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Derivation and assessment of strong coupling core-particle model
from the Kerman-Klein-Do nau-Frauendorf theory
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We review briefly the fundamental equations of a semimicroscopic core-particle coupling method that makes
no reference to an intrinsic system of coordinates. We then demonstrate how an intrinsic system can be
introduced in the strong coupling limit so as to yield a completely equivalent formulation. It is emphasized that
the conventional core-particle coupling calculation introduces a further approximation that avoids what has
hitherto been the most time-consuming feature of the full theory, and that this approximation can be introduced
either in the intrinsic system, the usual case, or in the laboratory system, our preference. A new algorithm is
described for the full theory that largely removes the difference in complexity between the two types of
calculation. Comparison of the full and approximate theories for some representative cases provides a basis for
the assessment of the accuracy of the traditional approach. We find that for well-deformed nuclei, e.g.,
157Gd and*®"Th, the core-coupling method and the full theory give similar res[f8556-28187)05501-3

PACS numbeps): 21.60.Ev, 21.10.Re, 27.70q

[. INTRODUCTION sense to define such a system, as is done in the strong cou-
pling core-particle model. The resulting theory is completely
We have recently undertaken the task of revitalizing ancequivalent to the starting one and does not yet constitute the
extending a semimicroscopic theory of collective motion forstandard phenomenological model. A second purpose is to
odd nuclei that we shall refer to as the Kerman-KleinrBo- ~ describe and implement the approximation that leads to the
Frauendorf(KKDF) model [1-4]. This model, aside from standard model. We describe in most detail how this may be
the elements discussed for the first time in the present papeifOne in the intrinsic system, the usual choice, but emphasize
was introduced in close to its present form byraa and that the approximation may equally be defined in the labora-
Frauendor{5-9], whose work was in turn stimulated by an [OrY System and that the latter approach has some advan-

Pt ; ; tages.
application[10] of the theory of collective motion developed . . .
bspKerman[ ar?d KIeir{ll—lyq P The essential point here may be described as follows. In
In the presentation of our work at seminars and confer-.the phy§|cal situation, which requires the inclusion of pairing
ences, one question that has invariably arisen is the Connelg_terqctlons, the numt;]er of SOJ)UIIOT}S ?:‘the f:J” KKDFmede(;
tion between the KKDF model and the conventional core-IS twice as great as the number of physical states being de-

. . _ '~ ~scribed. Hitherto, the major technical difficul@and con-
particle coupling model, especially for deformed nuclei, tosumption of CPU timeof this method has been the applica-

which our published applications have so far been confinedjon of g criterion to select the physical solutions. For the
Even if we widen the inquiry to the connection between theg ound state problem there is the well-known property of the
shell model and the core-particle model, we find that thegcg theory that the physical solutiofguasiparticles cor-
“terature on th|S SubjeCt iS Spal‘se. We are aware Of Only tW@espond to positive energies and the unphysica| ones to nega-
publications that have been addressed specifically to thigve energies. In the KKDF model the strategy is to ignore
topic. The earlier of these papdi5] showed how all, then initially rotational excitation energies so as to collapse each
extant, core-particle coupling models could be understood asand to a single degenerate state to which the ground state
approximations to the work of Kerman and Klein. This papercriterion can be applied. We then step up the excitation en-
appears to have gone completely unnoticed, since it is nagrgies, returning them finally to their full values; at each step
quoted in the later work16], which is devoted to the deri- we select the physical solutions by a projection technique
vation of the strong coupling core-particle model from adescribed in our cited work, that involves an extension of the
schematic shell model. In the book by Ring and ScHUak,  techniques introduced by Thau and Frauendorf.
which appeared betweentimes, the success of the strong cou- Another way of stating the problem that is directly related
pling model in its domain of application is heralded but atto the traditional core-particle model is to remark that al-
the same time proclaimed a mystery. though only half of the solutions of the KKDF model are
The main purposes of the present work are threefold. Theelated to physics, the full set of solutions is necessary for
first is to transform the Kerman-Klein equations from themathematical completeness. The solutions of our equations
“laboratory” system in which they are derived and conve- at full excitation can be expanded in terms of the complete
niently applied to the “intrinsic” system, when it makes set generated at zero excitation, but this expansion will in-
volve both physical and unphysical states of the latter limit.
In the conventional core-particle model it is assumed that the
*Electronic address: pavios@walet.physics.upenn.edu physical states of the actual problem are well approximated
Electronic address: aklein@walet.physics.upenn.edu by a superposition of the physical solutions at zero excita-
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700 PAVLOS PROTOPAPAS AND ABRAHAM KLEIN 55

tion. It follows from this that it suffices to solve a single models. The derivations that are presented in Secs. I, I,
eigenvalue problem for the problem of actual interest ratheand IV are self-contained, and therefore it should be possible
than having to solve a sequence of such problems. for any reader to reproduce thefwith sufficient algebraic

The third purpose of this paper is to carry through severaflevotion to the task
illustrative calculations using both the KKDF model and the We start with a shell-model Hamiltonian of the form
approximation to it just described, in order to assess the va-
lidity of the latter. In the course of rethinking our algorithms
in preparation for this study, we have discovered a method of 1= ; haai .t 4ab2c E Facar(L)BLy (8¢)Buy, (db)
simplifying the full calculation to a sufficient extent that
much of the advantage of technical simplicity of the core-
particle limit has been wiped out. We shall also describe this
new development.

We start in Secs. Il and Il with a review of the funda- Hereh, are the spherical single-particle energies referred to
mental equations of the Kerman-Klein method, in order tothe nearest closed shell,refers to the standard set of single-
introduce some improvements in notation and presentatiorparticle quantum numbers, including in particular the pair
as well as to correct some phase errors made previously iﬁa,ma) and a refers to the same set witm, omitted.
the formulas for transition matrix elements. In Sec. IV we BL,\,I is the particle-hole multipole operator,
transform our equation$without approximatioh to a de-
scription in terms of an intrinsic frame of reference. Starting

42 2 Cavcd L)AL (DAL, (cd). (2.1

abcd M

t _ Do t
from these equations, the definition and formulation of the BLML(ab)ZmEm Sp(jaMajp—My[LM)azas
strong coupling core-particle model in its usual form in the e o
intrinsic system is given in Sec. V. It is explained in Sec. VI =(—1)latlo"MIB, ) (ba), (2.2

that an equivalent and possibly more effective version of this

limit can perfectly well be carried out in the laboratory sys- andAIM is the particle-particle multipole operator,
tem. Turning to applications, our new algorithm is described g

in Sec. VII and then applied together with the standard core-

particle model to some illustrative cases in Sec. VIII. Con-

cluding remarks are presented in Sec. IX. Two appendices AIML(ab)E > (JaMajp—mplLMp)ala; ﬁ, 2.3
provide some technical details of the derivation carried out in MalMp
Sec. IV.

where (;m;j,m,/jm) is a Clebsch-GordordCG) coeffi-
cient, s,=(—1)a ™, and a bar indicates reversal of the
sign of the magnetic quantum number. The coefficiénise

Il. FUNDAMENTAL EQUATIONS OF THE . !
the particle-hole matrix elements,

KERMAN-KLEIN METHOD FOR ODD NUCLEI

In this section we shall derive a version of the Kerman-
Klein equations based on the Hamiltonian given below. In
essence, these equations are already a special case of the
formalism presented more than thirty years d4d8]. The
original equations and the form of them derived in this sec- X (JaMajp—Mp|LM )V gy6. (2.9
tion, when taken literally, define a nonlinear problem for the
self-consistent study of the properties of an odd nucleus an
of its immediate even neighbors. This is a problem of con-
siderable complexity on which limited progress was reported —(_vatiptict
in early application§10]. Based on more recent experience acad(L) = (= 1)l o e o pged L) (2.5
in an application to the theory of skyrmiofis9], we believe  anqG the particle-particle matrix elements
that the prognosis for success of such an undertaking would
be much higher today than it was a quarter of a century ago.

