuuIK &, ~3.5!

tag5
~21! j c2mc

A2L11
~ j amaj c2mcuLML!tac , ~3.6!

VJmn~a,IMK !5
~21!J2m

A2 j a11
~ IMJ2mu j ama!vJn~aIK !, ~3.7!
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UJmn~a,IMK !5
~21!J2m1 j a1ma

A2 j a11
~ IMJ2mu j ama!uJn~aIK !. ~3.8!

With the help of these definitions, we obtain the formula for the reduced matrix element that is utilized in the KKDF m

^J8n8uuTLuuJn&5
1

V (
aIKI 8K8

~21! j a1J81I1LH I I 8 L

J8 J ja
J @uJn~aIK !uJ8n8~aI8K8!^I 8K8uuTLuuIK &1vJn~aIK !vJ8n8~aI8K8!

3^I 8K8uuTLuuIK &#1
1

V (
acIK

tacF ~21! j a1I1J1LH j a j c L

J J8 I J uJ8n8~aIK !uJn~cIK !

1~21! j a1I1J11H j a j c L

J8 J I J vJn~aIK !vJ8n8~cIK !G . ~3.9!
a
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This is, with some phase corrections, the formula that w
derived in a previous work.

IV. TRANSFORMATION TO INTRINSIC SYSTEM
FOR AXIAL CASE

We have described previously@1–3# several applications
of the formalism reviewed in the preceding sections
strongly deformed nuclei. Some of the results, together w
some additional calculations, will be used as the basis fo
numerical study of the relation of the method of this pape
the traditional strong coupling core-particle model. As w
be explained in Sec. VI, this relation can be studied using
formalism already at hand~theory expressed in the ‘‘labora
tory’’ system of coordinates!; in fact it turned out to be eco
nomical for us to carry out all numerical work from th
standpoint. Nevertheless, in the following two sections
shall undertake to develop the connection between
method and the way such calculations are normally p
sented in the intrinsic system. Our justification for this d
gression is that whenever we have presented a public acc
of our previous work in this field, one question invariab
raised was precisely this connection.

In what follows, we shall answer the question raised
two steps. In the first, carried out in this section, we sh
derive a form of our equations in the intrinsic coordina
system that is equivalent to the theory described above,
cept for two points. The first is that below we do not ke
track of number conservation; this choice is just a matte
slight simplification of the notation and can be avoided. S
ond, we assume that the matrix elements of the multipole
pairing operators are approximated by their forms in
axial rotor limit. We have previously used this assumption
all our recent work for the special cases that arise when
consider the KKDF version of the theory~see below!, when
we found it necessary to extrapolate measured values; h
higher order corrections can be included in principle. In
second step, considered in the next section, we shall s
that the conventional core-particle approach involves a
ther specialization of the general results derived in this s
tion and examine this limiting case in some theoretical det
Only at that point do we also introduce the simplificatio
that distinguish the KKDF model from the Kerman-Kle
equations.
s
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For illustrative purposes, we take a model of the ev
~core! nuclei that consists of the ground-state ba
uIMK50&5uIM & and a finite number of positive parity ex
cited bandsuIMKn&. For the remainder of this section th
symboln will be suppressed. We are thus assuming that
eigenstates of the even nuclei have axial symmetry and
their eigenstates can be assigned a definite value ofK, the
component of the angular momentum along the figure a
This assumption is reasonable as long as the states o
same angular momentum belonging to different bands
well-separated in energy.

We first use rotational invariance to study the structure
the amplitudesV andU defined in Eqs.~2.11! and ~2.12!,
respectively. For this purpose we introduce a complete se
statesuR& localized in the Euler angles,R5(abg) and write

uIMK &5E dRuR&^RuIMK &

5S 2I11

8p2 D 1/2E dRuR&DMK
~ I ! ~R!. ~4.1!

The identification of a scalar product of many-body sta
with the WignerD function is part of the definition of the
model. When Eq.~4.1! is substituted into the definition o
V, and use is made of the definitions to follow, we a
thereby led to the study of an amplitude such as

^JmnuaauR&5^JmnuU~R!U21~R!aaU~R!u0&

5 (
m8ka

^JmnuUuJm8n&^Jm8nuU21aaUu0&

5 (
m8ka

Dmm8
~J!* ~R!Dmaka

~ j a!* ~R!

3xJm8n~ j aka!~21! j a1ka, ~4.2!

whereU(R) is a unitary rotation operator defined by th
value of R. The previous manipulations have utilized th
following relations and definitions~of which the first two are
standard!:

^JKuU~R!uJM&5DKM
~J!* ~R!, ~4.3!



be

e

y
e

ts
ver
o-
A.
the

he
tor

itute

704 55PAVLOS PROTOPAPAS AND ABRAHAM KLEIN
U21~R!ajmU~R!5(
k

ajkDmk
~ j !* ~R!, ~4.4!

^Jmnuajmu0&[~21! j1mxJmn~ jm!. ~4.5!

The introduction of the phase in Eq.~4.5! simplifies the
structure of the transformed equations of motion given
low.

With the help of the integral of a product of threeD
functions and the application of standard symmetry prop
ties of CG coefficients, we find

VJmn~a;IMK !5(
ka

A8p2/~2 j a11!~21!J2m~ IMJ

2mu j ama!~JK2kaj akauIK !

