VOLUME 78, NUMBER 23 PHYSICAL REVIEW LETTERS 9 UNE 1997

Application of the Kerman-Klein Method to the Solution of a Spherical Shell Model
for a Deformed Rare-Earth Nucleus
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Put forward more than three decades ago as an alternative to conventional shell-model calculations,
the Kerman-Klein method has proved feasible previously only when applied to unrealistically small
configuration spaces or when phenomenological simplifications have been superposed. Starting from
a spherical shell-model Hamiltonian, we describe a fully microscopic calculation, free of the above
limitations, of the properties of the ground-state band of a typical deformed rare-earth ndeéiédis,
[S0031-9007(97)03251-1]

PACS numbers: 21.60.Ev, 21.10.Re, 21.60.Cs, 27.70.+q

The phenomenological shell model remains the bedrockucleus in the rare earth regiof?®Gd. For such a nu-
of nuclear structure physics [1,2]. In its standard form,cleus not only is it technically impossible to apply the
we accept the empirically established notions of closedalence shell model based on spherical single-particle
shell or magic nuclei and of single particle or single holeexcitations, but the restriction to the valence shell itself
excitations with respect to these special cores (belowfails badly [1,6—8]. Starting from a spherical shell model
for brevity, we speak only of particles). To study the expanded to include all orbits bound in a realistic (Wood-
properties of nuclei which are removed from these stabl&axon) single-particle potential and a standard Hamilton-
cores by two or more nucleons, one adds residual twoian widely applied for heavy nuclei, we describe a fully
particle forces. To understand low energy behavior of lowmicroscopic derivation of some of the properties of the
and medium mass nuclei, one restricts the allowed singleground state rotational band including energies, charge
particle excitations and residual interactions to the valencand mass quadrupole matrix elements, and pairing ma-
shell. The solution of the resulting matrix diagonalizationtrix elements. This work utilizes results obtained from a
problem, which is straightforward in principle, has beensemimicroscopic description, referred to as CPC, of the
achieved only up to mass numher= 48 [3] because of low energy properties oddd deformed nuclei. The role
the rapid growth of the dimensionality of the Hamiltonian played by odd nuclei in determining the properties of a
matrices. Beyond that there are several possibilitiesneighboring even core will be clarified below. The re-
One can study somewhat heavier nuclei with Montesults reported fot>8Gd are almost certainly not special to
Carlo calculations [4] that utilize the entire valence shell-this nucleus, nor is the method necessarily confined to the
model space. One can also reduce the dimensionalityround-state band.
of the Hamiltonian matrices to tractable sizes in several Model and method—As a Hamiltonian we choose the
ways, either by utilizing only the lowest irreducible form
representations of relevant approximate symmetries [5,6]

"
or by applying the variational method to a trial space H = Zhai“aiaai
suggested by the deformed shell model [7,8]. Except for at :
the first example cited [5], these latter methods allow one - - K. Q"’f Q«"
to break the bounds of the valence shell restriction. 2 % L%L LM LM

More than three decades ago, Kerman and Klein 1 ; ‘

. . . Z Z . AIT Az (1)