Nevertheless, we must emphasize that the present series

Facdb(L)EE Sysﬁ(j aMajc— mc| LM,)
m’'s

Which satisfies the relation

of papers using the KKDF version of the theory has a more Gabco(L)EZ (JaMajp—Mp|LM )
modest goal. This is to make such further approximations so m's
as to reduce the problem to a linear eigenvalue problem for X (jeMeia— Mg LMV o555, (2.6

the properties of odd nuclei, assuming the required properties

of the neighboring even nuclei to be known. This can bewhich satisfies the conditions

done only if the Hamiltonian can be chosen of sufficiently

simple form that the matrix elements of its ingredient multi- acap(L) = (= 1)laticbrig = (—1)ibtla-t+ig, o

pole and pairing operators can be related to observed prop- 2.7
erties of the even neighbors. It is this specialization, which in

the present paper is first introduced and utilized in Sec. V, Our initial task is to obtain equations for the states and
that defines the KKDF version of the Kerman-Klein theory. energies of an odd nucleus assuming that properties of im-
A main contention is that even with such simplification, the mediately neighboring even nuclei are known. The states of
resulting theory generalizes existing core-particle couplinghe odd nucleus(particle numberA) are designated as



55 DERIVATION AND ASSESSMENT OF STROE . .. 701

|Juv), where v denotes all quantum numbers besides thesponding eigenvalues akey, andE{A*1) respectively. The
angular momenturd and its projectionu. The states of the operator equations of motioiEOM) are obtained by form-
neighboring even nuclei with particle numbera%1) are ing commutators between the single-fermion operators and
written, in a parallel notation, asMn(A+1). The corre- the Hamiltonian,

1 1 ) )
[a0 HI=hau+ 52 2 Sy(jaMajc=MdLM)Faca(L)a,Buu(db)+ 535 X (jaMajc—MdLM)Gacod LazALm(bd),
bdy LM bdy LM
(2.8
1 t t, 1 , t
[a H]__h a E maJcmc|LM)Facdb(L)BLM(db) T*'E Ja_maJcmc|LM)Gacbd(L)ALM(bd)ay-
bdy LM bdy LM
(2.9
|
Here EpUgu(a;IMNn)=(— €'+ w(A_l)_F(A_l)T)EMn,W'M'n'
2|_+1 XUyl M’n,)+AaIMn M’
2 FacadL 2] +1 2.19 XV, (y;1’'M'n’). (2.19

e . . . Here
are modified single-particle energies.

The matrix elements of these equations provide expres- 1 As1) . cA1)
sions that determine the single-particle coefficients of frac- En="Eyt+5(E T+Es ), (2.16
tional parentage,

E;H\An,yl'M’n’:5ay5II/5MM/5nn’(hé_)\A)! (217)
Vi (@ IMn)=(Juvla,[IMn(A+1)),  (2.11)

)\Azl(EgA“)— ESY), (2.18
U (@ IMn)=(JuvjalliMn(A-1)).  (2.12 2

. . L aAu\N+nl)y|/anf SayOitr Onmty Sy (Efp Y —EPD),
To find equations for these quantities, we form the necessary (2.19
matrix elements of the EOM and evaluate the interaction
terms by inserting the completeness relation between the (‘I\’\iAD e
single-fermion operators and the multipole or pair operators. Gy
In order to obtain equations that are expressed completely by 1 ) )
means of the amplitudes defined in E¢g11) and(2.12), it = 247, % Sy(JaMajc=Me|LM)Facan(L)
is necessary to interchange the order of the single-fermion
operator and the pair operator in the interaction terms of Eq. X{I'M'n’' (A% 1)|BLML(db)|IMn(At 1))
(2.9). This leads to further contributions to the single-particle
energy in this equation, in th&t, is replaced byh} with (2.20

1
2L+1 1 AaIMn,«yI'M’n’ZE (JaMajc— mc|LML)Gacdb(L)

Cm, bd

X(I'M'n"(A=1)[A_y, (db)]

h// h/ 2

= 2j, 1

Gacac+ E I:acac) . (2-13)

In terms of a convenient and physically meaningful set of XIMn(A+1)). (2.29
energy differences and sets of multipole fields and pairing
fields defined below, we obtain generalized matrix equation§urthermoreEE,Ai1) refer to the ground state energies of the

of the Hartree-Bogoliubov form neighboring even nuclei, the matrix elementsIdfare de-
rived from those of Eq(2.20 simply by the replacement of
3V (@ IMN)= (€ + oA+ the operatorB by BT, and the matrix elements af' are
vViuv

similarly derived from those ok by the replacement gk by
+TA) vt mn Vi (vi1'M'n’) AT together with the interchange+1— A= 1. Finally €, is
YA U QMR obtained frome, by the replacement di/ by h.
atmn, 1/ U3 n), In order to specify a scale for the solutions, we take a
(2.149 suitable matrix element of the summed anticommutator,
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because we are also describing excited states, the clean sepa-
E {a, ,aZ}=Q, (2.22 ration of solutions by the sign of the energy fails, and alter-
“ natives for identifying physical solutions must be formu-
lated. One of the results in this paper will be a considerable

Q= (2j,+1). (2.23  simplification in the method used to make this separation.
la
We thus find Ill. MATRIX ELEMENTS OF SINGLE-PARTICLE
TRANSITION OPERATORS
1 . . .
= U @ IMn) 2+ |V, (a:IMn)|2=1. We continue the exposition of the general Kerman-Klein
Qa%n [1U 3 Vo ) formalism by deriving formulas for transition amplitudes of

(2.29 a general one-body operator. We choose this operator to be a

) ) tensor of ranl, T, , that we write in the form
All of the above equations are still exact and are not nec- L

essarily restricted to deformed nuclei. In order to do physics, ;
however, we shall have to impose restrictions on the number Tim, = > tg,aza,. 3.1
and nature of the core states included in any application, as By

well as on the size of the single-particle space. An essentigfhe notation is such that the quantitigg include a product
property of the formalism developed is that the restrictionssf matrix elements of single-particle operators and of asso-
just listed can be |r_1troduced in su_ch a manner_that the fU.”ciated coupling strengthgcharges, gyromagnetic ratios,
damental symmetries of the Hamiltonian, rotational invari-etc). \We wish to calculate the matrix element

ance, and number conservation can be r_naintai(iédhe (J'u'v'|Tim |[Juv). To carry through the calculation, we
interaction was translationally invariant, this property couldSubstitute forLthe ket a formally exact expression in terms of

