
VOLUME 78, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 9 JUNE 1997

,

Application of the Kerman-Klein Method to the Solution of a Spherical Shell Model
for a Deformed Rare-Earth Nucleus
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Put forward more than three decades ago as an alternative to conventional shell-model calculations
the Kerman-Klein method has proved feasible previously only when applied to unrealistically small
configuration spaces or when phenomenological simplifications have been superposed. Starting from
a spherical shell-model Hamiltonian, we describe a fully microscopic calculation, free of the above
limitations, of the properties of the ground-state band of a typical deformed rare-earth nucleus,158Gd.
[S0031-9007(97)03251-1]

PACS numbers: 21.60.Ev, 21.10.Re, 21.60.Cs, 27.70.+q
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The phenomenological shell model remains the bedro
of nuclear structure physics [1,2]. In its standard form
we accept the empirically established notions of close
shell or magic nuclei and of single particle or single ho
excitations with respect to these special cores (belo
for brevity, we speak only of particles). To study the
properties of nuclei which are removed from these stab
cores by two or more nucleons, one adds residual tw
particle forces. To understand low energy behavior of lo
and medium mass nuclei, one restricts the allowed sing
particle excitations and residual interactions to the valen
shell. The solution of the resulting matrix diagonalizatio
problem, which is straightforward in principle, has bee
achieved only up to mass numberN ­ 48 [3] because of
the rapid growth of the dimensionality of the Hamiltonian
matrices. Beyond that there are several possibilitie
One can study somewhat heavier nuclei with Mon
Carlo calculations [4] that utilize the entire valence shel
model space. One can also reduce the dimensiona
of the Hamiltonian matrices to tractable sizes in sever
ways, either by utilizing only the lowest irreducible
representations of relevant approximate symmetries [5
or by applying the variational method to a trial spac
suggested by the deformed shell model [7,8]. Except f
the first example cited [5], these latter methods allow on
to break the bounds of the valence shell restriction.

More than three decades ago, Kerman and Kle
proposed an alternative to the standard linear approa
to the shell model. Originally designed as a method f
restoring the broken symmetry of mean field solutions [9
it soon became clear that it was a general formulation
quantum mechanics [10] that could also be used to stu
the shell-model problem. It was argued that, especia
in cases of well-developed collective motion, one cou
replace the linear methods that use a large basis of sta
by a nonlinear method involving a tractable set of state
Early attempts to apply this method to semimagic nucl
[11,12] were at best only modestly successful and we
not followed up.

Our aim in this Letter is to reactivate the original pro
gram by reporting a successful application to a deform
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nucleus in the rare earth region,158Gd. For such a nu-
cleus not only is it technically impossible to apply th
valence shell model based on spherical single-parti
excitations, but the restriction to the valence shell itse
fails badly [1,6–8]. Starting from a spherical shell mod
expanded to include all orbits bound in a realistic (Woo
Saxon) single-particle potential and a standard Hamilto
ian widely applied for heavy nuclei, we describe a full
microscopic derivation of some of the properties of th
ground state rotational band including energies, cha
and mass quadrupole matrix elements, and pairing m
trix elements. This work utilizes results obtained from
semimicroscopic description, referred to as CPC, of t
low energy properties ofodd deformed nuclei. The role
played by odd nuclei in determining the properties of
neighboring even core will be clarified below. The re
sults reported for158Gd are almost certainly not special t
this nucleus, nor is the method necessarily confined to
ground-state band.

Model and method.—As a Hamiltonian we choose the
form
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In the first terma and ay are the spherical shell mode
annihilation and creation operators,a labels the principal
and angular momentum quantum numbers of states i
spherical Wood-Saxon potential with spin-orbit couplin
the subscripta the same set minus the magnetic quantu
number,i distinguishes neutron from proton, andhai are
the eigenvalues in the respective wells. The second te
is a sum of products of mass multipole moments wi
strengthskij;L; in the following we shall retain only the
most important terms, those withL ­ 2, though in a more
refined treatment, we should includeL ­ 4 [13]. The
last term is a sum of pairing interactions with strengt
© 1997 The American Physical Society 4347
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gi;L, of which we include only the dominant monopole
though here theL ­ 2 term can also be considered to b
well established [7]. The adequacy of the Hamiltonia
(1) as a representation for those properties of a mo
realistic interaction that lead to collective behavior ha
been carefully documented in a recent investigation [14

To explore the consequences of (1), we calculate t
commutator ofa and ofay with the Hamiltonian and take
the matrix elements between statesjJmnl of a chosen
odd nucleus of mass numberN , with angular momentum
quantum numbersJ, m and all other labels indicated
by n and the corresponding states of the relevant ev
neighbors,jIMnsN 6 1dl. Suppressing charge quantum
numbers, we encounter in the single-particle terms t
coefficients of fractional parentage (CFP)

VJmnsa; IMnl ­ kJmnjaa jIMnsN 1 1dl , (2)

UJmnsa; IMnd ­ kJmnjay
a jIMnsN 2 1dl . (3)