3~21! j a1kaxJK2kan~ j aka!. ~4.6!

A similar analysis carried out for the amplitudeU yields the
result

UJmn~a;IMK !5(
ka

A8p2/~2 j a11!

3~21!J2m1 j a2ka1 j a1ma~ IMJ2mu j ama!

3~JK2kaj akauIK !fJK2kan~ j aka!, ~4.7!

fJmn~ j aka!5^Jmnuaja2ka
† u0&. ~4.8!

Starting from Eqs.~2.14! and ~2.15! and utilizing the
forms ~4.6! and ~4.7!, we next derive equations satisfied b
the amplitudesx andf. The technique is to eliminate th
CG coefficients that occur in Eqs.~4.6! and ~4.7! by multi-
plying by (IMJ2mu j ama)(JK2kaj akauIK ) and by the re-
-

r-

ciprocal of the factors premultiplying these CG coefficien
in the one or the other of these equations, summing o
M , m, and I , and using standard formulas of angular m
mentum algebra. Some details are provided in Appendix
In the equations to follow, the quantities that appear for
first time are defined by the equations

R~m,Ku j ,J!5A~ j1m!~ j2m11!

3A~J2K1m!~J1K2m11!, ~4.9!

^I 8M 8K8uBLML

† ~db!uIMK &5qK8K
~L,0!

~db!A~2I11!/~2I 811!

3~ IMLM LuI 8M 8!

3~ IKLK 82KuI 8K8!, ~4.10!

^I 8M 8K8uALML

† ~db!uIMK &5DK8K
~L,0!

~db!A~2I11!/~2I 811!

3~ IMLM LuI 8M 8!

3~ IKLK 82KuI 8K8!, ~4.11!

v IK
~A61!5EK

~A61!1
1

2I K~A61! @ I ~ I11!2K2#. ~4.12!

Of these equations, the quantityR is recognized as arising
from the matrix elements of the Coriolis coupling and t
remaining equations are expressions valid for the axial ro
model for matrix elements of transition operators~see further
below! and excitation energies. These expressions const
definitions of the intrinsic multipole momentsq, of the in-
trinsic pairing momentsD, of the bandhead energiesEK , and
of the moments of inertiaIK .

The resulting equations~with partial suppression of the
index n) are
EJnxJ,K2ka
~ j aka!5H ea81EK

~A11!1
1

2I K~A11! @J~J11!2K21 j a~ j a11!12ka~K2ka!#J xJ,K2ka
~ j aka!

1
1

2I K~A11!R~ka ,Ku j a ,J!xJ,K2ka11~ j aka21!1
1

2I K~A11!R~2ka ,2Ku j a ,J!xJ,K2ka21~ j aka11!

1 (
bcdkcK8L

1

2
~21! j c1ka1LFacdb~L !qK8K

~L,0!
~db!~ j c2kcj akauLK2K8!xJ,K2ka

~ j ckc!

1 (
bcdkcK8L

1

2
~21! j c1ka1LGacdb~L !DK8K

~L,0!
~db!~ j c2kcj akauLK2K8!fJ,K2ka

~ j ckc!, ~4.13!

EJnfJ,K2ka
~ j aka!5H 2ea91EK

~A21!1
1

2I K~A21! @J~J11!2K21 j a~ j a11!12ka~K2ka!#J fJ,K2ka
~ j aka!

1
1

2I K~A21!R~ka ,Ku j a ,J!fJ,K2ka11~ j aka21!1
1

2I K~A21!R~2ka ,2Ku j a ,J!fJ,K2ka21~ j aka11!
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2 (
bcdkcK8L

1

2
~21! j c1kcFacdb~L !qK8K

~L,0!
~db!~ j c2kcj akauLK2K8!fJ,K2ka

~ j ckc!

1 (
bcdkcK8L

1

2
Gacdb~L !DK8K

~L,0!
~db!~2 ! j c1kc~ j c2kcj akauLK2K8!xJ,K2ka

~ j ckc!. ~4.14!
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In these expressions, we have deliberately chosen, for
ciseness of expression, not to do the sum onkc , where the
valuekc5K82K2ka is imposed by the resident CG coe
ficient.

We may characterize Eqs.~4.13! and ~4.14! as the
Kerman-Klein equations for an axially symmetric rotor
the intrinsic frame. These equations fully conserve angu
momentum, but, as previously remarked, we have viola
number conservation~by equating the multipole matrix ele
ments of two neighboring even nuclei!.

Relations~4.10! and ~4.11!, which have been used in a
our previous applications, are approximate, and therefore
quire further discussion. For example, Eq.~4.10! follows as
the value of the first term of the operator expression

BLML

† ~db!5 (
l1 , . . . ,lp

( PI 8M8K8qK8K
~L,l!

~db!

3$DML ,K82K1l11 . . . 1lp

~L ! ,I l1
8 . . . I lp

8 %PIMK .

~4.15!