?'SO be guarantee[ﬂl,lﬂ.) !n fact _the main stimulus for the action of single-particle operators on the states of the
introduction of our method in the first place was to restore

. ) . core[21],
the broken symmetries of mean-field solutions of the many-

body problem. Later it was realized that many other applica- 1
tions, such as the one studied in this paper, were possible. IJ,LW)=5 > [UJW(a,IMK)aHIMK)

With the inclusion of generalized pairing, we encounter a MK _
property of our equations that they share with the quasipar- +Vy,(a,IM K)aalm)], 3.2

ticle solutions of the Hartree-Fock-Bogoliubov thedB0],

namely a doubling of solutions, such that only half describewvhere an underline identifies the lighter of the two cores and
physical states. In contrast to the well-known case, where than overline the heavier one. By using the commutation rela-
eigenvalues occur as oppositely signed pairs, and the positit®ns and completeness, this leads to the following expres-
energy solutions are the physical ones, in the general theorgjon for the transition element:

1
(' v [T PBur)=4 lMgM/K, [Uyr ("MK U, (2, IMK)( MK [Ty [IMK)

+ V(@' MKV, (@ IMK)( MK [Ty [IMK)]

1 _ _
0 tayl Ugr (@ IMK)U 3, (7, IMK) =V, (a0, IMK)V1 0,0 (7, IMK) . (3.3

This is now evaluated by use of the Wigner-Eckart theorem with the following definitions of the reduced matrix elements:

—1)I7#

(-1
J'u'v'|T Juvy= ——=(3"'u'I— LM ){I"V'||T_||Iv), 3.4
(3'u'v| LML| nv) 2L+1( M K| L [TL[[3w) (3.9

(-1

W(I’M’l—M|LML)<|'K’||TL|||K>, (3.5
(-1

tayzﬁ(lamalc_ mc|LML)taCa

(I’M’K’|TLML|IMK>=

(3.6

(-1~

VJW(CY,”V'K):ﬁ('MJ—M|jama)vJV(a|K), (3.7
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(_1)J*/L+]’a+ma
V2jat1

With the help of these definitions, we obtain the formula for the reduced matrix element that is utilized in the KKDF model,

Us( @, IMK) = (IMJ= uljama)up,(alK). (3.9

1 . 1L
@vITdn=5 3 <—1>Ja“+'“{ ][uJy<alK>uw(al'K'><l'K'IITLI||K>+vJV<aIK>vW<aI'K')

alkKl'K’ J’ J ja
Ja e

L
37 Juj,y,(alK)uJV(clK)

_ _ 1 .
XK T+ 5 > tac[(_l)]a+l+J+Lr
¥

Ja e

3 : (3.9

+(_1)ja+|+\]+l{

L
| ]vJv(alK)va(ClK)

This is, with some phase corrections, the formula that was For illustrative purposes, we take a model of the even

derived in a previous work. (core nuclei that consists of the ground-state band

[IMK=0)=|IM) and a finite number of positive parity ex-

cited bandgIMKn). For the remainder of this section the

symboln will be suppressed. We are thus assuming that the

eigenstates of the even nuclei have axial symmetry and that
We have described previouslg—3] several applications their eigenstates can be assigned a definite valug, dhe

of the formalism reviewed in the preceding sections tocomponent of the angular momentum along the figure axis.

strongly deformed nuclei. Some of the results, together withThis assumption is reasonable as long as the states of the

some additional calculations, will be used as the basis for &ame angular momentum belonging to different bands are

numerical study of the relation of the method of this paper tovell-separated in energy.

the traditional strong coupling core-particle model. As will ~ We first use rotational invariance to study the structure of

be explained in Sec. VI, this relation can be studied using th&he amplitudesv and U defined in Eqs(2.11) and(2.12,

formalism already at han@heory expressed in the “labora- respectively. For this purpose we introduce a complete set of

tory” system of coordinatésin fact it turned out to be eco- stategR) localized in the Euler angle®= (aB7y) and write

nomical for us to carry out all numerical work from this

standpoint. Nevertheless, in the following two sections we _

shall undertake to develop the connection between our |IMK>_f dRIR)(RIIMK)

method and the way such calculations are normally pre-

sented in the intrinsic system. Our justification for this di- :(ZI 1

gression is that whenever we have presented a public account 8m

of our previous work in this field, one question invariably

raised was precisely this connection. The identification of a scalar product of many-body states
In what follows, we shall answer the question raised inwith the WignerD function is part of the definition of the

two steps. In the first, carried out in this section, we shallmodel. When Eq(4.1) is substituted into the definition of

derive a form of our equations in the intrinsic coordinateV, and use is made of the definitions to follow, we are

system that is equivalent to the theory described above, exhereby led to the study of an amplitude such as

cept for two points. The first is that below we do not keep

track of number conservation; this choice is just a matter of (Jxv]a.R)=(Jur|U(R)U"Y(R)a,U(R)|0)

slight simplification of the notation and can be avoided. Sec-

IV. TRANSFORMATION TO INTRINSIC SYSTEM
FOR AXIAL CASE

1/2

J dRIR)D{x(R). (4.2)

ond, we assume that the matrix elements of the multipole and = > Juv|U|du v){Iu' v|Uta,U|0)
pairing operators are approximated by their forms in the u' Ka

axial rotor limit. We have previously used this assumption in

all our recent work for the special cases that arise when we — 2 D(J>’5(R)D(ja)*(R)

consider the KKDF version of the theo(gee beloy, when weg H Ma’a

we found it necessary to extrapolate measured values; here, ) _

higher order corrections can be included in principle. In the X Xapro(faka)(—1)la" ", (4.2

second step, considered in the next section, we shall show . . ) i

that the conventional core-particle approach involves a furWhere U(R) is a unitary rotation operator defined by the
ther specialization of the general results derived in this secv@lué of R. The previous manipulations have utilized the
tion and examine this limiting case in some theoretical detailfollowing relations and definitiongof which the first two are
Only at that point do we also introduce the simplificationsStandargt

that distinguish the KKDF model from the Kerman-Klein D
equations. (IK[U(R)[IM) =Dy (R), 4.3
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ciprocal of the factors premultiplying these CG coefficients

U X R)ajnU(R)=2 a; DX (R), (4.4 in the one or the other of these equations, summing over
“ M, w, andl, and using standard formulas of angular mo-
(Juv|ainl0y=(=1)"y,,.(jm) (4.5) mentum algebra. Some details are provided in Appendix A.
jm mv : :