For the evaluation of a typical interaction term, conside
in an abbreviated notation,

kJjaQ2jIsN 1 1dl ­
X
I 0

VJ sI 0d kI 0sN 1 1jQ2jIsN 1 1dl ,

(4)

which involves on the completeness relation. By th
means the nonlinear terms are expressed as sums
products of terms in which one factor, the CFP, depen
on the odd nucleus, whereas the other depends on
properties of the even cores. With a correspondin
treatment of the pairing interaction, we obtain equation
with characteristics and properties that we now describe

In addition to the CFP, which are coupled by the pairin
interactions, there occur in these equations matrix eleme
of the mass quadrupole moments for two different, neig
boring, even nuclei and matrix elements of the pairing in
teraction between the two neighbors. Together we refer
these as the core matrix elements. The structure of th
equations, which is given in all detail in [15] and will not
be reproduced here, bears a striking resemblance to th
of the Hartree-Bogoliubov mean-field theory, but in con
trast to the latter our equations are formally exact, conse
ing both angular momentum and particle number. Sin
the core matrix elements (see below) can be expressed
bilinear functions of the CFP, for a fully microscopic (self
consistent) solution, we must solve a nonlinear problem

If we assume that the core matrix elements are know
however, the resulting equations are linear and defi
an Hermitian eigenvalue problem for the energies of th
odd nucleus relative to the average ground ground st
energy of the neighboring cores. In this interpretation, th
chemical potential of the odd nucleus and the excitatio
spectra of the even neighbors are added to the l
of quantities assumed to be known. The possibilitie
inherent in such a generalized semimicroscopic theo
first noted in [16], was developed and applied by Döna
and Frauendorf [17,18]. Recently further developme
4348
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and applications have been carried out by the authors in
series of papers of which the latest are [13,15]. In the
applications the source of the core information is eithe
experiment (in the present example) or phenomenology

We recall the approximations that are necessary
order to make even the linear scheme workable. Th
most important can be understood by examination of (4
If the starting state of the core,jInl, belongs to a given
low-lying rotational band, then we know that intraband
transitions are by far the dominant ones, though a fe
neighboring bands provide some residual strength, a
these are included in the calculations in order to satis
the sum rule. Once the choice of core bands has be
made, there remains a vital question associated with t
space of the single odd nucleon. For all the exampl
done, we find that results for the observables of intere
have essentially converged when three major shells a
included. For the purposes of the new results report
in this Letter, we have nevertheless done calculations th
include all bound orbitals. The reason for this will be
explained below.

Self-consistency: particle number.—We now take the
additional step that transforms the semi-microscopic th
ory into a fully microscopic solution of the shell-mode
Hamiltonian. This will be the case provided the expres
sions for the core matrix elements, evaluated below
terms of the CFP (sum rules), reproduce the experimen
values. By showing that this happens to a reasonable
curacy for all the observables associated with the groun
state band, we open the door to a viable alternative
other methods of studying low energy nuclear structure.

From the list of core properties, we first conside
the conservation of particles. The operator for the tot
particle number,

N̂ ­
X
a,i

a
y
aiaai , (5)

can be separated into a sum of four terms

N̂ ­ N̂p,1 1 N̂p,2 1 N̂n,1 1 N̂n,2 , (6)

where the subscripts distinguish charge of the nucleo
and parity of the single-particle orbitals. Because w
include in the Hamiltonian (1) only multipoles of even
parity, each of these quantities is conserved. The ev
nucleus chosen for study plays the role of the heavier
the two cores in a calculation [19] carried out for157Gd,
an axially deformed nucleus with statesjIMKsN 1 1dl,
where K is the angular momentum of the bandhead
Further discussion will be confined to the ground-sta
band with K ­ 0, and this quantum number will be
suppressed. We thus need the four sets of eigenvalues

Ni,6 ­
X
a6

kIMsN 1 1djay
ai6aai6jIMsN 1 1dl

­
X

a6,Jmn

V i?
Jmnsa; IMdV i

Jmnsa; IMd , (7)
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each of which should be independent ofI , as it is auto-
matically independent ofM. To evaluate these sum rules,
one needs the CFP for the neutron levels of157Gd of both
parities, which had been obtained earlier [19] and th
proton levels of157Eu, which were obtained for present
use. The results are shown below in Table I. It has bee
verified that the sums in (7) depend onI only in the third
decimal place.

We consider the results given in the table to be strong
encouraging. In this regard, two points must be note
The first concerns the problem of the normalization o
the CFP. Though we failed to emphasize the point i
our previous work, transition matrix elements calculate
in CPC are independent of an overall rescaling of th
normalization, provided it is the same for all state
jJmnl. In our work we assumed unit normalization, as
in the strong coupling core-particle model, but this choic
cannot be exact, as we know from our early work o
spherical nuclei [11]. To make the appropriate correction
requires incorporating into our algorithm a set of sum
rules derived from the Fermion anticommutation relations
This has not yet been done. Second, to achieve a res
so close to the exact one, we must include (numerical
significant) contributions from a large number of solution
of the eigenvalue problem, including high-lying ones tha
play no role in the fit to the known observables of the od
nuclei. These points are relevant as well for the remaind
of our discussion.