Here theP are the projection operators for the specified ba
members,I l8 is a spherical tensor component of the intrins
angular momentum, and the braces imply a symmetrized
pression. Assuming that the connected bands have the s
parity, p is even for even electric multipoles and odd ma
netic multipoles and odd for odd electric multipoles and ev
magnetic multipoles. If the connected bands have oppo
parity, there is a corresponding relation. The form of E
~4.15! is a consequence of the assumption thatB must be a
tensor operator of appropriate rank in the Hilbert space of
axial rotor. The further assumption that we can limit ou
selves to the first term is that for the states of interest
rotor is almost rigid, as is true for the low-lying states
strongly deformed nuclei. The corresponding expression
the pairing operator requires only the replacements

qK8K
~L,l!→DK8K

~L,l! , ~4.16!

and the realization that the projection operators to the
and to the right refer to different cores.

The inclusion of odd multipole or pairing interactions r
quires that, minimally, we choosep51. The evaluation of
such a multipole term is carried out in Appendix B.

V. CORE-PARTICLE COUPLING MODEL

A. Spectra

For further development, we specialize the formulas
the previous section to the conventional monopole pair
plus quadrupole-quadrupole model. It is this assumption~and
n-

r
d

e-

d

x-
me
-
n
ite
.

e
-
e

r

ft

f
g

the way in which it is implemented! that reduces the previ
ous theory to the KKDF model. We confine our attenti
initially to the special case that we include only the groun
state band of the neighboring even cores.~The general case
will be considered subsequently.! We also assume that w
are treating well-deformed nuclei and continue to igno
number conservation. ForL50 pairing we have in the limit
of a constant pairing matrix element

2(
b

GaabbD00
~0,0!~bb![2DaA2 j a11>2DA2 j a11.

~5.1!

For the quadrupole interaction, we write

Fabcd~2!52k2FabFdc , ~5.2!

(
bd

Fdbq00
~2,0!~db![Q0 . ~5.3!

Because we are dealing with aK50 band, axial symmetry
implies thatka5kc5k, and the quadrupole potential be
comes

V ac
k 52

1

2
k2FacQ0~21! j c1k~ j c2k j aku20!. ~5.4!

The potentialV is symmetric provided we choose

Fca5~21! j a1 j c11Fac , ~5.5!

which is consistent with Eq.~2.5!.
We next study the limit of our equations found by intr

ducing the simplifications made above. We also begin
neglecting the core excitation energies, and by doing so
rotational invariance. In fact the next development is a pr
that the resulting equations can be reduced to the defor
BCS form. This is standard stuff and is included because
its importance as a step in connecting the KKDF model w
the standard core-particle model.

Since in the limit of a collapsed rotational spectrum, t
resulting equations do not depend on the total angular
mentum, we can thus set~with ka5k)

xJ,2k~ j ck!→xkc ,

fJ,2k~ j ck!→fkc ,

EJn→Ekt . ~5.6!

Evidently k is the component of the quasiparticle angu
momentum along the axis of symmetry, andt resolves de-
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generacies in the values ofk. In the limit considered our
equations thus reduce to a Hartree-Bogoliubov set

Ektxka5eaxka1V ac
k xka2Dfka , ~5.7!

Ektfka52eafka2V ac
k fka2Dxka . ~5.8!

From now on we setea85ea95ea .
These equations are solved by introducing the unit

transformation that diagonalizes the single-particle Ham
tonian

Hac
k 5eadac1V ac

k , ~5.9!

namely,

xkc5(
t
Act

k vkt ,

vkt5(
c
Act

k* xkc , ~5.10!

(
t
Aat

k*Abt
k 5dab ,

(
a

Aat
k*Aat8

k
5dtt8,

(
ac

Aat
k*Hac

k Act8
k

5ektdtt8. ~5.11!

We thus obtain a standard set of BCS equations

Ektvkt5ektvkt2Dukt , ~5.12!

Ektukt52ektukt2Dvkt , ~5.13!

with the usual solutions

Ekt56Aekt
2 1D2, ~5.14!

where corresponding to the plus sign, we have the phys
solutions

ckt5S vkt

ukt
D , ~5.15!

and to the minus sign the unphysical solutions

c̄kt5S 2ukt

vkt
D . ~5.16!

As stated above, we have reviewed this familiar mate
because of its importance in the definition of the stand
core-particle model. The point is that the full set of solutio
of the deformed BCS equations, physical and unphysica
gether, generate a complete set of vectors; the solution
the full set of equations of the KKDF model will ultimatel
be expanded in this set, and the conventional core-par
model will be understood as an approximate form of t
expansion.
y
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We have now laid the groundwork for the solution of th
full equations of motion~4.13! and ~4.14!. For this general
solution the notational change contained in Eq.~5.6! is gen-
eralized to

xJ,2k~ j ck!→xJkc ,

fJ,2k~ j ck!→fJkc . ~5.17!

The retention of the angular momentum quantum numbeJ
expresses the fact that the full problem has rotational s
metry. Introducing again the transformation that diagonali
the single-particle HamiltonianHk,

xJka5(
t
Aat

k xJkt ,

xJkt5(
a

Aat
k* xJka , ~5.18!

with a corresponding transformation forf, the equations of
motion become

EJnxJkt5ektxJkt2DfJkt1 (
k8t8

Ukt,k8t8
J xJk8t8,

~5.19!