In the equations to follow, the quantities that appear for the

The introduction of the phase in Eg4.5 simplifies the first time are defined by the equations

structure of the transformed equations of motion given be- ] i i
low. R(MK]j,3)=(j+m)(j—m+1)

With the help of the integral of a product of thré
functions and the application of standard symmetry proper-

ties of CG coefficients, we find R , ;
(I'M'K'|Bly (db)[IMK) =g, (db) (21 +1)/(21 "+ 1)
V(@ IMK) =X \B872/(2),+1)(— 1) #(IMJ X(IMLM[I'M")
X(IKLK'=K]|I'K"), (4.10

XVA-K+m)(J+K-m+1), (4.9

_M“ama)(‘JK_ Ka) aKa||K)
DR (fae @6 (MUK ALy (db)]IMK) =A% (db) 2T+ 1727+ D

A similar analysis carried out for the amplitutieyields the X(IMLM[I"M")
result X (IKLK'—K[I’K"), (4.1

Usu(@IMK) =2 87%(2],+1)

X (—1)Y7# e et lat Ma(IM I — pfjmy)

+ + 1
olg V=BV + —pll(1+1)-K?. (412
21}

Of these equations, the quanti® is recognized as arising
X(IK=KajakalIK) k- o(jaka), (4.7)  from the matrix elements of the Coriolis coupling and the
remaining equations are expressions valid for the axial rotor
Daun(Jaka) =(Iu v|a;ra_ Ka|0>. (4.9 model for matrix elements of transition operatse further
below) and excitation energies. These expressions constitute
Starting from Egs.(2.14 and (2.15 and utilizing the definitions of the intrinsic multipole momentg of the in-
forms (4.6) and (4.7), we next derive equations satisfied by trinsic pairing momenta, of the bandhead energiEg , and
the amplitudesy and ¢. The technique is to eliminate the of the moments of inertidy .
CG coefficients that occur in Eq&4.6) and (4.7) by multi- The resulting equationéwith partial suppression of the
plying by (IMJ— u|jm,) (JK— k,jax,|IK) and by the re- indexv) are

. , 1 o .
gJVXJ’K_Ka(JaKa): 6a+E|(<A+l)+ W[J(J—’_1)_K2+Ja(1a+1)+2Ka(K_Ka)] X.],K—Ka(JaKa)

1 . . 1 . .
+ 2I(A+1)R(Ka!K|Ja’J)XJ,K—Ka+1(JaKa_1)+ 2Z(A+1‘)R(_ ka,~Klia, D) XsKk-rx,~1(iakat 1)
K K

1 o .
+ 2 S(=DierattE L LA (db) (o= kofakal LK =K ) x k-« (fckc)

deKCK'L

1 o , _
+ 2 5=t G, g L)AL (D) (jo— Kojakal LK =K ') bk (J cric), (4.13
deKCK'L

. " _ 1 o .
ngd’J,K—xa(]aKa): — €t EE<A l)+W[J(J""1)_K2+Ja(Ja+1)+2Ka(K_Ka)] ¢J,K—Ka(]aKa)
K

1 : : 1 : .
+ WR(KavKljan)¢J,K7Ka+l(JaKa_ 1)+ WR(_ Ka, = Klja: )y x—r,-1(Jakat1)
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1 . _ _ , _
= 2 (DI Faeay LG (db) (o kel axal LK =K by v (k)
deKCK'L

1 . _ _ , _
+ 2 5Gaca LA (AD) (=) (o~ refaral LK =K' x ko (oro). (4.14
bedk K'L

In these expressions, we have deliberately chosen, for corthe way in which it is implementedhat reduces the previ-
ciseness of expression, not to do the sumkgn where the ous theory to the KKDF model. We confine our attention
value k=K' —K—k, is imposed by the resident CG coef- initially to the special case that we include only the ground-
ficient. state band of the neighboring even cor@he general case
We may characterize Eq94.13 and (4.149 as the will be considered subsequenjlyW/e also assume that we
Kerman-Klein equations for an axially symmetric rotor in are treating well-deformed nuclei and continue to ignore
the intrinsic frame. These equations fully conserve angulanumber conservation. Far=0 pairing we have in the limit
momentum, but, as previously remarked, we have violatedf a constant pairing matrix element
number conservatiotby equating the multipole matrix ele-

ments of two neighboring even nudlei _ G 00(hbh)=2A 21+ 1=2A 2.+ 1
Relations(4.10 and (4.11), which have been used in all 2b: aabdoo ~ (PD) aVelat 1= Ja® =
our previous applications, are approximate, and therefore re- (5.0

quire further discussion. For example, E4.10 follows as _ ) )
the value of the first term of the operator expression For the quadrupole interaction, we write
Fabcd2)=— k2F apFgc (5.2

BEML(db): 2 N 2 Pl’M'K'Q&Lfﬁ)(db)
P

Ao

L , , > Faasz®(db)=Q. (5.3
x{Df\AE’K,_KHﬁ.__H\p,l}\l...IAP}P,MK. 2 Favdloo 0

(419  Because we are dealing withke=0 band, axial symmetry
jmplies that k,= k.= k, and the quadrupole potential be-

Here theP are the projection operators for the specified ban mes

members], is a spherical tensor component of the intrinsic

angular momentum, and the braces imply a symmetrized ex- 1 ‘

pression. Assuming that the connected bands have the same Vic=— EKzFaCQO(— 1) (j.—kjx[20). (5.9
parity, p is even for even electric multipoles and odd mag-

netic multipoles and odd for odd electric multipoles and eveny
magnetic multipoles. If the connected bands have opposite
parity, there is a corresponding relation. The form of Eq. Foa=(—1)latlct1F_ (5.5)
(4.15 is a consequence of the assumption Banust be a

tensor operator of appropriate rank in the Hilbert space of thgvhich is consistent with Eq(2.5).

axial rotor. The further assumption that we can limit our-  We next study the limit of our equations found by intro-
selves to the first term is that for the states of interest thejucing the simplifications made above. We also begin by
rotor is almost rigid, as is true for the low-lying states of neglecting the core excitation energies, and by doing so lose
strongly deformed nuclei. The corresponding expression fofotational invariance. In fact the next development is a proof

he potentialV is symmetric provided we choose

the pairing operator requires only the replacements that the resulting equations can be reduced to the deformed
wn L) BCS form. This is standard stuff and is included because of
Oc'x — Ak (4.16 its importance as a step in connecting the KKDF model with

the standard core-particle model.
and the realization that the projection operators to the left Since in the limit of a collapsed rotational spectrum, the
and to the right refer to different cores. resulting equations do not depend on the total angular mo-
The inclusion of odd multipole or pairing interactions re- mentum, we can thus séwith «,= «)
quires that, minimally, we choose=1. The evaluation of

such a multipole term is carried out in Appendix B. X3, — (k)= Xucs
V. CORE-PARTICLE COUPLING MODEL b3, (Jck)— Py
A. Spectra
P EJV_)gKT' (56)