Self-consistency: quadrupole matrix elements.—In the
reference Hamiltonian (1) there occur three quadrupo
coupling constants. In the case under discussion, t
experimental electric quadrupole matrix elements are
good agreement with rigid rotor values. For the CPC ca
culations we then assume proportionality between neutr
and proton mass quadrupole elements, as expressed by
relation

kIMKjQnjI 0M 0K 0l ­ hkIMKjQp jI 0M 0K 0l , (8)

where h is a constant evaluated below. It follows tha
for the core-particle theory, we can work with the proton
quadrupole moment alone provided we introduce differe
effective coupling strengths for the neutron and proto
spectra, according to the equations

keff
p ; skpp 1 hkpnd , (9)

TABLE I. Particle number, actual and calculated, for158
64 Gd.

kNl Actual Calculated

Neutrons1 44 45.06
Neutrons2 52 50.64

Neutrons total 94 95.70
Protons1 38 36.26
Protons2 26 28.90

Protons total 64 65.16
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keff
n ; shknn 1 kpnd . (10)

Thus, in fitting CPC to the data in the odd nuclei, we ar
allowed to choose and indeed find slightly different value
for the effective coupling constants. For these purpos
and for the further development, the actual value ofh is
reflected only in the value that has to be assigned to t
effective coupling strengths.

Since we are dealing with operators of the form

Q̂i ­
X
ag

qai,gia
y
aiagi , (11)

their core matrix elements are again quadratic sums in t
same set of CFP as enter the calculation of the numb
The first test of self-consistency is that these sums ha
a “shape” consistent with the rigid rotor assumption, a
expressed in (8), a test that is passed with flying color
This is seen partly from Fig. 1, which emphasizes the fa
that not only is the angular momentum dependence
the electric quadrupole matrix elements given correctl
but also their magnitudes and signs. From the fact th
the neutron quadrupole matrix elements follow paralle
curves, we deduce the valueh ­ 1.1.

Self-consistency: pairing.—For the pairing matrix ele-
ments, which are linear combinations of matrix elemen
of type

kIMnsn 2 1djaaaajI 0M 0n0sN 1 1dl

­
X
Jmn

Up
Jmnsa; IMndVJmnsa; I 0M 0n0d , (12)

there are again two tests. First there is the requireme
that the matrix elements be independent of angul
momentum, as was assumed in the input. Second
must reproduce the value of this matrix element. Fo

FIG. 1. Values of the matrix elements of̂Qp for 158Gd.
The negative values represent the diagonal elementskIK ­
0kQpkIK ­ 0l, whereas the positive values show the off
diagonal elementskIK ­ 0kQpkI 1 2K ­ 0l.
4349
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TABLE II. Contributions to the moment of inertia arising from the different terms in
the Hamiltonian. Here sp refers to the single particle contribution,Q to the quadrupole
contribution, andD to the pairing term.

E2 2 E0 Isp IQ ID Itotal Iexp

Neutron1 0.00291 · · · 0.00121
Neutron2 0.00532 · · · 20.00236 · · ·

Neutron total 0.00823 · · · 20.00157 · · ·
Proton1 0.001943 0.00141 20.00232 · · ·
Proton2 0.001272 0.000523 0.00194 · · ·

Proton total 0.003215 0.001933 20.00126 · · ·
Total 0.01145 20.000643 0.001144 0.011951 0.0124
m

u

h

h

-

z

d

e
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n

the neutron pairing, the diagonal matrix elements va
monotonically between 1.859 forI ­ 0 and 1.814 for
I ­ 8, compared with the experimental value of 1.6
for the gap parameter. The corresponding values for t
proton pairing are 1.672 forI ­ 0 and 1.612 forI ­ 8,
compared with the experimental value of 1.321.

Self-consistency: moment of inertia.—There remains
the test of the self consistency of the excitation spectru
This requires first that the diagonal elements of (1) satis
the rigid rotor equation

EI ­ kIMjHjIMl ­
IsI 1 1d

2I
, (13)

and second that the experimental value ofI be repro-
duced. The first of these requirements is well-satisfie
and therefore we can confine our attention to the mome
of inertia. In Table II, we display not only the final calcu-
lated value of the moment of inertia, but also the contrib
tions of individual terms ofH, broken down according to
nucleonic charge. The absence of contributions from t
neutron quadrupole moment simply reflects the fact th
we organized the calculation so that the quadrupole te
is expressed completely in terms of the proton quadrupo
operator and of the effective coupling strengths. Notic
that the major contribution comes overwhelmingly from
the single-particle term and that the contribution of th
quadrupole term is insignificant. (This term then con
tributes only deformation energy.) The self-consistenc
is as close as one has a right to expect, in view of t
well-known effect of the quadrupole pairing interaction
[7], which is not in our calculation.

The results of this Letter imply that for a limited num-
ber of states we have demonstrated a new route for pa
ing directly from a spherical shell model to the propertie
of a deformed rare-earth nucleus. The immediate ne
steps are twofold: to add to the working Hamiltonian th
additional simple interactions mentioned in the text and
ry
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add to the algorithm a proper formulation for normaliza
tion of the coefficients of fractional parentage.
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