EJnfJkt52ektfJkt2DxJkt1 (
k8t8

Ukt,k8t8
J fJk8t8,

~5.20!

and the nonvanishing matrix elements ofU that occur in
these equations~that reinstate the angular momentum a
include the Coriolis coupling! are

2IUkt,kt8
J

5(
a

Aat* @J~J11!1 j a~ j a11!22k2#Aat8,

2IUkt,k21t8
J

5(
a

Aat* R~k,0u j a ,J!Aat8,

2IUkt,k11t8
J

5(
a

Aat* R~2k,0u j a ,J!Aat8. ~5.21!

We recall that the quantitiesR are defined in Eq.~4.9!.
Before continuing, it may be helpful to consider th

physical content of Eqs.~5.19! and ~5.20!. Let us recall the
meaning of the notation. The triple of quantum numbe
J,k,t identifies the different angular momentum states of
axial band withK quantum numberk and additional labeling
t. The ‘‘Coriolis’’ coupling represented by the matrix ele
ments ofU mixes states of the sameJ but different axial
components, effectively destroying the axial symmetry. F
further discussion, we introduce the amplitudes

CJkt5S xJkt

fJkt
D . ~5.22!

If we look once more at the limit in whichU50, we have
two sets of solutions of Eqs.~5.19! and ~5.20!, namely, the
physical and unphysical BCS solutions, respectively,
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CJkt5CJktckt , ~5.23!

C̄Jkt5C̄Jktc̄kt . ~5.24!

Under these assumptions, Eqs.~5.19! and ~5.20! reduce to
Eqs.~5.7! and~5.8!. Furthermore the constantsC andC̄ are
not determined, expressing the collapse of the rotatio
spectrum and the loss of rotational invariance.

By contrast, the exact solution of Eqs.~5.19! and ~5.20!
has the form

CJn5(
kt

@CJktckt1C̄Jktc̄kt#, ~5.25!

which is to be understood as the expansion of the solutio
the full Hamiltonian in terms of solutions of the unperturb
problem.

In our actual applications, we have not used the expan
~5.25!, and therefore we shall not pursue this line in fu
generality. Our only reason for exhibiting this equation
that it provides the basis for defining the conventional co
particle model. In this model only the first term on the righ
hand side of Eq.~5.25! is retained, under the assumption th
the physical solution of the problem with rotational excit
tion restored can be approximated adequately in terms o
physical solutions without rotation. It is this assumption th
we shall later check by comparison with the full solution.

As a consequence of the assumption just described
obtain the equations of the standard core-particle mo
which in the present notation read

EJnCJkt5EktCJkt1 (
k8t8

Wkt,k8t8
J CJk8t8, ~5.26!

Wkt,k8t85c̃ktUkt,k8t8
J ck8t8. ~5.27!

This is a standard diagonalization problem with the ‘‘co
rect’’ number of solutions.

We consider next the general case defined in the theo
cal formulation of the previous section, with multiple ban
in the core nuclei, but with the maintenance of axial symm
try. Though not really necessary, it makes sound phys
sense to proceed as follows: We lean on the fact that
interband quadrupole transitions are weak compared to in
band transitions. Thus we shall first ignore the terms ass
ated with these transitions as well as the perturbation ass
ated with finite excitation energy above the bandhead. W
remains is a Hartree-Bogoliubov approximation for excit
bands. Next we add the ‘‘Coriolis coupling’’ and thus obta
a series of bands in close analogy with our treatment of
riolis coupling for the ground-state band. Finally, we intr
duce the coupling arising from interband transitions in
cores.

In fact, it is hardly necessary to give many details of t
previous steps. All we need is an enhanced notation. Ins
of the ground state band, we consider a bandKs, where
00 is the ground state band, 01 the beta band, 20 the ga
band, etc. Now to all the quantities defined above, such
D,Q0, V ac

k xkc , fkc , etc., we add a superscript (Ks). Thus
after transformation by the matrixAct

k,Ks the excited state HB
equations become
al
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~E kt
Ks2EKs!vkt

Ks5ekt
Ksvkt

Ks2DKsukt
Ks , ~5.28!

~E kt
Ks2EKs!ukt

Ks52ekt
Ksukt

Ks2DKsvkt
Ks , ~5.29!

with the solutions

Ekt
Ks5EKs6A~ekt

Ks!21~DKs!2, ~5.30!

where the first term on the right-hand side is clearly t
bandhead energy. The remainder of the calculation also
allels that made for the case of the ground-state band.
only quantities requiring more than a notational change
the matrix elements of the operatorU defined in Eq.~5.21!.
The necessary emendations can be read off directly from
core-particle equations~4.13! and ~4.14!.

Thus we have specified a procedure for deriving a se
state vectorsCJn

Ks and associated energiesE Jn
Ks We have

taken account of all terms in the effective Hamiltonian e
cept for the interband multipole fields. To finally include th
latter, we write

V̂5t3~ V̂d1V̂od!, ~5.31!

wheret3 is the usual Pauli matrix,d refers to the intraband
parts of the multipole field, andod to the interband parts. I
remains to take into account only the latter piece. This
done by a final mixing

QJr5 (
nKs
Ar,nKs
J CJn

Ks , ~5.32!

where the mixing coefficients are determined by the con
tions

EJrAr,nKs
J 5E Jn

KsAr,nKs
J 1 (

n8K8s8
F nKs,n8K8s8

J Ar,n8K8s8
J ,

~5.33!