For further development, we specialize the formulas of
the previous section to the conventional monopole pairingevidently « is the component of the quasiparticle angular
plus quadrupole-quadrupole model. It is this assumpod ~ momentum along the axis of symmetry, andesolves de-
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generacies in the values &f In the limit considered our We have now laid the groundwork for the solution of the

equations thus reduce to a Hartree-Bogoliubov set full equations of motion(4.13 and (4.14). For this general
solution the notational change contained in Exi6) is gen-
ExrXia™ €aXvat Vackca= Abra, (5.7 eralized to
5KT¢Ka: _€a¢xa_ Vgc¢Ka_AXKa' (58) XJ,*K(]—CK)*)XJKC’
From now on we set,=e,=e¢,. ¢35, k(jck) = Dy (5.17

These equations are solved by introducing the unitar

transformation that diagonalizes the single-particle Hamil¥rhe retention of the angular momentum quantum nurdber

expresses the fact that the full problem has rotational sym-

tonian ; : . ) .
metry. Introducing again the transformation that diagonalizes
HE = €006+ V5., (5.9  the single-particle Hamiltoniaf(*,
namely, _ K
y XJKa_E AaTXJKTY
XKC: E A::(TUKT’
XJKTZE AthJKa1 (518
— K%
v”_g Acr Xre: 510 \ith a corresponding transformation fgr, the equations of
motion become
D ASAL =5,
T a b ab EJVXJKTZ € Xikr™ A¢JKT+ ,E’ U\;](TYK’T’XJK’T’Y
(5.19
2 A;: A;T’ = 57’7”!
a
J
EJV¢JKT: - eKT¢JKT— AXJKT+ Z’ U kT k' T ¢JK’T’!
> ASHEAS =e, 077 (5.11) (5.20
ac
and the nonvanishing matrix elements df that occur in
We thus obtain a standard set of BCS equations these equationgéthat reinstate the angular momentum and
include the Coriolis couplingare
gKTUKT: eKTUK’T_AuKTY (512)
J o
5KTUKT: _eK’TuKT_AUKTl (513) ZIUKT,KT’ZE A;T[J(J+1)+]a(1a+ 1)_2K2]Aaf”

with the usual solutions

Er=Te2 +A?, (5.14

2IU;J<T,K—17’ = ; A;TR(K!O“ a YJ)AaT”

where corresponding to the plus sign, we have the physical 3 .
solutions 21U 1= 2 ALR(= K00 D) Agr. (520
| Vkr (5.15 We recall that the quantitieR are defined in Eq(4.9).
Vir= U/’ ' Before continuing, it may be helpful to consider the
physical content of Eq95.19 and (5.20. Let us recall the
and to the minus sign the unphysical solutions meaning of the notation. The triple of quantum numbers

J, k, 7 identifies the different angular momentum states of the
T Uyr axial band withK quantum numbek and additional labeling
Ver ) (5.16 7. The “Coriolis” coupling represented by the matrix ele-
ments ofU mixes states of the samk but different axial
As stated above, we have reviewed this familiar materiacomponents, effectively destroying the axial symmetry. For
because of its importance in the definition of the standardurther discussion, we introduce the amplitudes
core-particle model. The point is that the full set of solutions
of the deformed BCS equations, physical and unphysical to- v, - Xdkr
gether, generate a complete set of vectors; the solutions of JeT ™ bier]
the full set of equations of the KKDF model will ultimately
be expanded in this set, and the conventional core-particld we look once more at the limit in whickh=0, we have
model will be understood as an approximate form of thistwo sets of solutions of Eq$5.19 and (5.20, namely, the
expansion. physical and unphysical BCS solutions, respectively,

Y=

(5.22
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\PJKTz CJKT‘T//KT’ (523) (557(_7'_EK(r)vf;T:eigvf;f_AKa'uE;f' (528)
’\IT\]KT:C_JKT%T' (524) (55:—7— EKU)utg:_eigufg_AKﬂvif, (529)

Under these assumptions, E@5.19 and (5.20 reduce to  with the solutions

Egs.(5.7) and(5.9). Furthermore the constan®&andC are Ko K e s
not determined, expressing the collapse of the rotational Eer =BT EN(e )T+ (A7, (5.30
spectrum and the loss of rotational invariance.

By contrast, the exact solution of Eq&.19 and (5.20 where the first term on the right-hand side is clearly the
has the form ' bandhead energy. The remainder of the calculation also par-

allels that made for the case of the ground-state band. The
S only quantities requiring more than a notational change are

W3,= 2 [Coerthrt Corthir], (5.29  the matrix elements of the operatdrdefined in Eq(5.22).
7 The necessary emendations can be read off directly from the

which is to be understood as the expansion of the solution dgfore-particle equationg.13 and(4.14. o
the full Hamiltonian in terms of solutions of the unperturbed ~ Thus we ha\ée specified a procedure for deriving a set of
problem. state vectorsP'k? and associated energi€d” We have
In our actual app”cations’ we have not used the expansioﬁlken account of all terms in the effective Hamiltonian ex-
(525), and therefore we shall not pursue this line in full cept for the i-nterband mUltipOle fields. To flna”y include the
generality. Our only reason for exhibiting this equation islatter, we write
that it provides the basis for defining the conventional core- - A A
particle model. In this model only the first term on the right- V=13(Vy+ Voa), (5.3)
hand side of Eq(5.25 is retained, under the assumption that
the physical solution of the problem with rotational excita-
tion restored can be approximated adequately in terms of th
physical solutions without rotation. It is this assumption that
we shall later check by comparison with the full solution.
As a consequence of the assumption just described, we
obtain the equations of the standard core-particle model, ®Jp=2 Aj,vKU‘PJKV", (5.32
which in the present notation read Ko

where 73 is the usual Pauli matrixd refers to the intraband
parts of the multipole field, andd to the interband parts. It
remains to take into account only the latter piece. This is
done by a final mixing

where the mixing coefficients are determined by the condi-
gJVCJKT: EKTCJKT+ 2 KTk’ TIC.]K’ 7 (526 tions

o
K T

~ J _ ¢oK J J J
WK’T,K’T’:wKTUiT P wK’T" (527) g‘]pAvaKO'_EJ‘?.APrVK‘T_F KE ]:VKU',V'K/U/APJ”K/U/ !
) V, IU_I
This is a standard diagonalization problem with the *“cor- (533
rect” number of solutions. 3 ~ko O Ko
We consider next the general case defined in the theoreti- Fokovkror=Y5, m8VodV g, (5.39

cal formulation of the previous section, with multiple bands In the last tw i h derived th tional
in the core nuclei, but with the maintenance of axial symme-, nthe 'ast two sections, we have derived the conventiona

try. Though not really necessary, it makes sound physic form Qf the core-particle cqupllng theor)_/ from _the KKDF
sense to proceed as follows: We lean on the fact that th ormalism. In fact the equations derived in the first of these