F nKs,n8K8s8
J

5C̃Jn
Kst3V̂odCJn8

K8s8. ~5.34!

In the last two sections, we have derived the conventio
form of the core-particle coupling theory from the KKD
formalism. In fact the equations derived in the first of the
sections were exact, i.e., completely equivalent to those
KKDF, indeed only their form in the ‘‘intrinsic frame.’’ The
core-particle coupling model as customarily presented
volves, as described after Eq.~5.25!, an additional approxi-
mation in the solution of these equations. Indeed, the ess
of the model lies in this approximation rather than in wheth
calculations are carried out in the intrinsic system as
scribed above or in the laboratory system as is done in
full application of the KKDF method. In the next full sec
tion, we shall record the form of the core-particle appro
mation in the laboratory frame.

B. Core-particle coupling model: Transitions

Here we shall only indicate the step involving the exa
transformation of Eq.~3.9! into an expression referring to th
intrinsic system. Since we shall not utilize this version of t
formalism, we leave the further transformation by the intr
duction of the approximate solutions developed in the p
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ceding subsection as an exercise for the reader. This st
to introduce values for the reduced matrix elements on
right-hand side of Eq.~3.9! and to carry out the summation
over I and I 8 in order to reach a formula appropriate to t
core-particle coupling model. By comparing Eq.~3.4! with
Eq. ~4.10!, Eq. ~3.7! with Eq. ~4.6!, and Eq.~3.8! with Eq.
~4.7!, we can read off the formulas

^I 8K8uuTLuuIK &5A2I11qK8K
~L,0!

~ IKLK 82KuI 8K8!,
~5.35!
a
o

da

eo

th

th
is
e

vJn~aIK !5(
ka

A8p2~21! j a1ka~JK2kaj akauIK !

xJK2ka
~ j aka!, ~5.36!

uJn~aIK !5(
ka

A8p2~21! j a2ka~JK2kaj akauIK !

3fJK2ka
~ j aka!. ~5.37!

Carrying out the summations overI andI 8, we are led to the
equation
^J8n8uuTLuuJn&5
8p2

V (
akaKK8

1

A2J811
~JK2kaLK82KuJ8K82ka!@fJK2ka

~ j aka!fJ8K82ka
~ j aka!

1xJK2ka
~ j aka!xJ8K82ka

~ j aka!#

1
8p2

V (
acK

tac@~21! j c1kc~ j a2kaj ckcuLkc2ka!~JK2kcLkc2kauJ8K2ka!#

3
1

A~2L11!~2J811!
fJ8K2ka

~ j aka!fJK2kc
~ j ckc!1~21! j c1kc1J1J81L~ j a2kaj ckcuLkc2ka!

3~J8K2kcLkc2kauJK2ka!
1

A~2L11!~2J11!
xJK2ka

~ j aka!xJ8K2kc
~ j ckc!. ~5.38!
VI. CORE-PARTICLE COUPLING MODEL
IN LABORATORY FRAME

We show here that the core-particle coupling model c
be formulated just as conveniently in the laboratory frame
reference as in the intrinsic frame. We start with the fun
mental matrix equations of motion, Eqs.~2.14! and ~2.15!,
and reduce them by application of the Wigner-Eckart th
rem. By means of Eqs.~3.7! and ~3.8!, Eqs. ~4.10! and
~4.11!, and standard angular momentum algebra, we find
equations~assuming thatK82K and L are even, as is the
case for the specific model considered in the body of
paper!

EJnvJn~aIK !5~ea1v IK !vJn~aIK !

1 (
cI8K8

G~aIK,cI8K8!vJn~cI8K8!

1 (
cI8K8

D~aIK,cI8K8!uJn~cI8K8!,

~6.1!

EJnuJn~aIK !5~2ea1v IK !uJn~aIK !

2 (
cI8K8

G~aIK,cI8K8!uJn~cI8K8!
n
f
-

-

e

is

1 (
cI8K8

D~aIK,cI8K8!vJn~cI8K8!,

~6.2!

G~aIK,cI8K8!5
1

2(Lbd Facdb~L !qK8K
~L,0!

3~db!A~2L11!~2I11!

3~21! j a1I1JH j a j c L

I 8 I J J
3~ IKLK 82KuI 8K8!, ~6.3!

D~aIK,cI8K8!5
1

2(Lbd Gacdb~L !DK8K
~L,0!

3~db!A~2L11!~2I11!

3~21! j a1I1JH j a j c L

I 8 I J J
3~ IKLK 82KuI 8K8!. ~6.4!

In Eqs.~6.1! and ~6.2! we have setea85ea95ea .
We introduce a condensed notation for Eqs.~6.1! and

~6.2!, writing them in the operator form

EJnCJn5K̂CJn1v̂CJn , ~6.5!
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K̂5S e1G D

D 2e2G
D , ~6.6!

v̂5S v 0

0 v
D . ~6.7!