) | " K . _ection_s were exact, i._e., completely_ eq_ui\(alent to those of
interband quadrupole transitions are weak compared to intr KDF, indeed only their form in the “intrinsic frame.” The

band transitions. Thus we shall first ignore the terms assoc “ore-particle couplina model as customarilv bresented in
ated with these transitions as well as the perturbation assogire-part upiing S cus y pres in-

ated with finite excitation energy above the bandhead. Wha\fOIV.es’ as descrlb_ed after E(.29, an additional approxi-
remains is a Hartree-Bogoliubov approximation for exciteghation in the solution of these equations. Indeed, the essence

bands. Next we add the “Coriolis coupling” and thus obtain of the model lies in this approximation rather than in whether
a series of bands in close analogy with our treatment of CO(_:alculatlons are carried out in the intrinsic system as de-

riolis coupling for the ground-state band. Finally, we intro- scribed above or in the laboratory system as is done in the

duce the coupling arising from interband transitions in the'cUII application of the KKDF method. In the next full sec-

cores. tion,. we shall record the form of the core-particle approxi-
In fact, it is hardly necessary to give many details of thematlon in the laboratory frame.

previous steps. All we need is an enhanced notation. Instead _ _ N

of the ground state band, we consider a b#nd, where B. Core-particle coupling model: Transitions

00 is the ground state band, 01 the beta band, 20 the gamma Here we shall only indicate the step involving the exact

band, etc. Now to all the quantities defined above, such agansformation of Eq(3.9) into an expression referring to the

A, Qo, Viac Xucr Puc, €tC., we add a superscrig¢). Thus intrinsic system. Since we shall not utilize this version of the

after transformation by the matri:¥“ the excited state HB  formalism, we leave the further transformation by the intro-

equations become duction of the approximate solutions developed in the pre-
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ceding subsection as an exercise for the reader. This step qu(aIK)=KE VBm?(— 1)l *a(IK — kaj arcal IK)

to introduce values for the reduced matrix elements on the 2

right-hand side of Eq(3.9) and to carry out the summations XJK,Ka(jaKa), (5.36
overl andl’ in order to reach a formula appropriate to the

core-particle coupling model. By comparing E®.4) with

= 2(—1)ia"*xa — KAl
Eq. (4.10, Eq. (3.7) with Eq. (4.6), and Eq.(3.8) with Eq. UJu(alK)—% V87— 1)a"a(JK— kaj axq| 1K)
(4.7), we can read off the formulas _
X bk« (Jaka)- (5.37
Iy’ — (L,0) r__ I’
(MKIITLIK) = V21 + 10, (IKLK = K[I'K), Carrying out the summations oveandl!’, we are led to the

(539 equation

8m? 1
V| T | Iv)= —— ———(JK—k,LK'=K|J'K' =« k. (Jak 1k — . (Jak
< || L|| > Q aKaEKK’ m( a | a)[¢JK a(Ja a)¢.] K a(]a a)

+XJKﬂca(jaKa)XJ’K’fxa(jaKa)]
8772 [ . . !
+ T;K tac[(_l)lc “e(ja— KaJcKc“-Kc_ ko) (JK— kel ke— Ka|‘J K—ka)]

y 1
V(2L+1)(23"+1)

¢J'K*Ka(j aKa) ¢JK*KC(J. cke)H(— 1)j°+K°+J+J,+L(j a— Kal cKc| Lrc—Ka)

1
X(J'K—=kLke— Ky IK—k e (Jak K- (JoKe)- 5.3
( ckKc¢ a| a) (2L+1)(2J+1)XJK a(]a A XJ'K C(Jc c) (5.38
|
VI. CORE-PARTICLE COUPLING MODEL
IN LABORATORY FRAME + 2 AalK,cl’K vy, (cl'K),
cl’K’
We show here that the core-particle coupling model can 6.2
be formulated just as conveniently in the laboratory frame of
reference as in the intrinsic frame. We start with the funda- 1 Lo
mental matrix equations of motion, Eg®.14 and (2.15, F(alK,cl’K")= EZM Facas(L)Ay/k
and reduce them by application of the Wigner-Eckart theo- -
rem. By means of Eqgs(3.7) and (3.9), Egs. (4.10 ar_1d x(db) /(2|_+1)(2|+1)
(4.11), and standard angular momentum algebra, we find the
equations(assuming thakK’—K andL are even, as is the 14 Ja Jc L
case for the specific model considered in the body of this X(=1)a 1
papey
X (IKLK'"=K|I'K"), (6.3
EpvpalK)=(e,+ J(alk 1
300 35 )=(€at @)V g,( ) A(aIK,cI’K’)=§E Gacdb(L)AE(L"E)
Cod
+ I'alK,cl’'K")vs,(cl’K")
c% ( B x(db)\(2L+1)(21 + 1)
+ 3 A(alK,cl’K )uy,(cl’K"), w(—pyatieal e Je L
cl’K’ " d
(6.1) X (IKLK'—K]|I"K"). (6.4)

In Egs.(6.1) and (6.2 we have sek,=e.=¢,.
Eplg(alK)=(—eat o) Uy, (alK) We introduce a condensed notation for E¢8.1) and
(6.2, writing them in the operator form
— >, T'(alK,cl’K")uy,(cl’K") .
cl’K’ gJV\I,JV:IC\I,JV'i‘ &\)\I,JV, (65)
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. e+T A where 75 is the usual Pauli matrix. The perturbation previ-
Tl A —e-T) (6.6 ously neglected is dealt with by the expansion
w O ®Jp: E D;,VK(TWS(;'I (612)
w= ) (67) vKo
0 w

where the mixing coefficients are determined by the condi-

We solve these equations in the approximation that form$ons
part of the definition of the core-particle model, as explained

after Eq.(5.25. Again we consider first the simplest case J _ Ko J J
g ( a 9 P gJPDp,VKO'_EJ;—Dp,VKU'_I— 2 gvKa,V’K’U’Dp,V’K’U”

where only the ground state band of the cores is included. VKo

The extension to excited bands and interband coupling can (6.13
be dealt with in analogy to the treatment described for the

intrinsic system. Let the physical solutions of E6.5) with Gl V,K,U,:\T;JK;fTsfod\pJKv’;” . (6.14

®=0 be designated a¥{?), with corresponding energies
&Y. Here the symbols abbreviates the set¢). We ap-
proximate the solutions of the full equation by the expansion
The main source of difficulty perceived in the solution of
LS o 0) the KKDF equations is that the set of solutions is overcom-
\IfJ,,—Z ANEE (6.9 plete by a factor of 2. This is a consequence of the fact that
Y the basis states form an overcomplésad, consequently,
nonorthogonal s¢t Thus half of the states found by solving
the EOM are not physical and have to be identified and re-
moved. The technique previously used to perform this task
has now been understood to be unnecessarily complicated.
SJVCiy’:gS?;)'CiV’+E ui,v,,ciw (6.9 In the previous approachl,7] the Hamiltonian is first
v decomposed into symmetric and antisymmetric parts with
respect to particle-hole conjugation. If only the antisymmet-
(6.10 ric part is diagonalized, then for every positive energy eigen-
value there is a negative partner. From the BCS theory we
know that the positive eigenvalues are the physical solutions
and the negative eigenvalues the nonphysical ones. Then the

vation of the latter. In fact, Eq6.9) has an advantage in the symmetric part is turne_d on_‘fslowly” and at every step the
case that the excitation spectrum is not conveniently eXphysmal solutions are identified using a projection operator

pressed in algebraic form, but its numerical values ar(pUiIt ffom the wave functions of the previous step. Since the
known from experiment equations of motion have to be solved at each step, the time