We solve these equations in the approximation that fo
part of the definition of the core-particle model, as explain
after Eq. ~5.25!. Again we consider first the simplest ca
where only the ground state band of the cores is includ
The extension to excited bands and interband coupling
be dealt with in analogy to the treatment described for
intrinsic system. Let the physical solutions of Eq.~6.5! with
v̂50 be designated asCJn

(0) , with corresponding energie
EJn
(0) . Here the symboln abbreviates the set (kt). We ap-
proximate the solutions of the full equation by the expans

CJn5(
n8
C nn8
J CJn8

~0! . ~6.8!

The introduction of this expansion into Eq.~6.5! leads im-
mediately to the standard eigenvalue problem

EJnC nn8
J

5E Jn8
~0! C nn8

J
1(

n9
U n8n9
J C nn9

J , ~6.9!

U n8n9
J

5C̃Jn8
~0! v̂CJn9

~0! . ~6.10!

This equation is to be compared with Eq.~5.26!, to which it
is equivalent as long asv̂ has the form assumed in the de
vation of the latter. In fact, Eq.~6.9! has an advantage in th
case that the excitation spectrum is not conveniently
pressed in algebraic form, but its numerical values
known from experiment.

We can extend the theory to include multiple bands in
core nuclei. We use the labelsKs to distinguish the different
bands and now take as a zeroth approximation the coup
of the odd particle to a single one of these bands. The the
is, to start with, the same as that described above except
we must distinguish the results for the various cores, and
is done by a superscriptKs. In so far as the multipole fields
and pairing fields for the bandKs are almost equal to thos
for the ground band, the energiesE Jn

Ks(0) are almost indepen
dent ofKs. We prefer to lift this degeneracy by shifting eac
of these energies byEKs, the bandhead energy, and redefi
ing v̂ to be the excitation energy above the bandhead in e
case. The step that follows is to introduce the mixing due
the core excitations and again only the change in nota
already specified is necessary to record the equations
generalize Eqs.~6.9! and ~6.10!.

The final step is to include the further mixing due to i
terband multipole fields~assuming that such mixing for th
pairing fields can be neglected!. For this purpose, we decom
poseĜ into an intraband piece~subscriptd) and an interband
part ~subscriptod), the latter having so far been neglecte
according to the equation

Ĝ5t3~ Ĝd1Ĝod!, ~6.11!
s
d

d.
n
e

n

-
e

e

g
ry
hat
is

-
ch
o
n
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,

wheret3 is the usual Pauli matrix. The perturbation prev
ously neglected is dealt with by the expansion

QJr5 (
nKs
D r,nKs

J CJn
Ks , ~6.12!

where the mixing coefficients are determined by the con
tions

EJrD r,nKs
J 5E Jn

KsD r,nKs
J 1 (

n8K8s8
G nKs,n8K8s8
J D r,n8K8s8

J ,

~6.13!

G nKs,n8K8s8
J

5C̃Jn
Kst3ĜodCJn8

K8s8 . ~6.14!

VII. IMPROVED ALGORITHM

The main source of difficulty perceived in the solution
the KKDF equations is that the set of solutions is overco
plete by a factor of 2. This is a consequence of the fact t
the basis states form an overcomplete~and, consequently
nonorthogonal set!. Thus half of the states found by solvin
the EOM are not physical and have to be identified and
moved. The technique previously used to perform this t
has now been understood to be unnecessarily complicat

In the previous approach@1,7# the Hamiltonian is first
decomposed into symmetric and antisymmetric parts w
respect to particle-hole conjugation. If only the antisymm
ric part is diagonalized, then for every positive energy eig
value there is a negative partner. From the BCS theory
know that the positive eigenvalues are the physical soluti
and the negative eigenvalues the nonphysical ones. Then
symmetric part is turned on ‘‘slowly’’ and at every step th
physical solutions are identified using a projection opera
built from the wave functions of the previous step. Since
equations of motion have to be solved at each step, the
needed to perform the calculation is correspondingly lon
than for a single diagonalization.~In most applications a
typical number of steps is 5.!

A simpler and quicker approach has now been identifi
Since the problem decomposes into subproblems involv
states of a fixed angular momentum, we can invoke the
crossing theorem. This means that the relative order in
ergy of the physical and of the nonphysical states does
change as we turn on the symmetric part of the Hamiltoni
If the lower half of the states~negative in particular! are the
unphysical ones in the BCS limit, then at the physical lim
where the full Hamiltonian is used, the lower half of th
states are again the unphysical ones. Consequently, we
only to solve the equations of motion at the two limits, t
BCS limit and the full Hamiltonian limit. These remark
about the technique of solution apply not only to the stro
coupling examples studied in the next section, but also
less straightforward applications of the KKDF method.

VIII. APPLICATIONS

We illustrate the remarks of the previous sections w
applications to a pair of well-deformed nuclei. The first a
plication is to the nucleus157Gd, which we have studied
previously@1,2#. 157Gd is a well deformed nucleus and thu
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710 55PAVLOS PROTOPAPAS AND ABRAHAM KLEIN
suitable for application of the strong coupling core-parti
model. To recall a few details, we used a large single-part
space~including all states from five major shells!. The ener-
gies and matrix elements of these single-particle levels w
calculated using the Woods-Saxon potential. The odd n
tron is coupled to the cores156Gd and 158Gd, which are
represented not only by their ground bands, but also by s
eral excited bands, as was found necessary to fit all the
served bands of157Gd. The core excitation energies,v I ,
were given by phenomenological formulas tuned to exp
ment. In the same way as in the previous papers, the stre
of the quadrupole field is treated as a free parameter and
values of the single-particle energies found from Woo
Saxon calculations are allowed to vary by65%. First we
solved the EOM problem of the full KKDF model and fixe
the strength of the quadrupole force and the single-part
energies in order to achieve the best fit. Then we solved
EOM for the core-particle model as described in Sec.
using the same parameters. The results are shown in Fi
We can see from the figure that the two models give v
similar results. In Fig. 2 we show the result of theB(E2)
calculations. Again it is clear that the two models give ve
similar results.

The second application was to the proton spectrum
157Tb, with 156Gd and 158Dy cores. We used the sam
method as described above and the results are shown in
3. The conclusion is the same as in the previous applicat
namely that the two methods give very similar results. O
servedB(E2) values are too few to allow a meaningful com
parison.

To the extent that the examples chosen are typical,
apparent that for well-deformed nuclei the strong coupl
core-particle model gives almost as good results as the
KKDF model. We emphasize, however, the greater rang
validity of the KKDF model, in particular to cases such
transitional nuclei@4,22#, where none of the usual traditiona
versions of the core-particle model is applicable.

IX. DISCUSSION AND CONCLUDING REMARKS

In this paper, we have studied a semimicroscopic co
particle coupling theory, the KKDF theory, and particular

FIG. 1. Negative parity energy levels for157Gd. The circles
correspond to the experimental values, the solid line to the KK
model, and the dotted line to the core-particle coupling model.
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its relationship to the traditional strong coupling core-partic
model. The KKDF theory is formulated in the laborator
system of coordinates, and as such, can be applied bot
the spherical vibrational~weak coupling! and deformed rota-
tional ~strong coupling! regimes, as well as to transitiona
cases. A significant portion of this paper has been devote
transforming the KKDF equations from the laboratory to th
intrinsic system of coordinates, the latter defined only for t
well-deformed regime. We have pointed out the addition
approximation necessary to reduce the KKDF equations
those of the usual core-particle limit. We have then appli
both the full and the limiting model to a few illustrative
nuclei and found only small differences in the numeric
results. This justification is, for our purposes, less significa
than it would have been in the past, since we have a
formulated an improved algorithm that renders the KKD
equations essentially as simple to deal with as the defin
approximation.

F

FIG. 2. B(E2) transitions for157Gd. Comparison of the KKDF
model and the core-particle coupling model. The points with er
bars are the experimental data, the dashed lines result from
core-particle model, and the solid lines from the KKDF model.

FIG. 3. Positive parity energy levels for157Tb. The circles cor-
respond to the experimental values, the solid line to the KKD
model, and the dotted line to the core-particle coupling model.
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The reason for the good agreement between the app
mate and the complete theory obviously expresses the
that there is little mixing between physical and unphysi
states as we ‘‘turn on’’ the coupling that is initially sup
pressed in our approach. This means that they stay well s
rated in energy. We can expect this situation to change
applications where there are multiple avoided crossings.
APPENDIX A: SOME DETAILS OF THE DERIVATION

OF THE CORE-PARTICLE COUPLING MODEL

We provide some details of the derivations of Eqs.~4.13!
and ~4.14!. The first terms that require special attention a
those involving the excitation energy in the even nuclei. W
immediately do the sum overM ,m. Now consider Eq.~4.13!,
where we encounter the term

~v IK2EK!~Jm8 j akauIK !

5S j a2kaJm8U 1

2IK
@~J1 j !22K2#UIK D , ~A1!
xi-
ct
l

a-
or

e
e

~suppressing mass number!. We can replace the combinatio
(J1 j )2 by

J~J11!1 j a~ j a11!12~K2ka!ka1 j2J11 j1J2 .

~A2!

Applying the standard algebra of the raising and lower
operators and shifting the variableska as required for these
terms, we thus obtain additional contributions of sing
particle type as well as the Coriolis coupling.

We consider next the contributions of the multipole a
pairing fields, a calculation that requires most of the mod
labor involved in the derivation of Eqs.~4.13! and~4.14!. As
an example of what is involved, we compute the contribut
of the even multipoles to the right-hand side of Eq.~4.14!,
which we label T(G†:JK jaka). Utilizing Eqs. ~4.7! and
~4.10!, we must evaluate the expression
pt for

e odd
T~G†:JK jaka!5
1

2( ~21! j c1ma1kc2kaA~2 j a11!~2I11!/~2 j c11!~2I 811!Facdb~L !qK8K
~L,0!

~db!~ j a2maj cmcuLML!

3~ IMLM LuI 8M 8!~ I 8M 8Jmc2M 8u j cmc!~ IMJma2M u j ama!~JK2kaj akauIK !~ IKLKK8 uI 8K8!

3~JK82kcj ckcuI 8K8!fJ,K82kc
~ j ckc!. ~A3!