We can extend the theory to include multiple bands in thé"":"ecj(Ed to p‘?”‘o”“ t.he calc_ulat_ion is correspon_dingly longer
core nuclei. We use the labéfsr to distinguish the different than flor a ;‘mgli d|ago_nal|zat|or(ln most applications a
bands and now take as a zeroth approximation the couplingp':a. nu:’n er 3 St?ﬁ)(s is . hh b identified
of the odd particle to a single one of these bands. The theory, S':Ep er at?| qu(ljc €r approac ¢ as T)OW bleen icen 'l'?-‘ '
is, to start with, the same as that described above except th {nce the problém decomposes Into subproblems involving

we must distinguish the results for the various cores, and thigtates of a fixed angu_lar momentum, we can invoke th_e no-
is done by a superscrifto- In so far as the multipole fields crossing theorem. This means that the relative order in en-

and pairing fields for the banido are almost equal to those ergy of the physical and of the no_nphysical states d.oes. not
for the ground band, the energiég"(o) are almost indepen- change as we turn on the symmetric part of the Hamiltonian.

o s If the lower half of the statethegative in particularare the
dfe?r: oo We.preferK'Ero It';:t tht;s d;g]genderacy by shlfgnggaft_:h unphysical ones in the BCS Iin?it, then zgtthe physical limit
orthese energies b& _» (€ bandnhead energy, and reaelin- oo the fy|l Hamiltonian is used, the lower half of the
ing @ to be the excitation energy above the bandhead in eac ates are again the unphysical ones. Consequently, we need
case. The step that follows is to introduce the mixing due tq, f

o . ) .—only to solve the equations of motion at the two limits, the
the core excitations and again only the change in NOtAtOR ~5 |imit and the full Hamiltonian limit. These remarks

aIreadyI. speEcifieGdgis ngcgslsary to record the equations thﬁ[)out the technique of solution apply not only to the strong
generalize Eqs(6.9) and (6.10. coupling examples studied in the next section, but also to

The final step is to include the further mixing due 10 in- | o straightforward applications of the KKDF method.
terband multipole field§assuming that such mixing for the

pairing fields can be neglectedor this purpose, we decom-
posel into an intraband piecesubscriptd) and an interband
part (subscriptod), the latter having so far been neglected, e illustrate the remarks of the previous sections with
according to the equation applications to a pair of well-deformed nuclei. The first ap-
A o plication is to the nucleus®'Gd, which we have studied
I'=74(Tg+Toq), (6.1  previously[1,2]. *'Gd is a well deformed nucleus and thus

VIl. IMPROVED ALGORITHM

The introduction of this expansion into E(6.5) leads im-
mediately to the standard eigenvalue problem

I3 _ g0 ~qp(0)
UV’V"—\PJV’(’O\P

Jy" e

This equation is to be compared with E§.26), to which it
is equivalent as long a® has the form assumed in the deri-

VIIl. APPLICATIONS
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FIG. 2. B(E2) transitions for'®’Gd. Comparison of the KKDF
FIG. 1. Negative parity energy levels fdf’Gd. The circles model and the core-particle coupling model. The points with error
correspond to the experimental values, the solid line to the KKDFPars are the experimental data, the dashed lines result from the
model, and the dotted line to the core-particle coupling model. ~ core-particle model, and the solid lines from the KKDF model.

suitable for application of the strong coupling core-particleits relationship to the traditional strong coupling core-particle
model._ To re_call a few details, we used_a large single-particlgnodel. The KKDF theory is formulated in the laboratory
space(including all states from five major shellsThe ener-  system of coordinates, and as such, can be applied both to
gies and matrix elements of these smgle-partlcle levels werg,o spherical vibrationalweak coupling and deformed rota-
calculated ”T'Tjg thehWoodséSS%xdon detl%QG“gl' Tﬂ_e r?dd N€Uional (strong coupliny regimes, as well as to transitional
tron Is c?udpe ! tolt g (i?]re. ?jnb d bV\tI IIC %re cases. A significant portion of this paper has been devoted to
treerglreesxi?ts d Sgncci): és}(/vaselfro%rrcl)clijrr]lec;snsasr;/ tg f?t ?';I)I tr{esg\{'[ansforming the KKDF equations from the laboratory to the
served bands of5’Gd. The core excitation energies, , intrinsic system of _coordmates, the Igtter defined only f_o_r the
-well-deformed regime. We have pointed out the additional

were given by phenomenological formulas tuned to experi- L .
ment. In the same way as in the previous papers, the streng proximation necessary to redL_JC(_a the KKDF equations to
ose of the usual core-particle limit. We have then applied

of the quadrupole field is treated as a free parameter and tH P X !
values of the single-particle energies found from WoodsPoth _the full and the limiting r_nodel to a few |IIustrat|\_/e
Saxon calculations are allowed to vary By5%. First we nuclei and found only small differences in the numerical
solved the EOM problem of the full KKDF model and fixed results. This justification is, for our purposes, less significant
the strength of the quadrupole force and the single-particléhan it would have been in the past, since we have also
energies in order to achieve the best fit. Then we solved th#rmulated an improved algorithm that renders the KKDF
EOM for the core-particle model as described in Sec. Vl,equations essentially as simple to deal with as the defined
using the same parameters. The results are shown in Fig. approximation.

We can see from the figure that the two models give very

similar results. In Fig. 2 we show the result of tB§E2) 20 . ‘ \ K . . .
calculations. Again it is clear that the two models give very Theorv:
L —— Theory; KKDF model
similar results. 18 ¢ o Experiment 1
The second application was to the proton spectrum of 16 | o Theory; Core-Particle _

157D, with '8Gd and 5Dy cores. We used the same

method as described above and the results are shown in Fig. 5 14 | ]

3. The conclusion is the same as in the previous application, § 1.2 | 1

namely that the two methods give very similar results. Ob- =

servedB(E2) values are too few to allow a meaningful com- & 1or

parison. ® 08} :
To the extent that the examples chosen are typical, it is g 06 | &= ]

apparent that for well-deformed nuclei the strong coupling
core-particle model gives almost as good results as the full 04 r
KKDF model. We emphasize, however, the greater range of 02 |
validity of the KKDF model, in particular to cases such as . L
transitional nucle[4,22], where none of the usual traditional 0.0 0 2 4 6 8 10 12 14 16 18 20
versions of the core-particle model is applicable. 2J (h)

IX. DISCUSSION AND CONCLUDING REMARKS N _ _
FIG. 3. Positive parity energy levels fd?'Tb. The circles cor-

In this paper, we have studied a semimicroscopic corerespond to the experimental values, the solid line to the KKDF
particle coupling theory, the KKDF theory, and particularly model, and the dotted line to the core-particle coupling model.
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The reason for the good agreement between the approxisuppressing mass numpeWe can replace the combination
mate and the complete theory obviously expresses the fa¢i+j)? by
that there is little mixing between physical and unphysical
states as we “turn on” the coupling that is initially sup-
pressed in our approach. This means that they stay well sepa-  J(J+1)+j,(ja+ 1)+ 2(K— k) katj_Js+j+I_.
rated in energy. We can expect this situation to change for
applications where there are multiple avoided crossings.

APPENDIX A: SOME DETAILS OF THE DERIVATION

OF THE CORE-PARTICLE COUPLING MODEL Applying the standard algebra of the raising and lowering

. : S operators and shifting the variableg as required for these
We provide some details of the d_envaﬂons of E@fb;l.&’) terms, we thus obtain additional contributions of single-
and (4.14). The first terms that require special attention are

those involving the excitation energy in the even nuclei. Wepartlcle type as well as the Coriolis coupling.

immediately do the sum ové, 2. Now consider Eq(4.13 We consider next the contributions of the multipole and
Where we encounter the term' ' 7" pairing fields, a calculation that requires most of the modest

labor involved in the derivation of Eq§4.13 and(4.14). As

(0 —Ex)(Iu'jaral 1K) an example of what is involved, we compute the contribution
of the even multipoles to the right-hand side of £4.14),
which we label T(I'":JKj,«,). Utilizing Egs. (4.7) and

IK), (A1)  (4.10, we must evaluate the expression

(A2)

H ’ 1 i\2 2
=|Ja—Kalu E[(J"_J) —K?]

T(I":JKjaxa) = ;2 (=Dt Mt e ay(2],+ 1)(21+ 1)/(2]+ D(21 + DF acarlL) Ui (db) (Ja— Maj M| LM )
X(IMLM |1I'M")(1"'M"Img— M| jeme) (IMImg— M| j ama) (JK — kaj axcal IK)(IKLK ([17K")
X(JK,_chcKcll,K,)QSJ,K’fKC(jcKc)- (A3)
In this equation the sum is over all angular momentum variables not indicated explicitly on the left-hand side except for

m,, which disappears from the final result.
To evaluate this expression, we first study the partial sum

S:; (_ 1)jc+ma\/(2ja+ 1)/(2jc+1)(ja_ maj cmc|me_ma)(|M I-mc_ma|I '™ ,)(I "M ,Jmc_ M,“cmc)

Ja e
K

=(—1)latV" 2L+ 1) (21" + 1)

L
J](lM‘]ma_Mljama)’ (A4)

which can be derived from Edmon@23]. The sum oveM then removes two more CG coefficients from E&3). The next
step is to apply Edmond$.2.6 to evaluate the sum ovéf, leading to a final trivial sum ovdr. We thus find

=2 (=)t FIJ2L+1)(21 + 1) (IK— kaj axcal 1K)

n'

_ ja Jc L
X (IKLK'=K|I'K )K= ke 'K |

:(_1)K°_Ka+jC+Kc(jc_chaKa|LK,_K)- (A5)

Equations(A4) and(A5) are the essential results for the evaluation of @@) leading to the appropriate term in E@.14).
The pairing term in the same equation and the multipole and pairing terms i@ BE®&. can be showrafter straightforward
transformations for the lattgto involve the same basic sums, up to phase factors.

APPENDIX B: CONTRIBUTION OF ODD MULTIPOLE OPERATORS

In the main text, we have included in the general core-particle equaiohd and(4.14 only contributions from even
electric multipole-multipole interactions, assuming that the included bands are all of the same parity. If we wish to include odd
electric multipole-multipole forces to lowest order, we must replace the matrix elemed.EQ. by the value of the matrix
element
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(l ’|v|'K’|B[ML(db)||MK)=q§§,ﬁ>(db); (1'M ’K’|{DkALK,_KH AHIMK). (B1)

Herel, , A= =*1,3 are the spherical tensor components of the angular momentum in the “intrinsic” system, expressed in terms
of the Cartesian componentshere they differ by the equations

! 1 ! R4 1 !
|+1=—E(|1+||2)=—E|+,

|’l=%(|1—i|§)=%l’. (B2)
With the help of the well-known matrix elements of the intrinsic components(EL. takes the value
<|'|v|’K'|B[ML(db)||MK>:q<KL;,?(db)(|MLML||’M') —%[(IK—lLK’—KJrllI’K’)\/(I+K)(I—K+1)
VO =K (I"+K' + 1) (IKLK' =K+ 1[l'K' +1)]+ \/—j'i[(IKJrlLK’—K—llI’K’)
XANIT=K)YT+K+ 1)+ (1" +K)(1' =K'+ 1)(IKLK' =K —1|I'K' = 1)]
+(K+K)(IKLK =K|I'K") f . (B3)

With these values, we are now in a position to evaluate the contributions of an odd electric multipole force to our
core-particle coupling equations. We first consider the contributions t¢Eky). As an example, consider the first term of Eq.
(B3). The calculation parallels that described in the previous appendix. TheAdinrepeats itself in every case. The sum
(A5) is replaced, in general, by different expressions. In the case of the first term B&gthe sumS’ is replaced by the
sum

Si=2, (—1)at"IJ(2L+1)(21 + 1) (IK— Kaj arcal IK)(IK = ILK' = K+ 1[1'K")(IK' = k¢j il l 'K")

"’

Ja Je L
x[l, | J}J(|+r<)(|—|<+1). (B4)

For S;, the sum ovet’ can be carried out as before, but after this has been done, instead of a final normalization condition
for CG coefficients, we encounter the sum

§I‘, (IK—= kaj akal IK)(IK = ka— Lj axal IK = D)V +K)(I—K+ 1) = JI—K+ koa+ 1) I+ K— &), (B5)

which involves the same “trick” as used in the evaluation of the Coriolis coupling. Of the terms arising froB&g¢the
first and third require the procedure just described, the second and fourth a similar procedure in which we interchange the order
of the sums orl andl’, and the fifth the same calculation as in the previous appendix. We also find that the first two terms
are equal, as are the third and fourth.

Altogether, we find for the contribution to E¢4.14), the expression

) 1 . . .
D (—D)et R g L)y (db) EJ(J—K+Ka+1><a+K—Kamc—chaf«alLK—K'—1>¢J,K_1_Ka<1ckc>
bedkK'L
1 _ _ ) .
_E\/(J‘{'K_Ka+1)(‘]_K+Ka)(Jc_KcJaKa“—K_K +1)¢J,K+1ﬂ<a(1c’<c)
1 L , _
_E(K'I'K )(Jc_Kc]aKa“-K_K )¢J,K*Ka(JCKC) . (B6)

For conciseness of expression, we have not done the sums«gvein this form it can be shown that the corresponding
contribution to Eq.(4.13 differs only by overall sign and by the replacement

(_1)]C+K04}(_1)1C+K3+L. (B?)
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