In this equation the sum is over all angular momentum variables not indicated explicitly on the left-hand side exce
ma , which disappears from the final result.

To evaluate this expression, we first study the partial sum

S5(
mc

~21! j c1maA~2 j a11!/~2 j c11!~ j a2maj cmcuLmc2ma!~ IMLmc2mauI 8M 8!~ I 8M 8Jmc2M 8u j cmc!

5~21! j a1I 81JA~2L11!~2I 811!H j a j c L

I 8 I J J ~ IMJma2M u j ama!, ~A4!

which can be derived from Edmonds@23#. The sum overM then removes two more CG coefficients from Eq.~A3!. The next
step is to apply Edmonds~6.2.6! to evaluate the sum overI 8, leading to a final trivial sum overI . We thus find

S85(
II 8

~21! j a1I 81JA~2L11!~2I11!~JK2kaj akauIK !

3~ IKLK 82KuI 8K8!~JK82kcj ckcuI 8K8!H j a j c L

I 8 I J J
5~21!kc2ka1 j c1kc~ j c2kcj akauLK82K !. ~A5!

Equations~A4! and~A5! are the essential results for the evaluation of Eq.~A3! leading to the appropriate term in Eq.~4.14!.
The pairing term in the same equation and the multipole and pairing terms in Eq.~4.13! can be shown~after straightforward
transformations for the latter! to involve the same basic sums, up to phase factors.

APPENDIX B: CONTRIBUTION OF ODD MULTIPOLE OPERATORS

In the main text, we have included in the general core-particle equations~4.13! and ~4.14! only contributions from even
electric multipole-multipole interactions, assuming that the included bands are all of the same parity. If we wish to includ
electric multipole-multipole forces to lowest order, we must replace the matrix element Eq.~4.10! by the value of the matrix
element
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^I 8M 8K8uBLML

† ~db!uIMK &5qK8K
~L,1!

~db!(
l

^I 8M 8K8u$DMLK82K1l
L ,I l8%uIMK &. ~B1!

HereI l8 , l561,3 are the spherical tensor components of the angular momentum in the ‘‘intrinsic’’ system, expressed i
of the Cartesian components~where they differ! by the equations

I118 52
1

A2
~ I 181 i I 28!52

1

A2
I18 ,

I218 5
1

A2
~ I 182 i I 28!5

1

A2
I28 . ~B2!

With the help of the well-known matrix elements of the intrinsic components, Eq.~B1! takes the value

^I 8M 8K8uBLML

† ~db!uIMK &5qK8K
~L,1!

~db!~ IMLM LuI 8M 8!H 2
1

A2
@~ IK21LK82K11uI 8K8!A~ I1K !~ I2K11!

1A~ I 82K8!~ I 81K811!~ IKLK 82K11uI 8K811!#1
1

A2
@~ IK11LK82K21uI 8K8!

3A~ I2K !~ I1K11!1A~ I 81K8!~ I 82K811!~ IKLK 82K21uI 8K821!#

1~K1K8!~ IKLK 82KuI 8K8!J . ~B3!

With these values, we are now in a position to evaluate the contributions of an odd electric multipole force
core-particle coupling equations. We first consider the contributions to Eq.~4.14!. As an example, consider the first term of E
~B3!. The calculation parallels that described in the previous appendix. The sum~A4! repeats itself in every case. The su
~A5! is replaced, in general, by different expressions. In the case of the first term of Eq.~B3!, the sumS8 is replaced by the
sum

S185(
II 8

~21! j a1I 81JA~2L11!~2I11!~JK2kaj akauIK !~ IK21LK82K11uI 8K8!~JK82kcj ckcuI 8K8!

3H j a j c L

I 8 I J JA~ I1K !~ I2K11!. ~B4!

For S18 , the sum overI 8 can be carried out as before, but after this has been done, instead of a final normalization co
for CG coefficients, we encounter the sum

(
I

~JK2kaj akauIK !~JK2ka21 j akauIK21!A~ I1K !~ I2K11!5A~J2K1ka11!~J1K2k!, ~B5!

which involves the same ‘‘trick’’ as used in the evaluation of the Coriolis coupling. Of the terms arising from Eq.~B3!, the
first and third require the procedure just described, the second and fourth a similar procedure in which we interchange
of the sums onI and I 8, and the fifth the same calculation as in the previous appendix. We also find that the first two
are equal, as are the third and fourth.

Altogether, we find for the contribution to Eq.~4.14!, the expression

(
bcdkcK8L

~21! j c1kcFacdb~L !qK8K
~L,1!

~db!F 1

A2
A~J2K1ka11!~J1K2ka!~ j c2kcj akauLK2K821!fJ,K212ka

~ j ckc!

2
1

A2
A~J1K2ka11!~J2K1ka!~ j c2kcj akauLK2K811!fJ,K112ka

~ j ckc!

2
1

2
~K1K8!~ j c2kcj akauLK2K8!fJ,K2ka

~ j ckc!G . ~B6!

For conciseness of expression, we have not done the sum overkc . In this form it can be shown that the correspondi
contribution to Eq.~4.13! differs only by overall sign and by the replacement

~21! j c1kc→~21! j c1ka1L. ~B7!
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