proposed an alternative to the standard linear approach ) sLALM A LM, -

to the shell model. Originally designed as a method for i LM,

restoring the broken symmetry of mean field solutions [9]In the first terma andat are the spherical shell model
it soon became clear that it was a general formulation ofnnihilation and creation operatogs,labels the principal
guantum mechanics [10] that could also be used to studgnd angular momentum quantum numbers of states in a
the shell-model problem. It was argued that, especiallgpherical Wood-Saxon potential with spin-orbit coupling,
in cases of well-developed collective motion, one couldthe subscriptz the same set minus the magnetic quantum
replace the linear methods that use a large basis of statesmber,i distinguishes neutron from proton, ahg are
by a nonlinear method involving a tractable set of statesthe eigenvalues in the respective wells. The second term
Early attempts to apply this method to semimagic nucleis a sum of products of mass multipole moments with
[11,12] were at best only modestly successful and werstrengthsk;;.;; in the following we shall retain only the
not followed up. most important terms, those with= 2, though in a more
Our aim in this Letter is to reactivate the original pro- refined treatment, we should include= 4 [13]. The
gram by reporting a successful application to a deformedthst term is a sum of pairing interactions with strengths
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gi.L, of which we include only the dominant monopole, and applications have been carried out by the authors in a
though here thé. = 2 term can also be considered to be series of papers of which the latest are [13,15]. In these
well established [7]. The adequacy of the Hamiltonianapplications the source of the core information is either
(1) as a representation for those properties of a morexperiment (in the present example) or phenomenology.
realistic interaction that lead to collective behavior has We recall the approximations that are necessary in
been carefully documented in a recent investigation [14].order to make even the linear scheme workable. The
To explore the consequences of (1), we calculate thenost important can be understood by examination of (4).
commutator ofz and ofat with the Hamiltonian and take If the starting state of the coréln), belongs to a given
the matrix elements between statggwv) of a chosen low-lying rotational band, then we know that intraband
odd nucleus of mass numbar, with angular momentum transitions are by far the dominant ones, though a few
guantum numbers/, x and all other labels indicated neighboring bands provide some residual strength, and
by » and the corresponding states of the relevant evethese are included in the calculations in order to satisfy
neighbors,|IMn(N = 1)). Suppressing charge quantumthe sum rule. Once the choice of core bands has been
numbers, we encounter in the single-particle terms thenade, there remains a vital question associated with the
coefficients of fractional parentage (CFP) space of the single odd nucleon. For all the examples
V)l IMny = (Juvlag | IMn(N + 1)), ) done, we fin_d that results for the observable_s of interest
have essentially converged when three major shells are
Uspo(a; IMn) = (JuvlallIMn(N = 1)).  (3) included. For the purposes of the new results reported
For the evaluation of a typical interaction term, consider/n this Letter, we have nevertheless done calculations that

in an abbreviated notation, include all bound orbitals. The reason for this will be
explained below.
(J1aQalI(N + 1)) = D V,(I){I'(N + 11QalI(N + 1)), Self-consistency: particle numberWe now take the
I/

additional step that transforms the semi-microscopic the-
(4) ory into a fully microscopic solution of the shell-model
which involves on the completeness relation. By thisHamiltonian. This will be the case provided the expres-
means the nonlinear terms are expressed as sums sibns for the core matrix elements, evaluated below in
products of terms in which one factor, the CFP, dependterms of the CFP (sum rules), reproduce the experimental
on the odd nucleus, whereas the other depends on thalues. By showing that this happens to a reasonable ac-
properties of the even cores. With a correspondinguracy for all the observables associated with the ground-
treatment of the pairing interaction, we obtain equationstate band, we open the door to a viable alternative to
with characteristics and properties that we now describe.other methods of studying low energy nuclear structure.

In addition to the CFP, which are coupled by the pairing From the list of core properties, we first consider
interactions, there occur in these equations matrix elementbe conservation of particles. The operator for the total
of the mass quadrupole moments for two different, neighparticle number,
boring, even nuclei and matrix elements of the pairing in- . +
teraction between the two neighbors. Together we refer to N = Zaaidai, (5)
these as the core matrix elements. The structure of these @
equations, which is given in all detail in [15] and will not can be separated into a sum of four terms
be reproduced here, bears a striking resemblance to those o o o o
of the Hartree-Bogoliubov mean-field theory, but in con- N'=Np+ + Np— t Nyw & N (6)
trast to the latter our equations are formally exact, conserwhere the subscripts distinguish charge of the nucleons
ing both angular momentum and particle number. Sinc@nd parity of the single-particle orbitals. Because we
the core matrix elements (see below) can be expressed @¢lude in the Hamiltonian (1) only multipoles of even
bilinear functions of the CFP, for a fully microscopic (self- parity, each of these quantities is conserved. The even
consistent) solution, we must solve a nonlinear problem. nucleus chosen for study plays the role of the heavier of

If we assume that the core matrix elements are knowrfhe two cores in a calculation [19] carried out f6YGd,
however, the resulting equations are linear and defin@n axially deformed nucleus with statd8/K(N + 1)),
an Hermitian eigenvalue problem for the energies of thavhere K is the angular momentum of the bandhead.
odd nucleus relative to the average ground ground stateurther discussion will be confined to the ground-state
energy of the neighboring cores. In this interpretation, théand with K = 0, and this quantum number will be
chemical potential of the odd nucleus and the excitatiosuppressed. We thus need the four sets of eigenvalues
spectra of the even neighbors are added to the list "
of quantities assumed to be known. The possibilites — Nix = DUMN + Dlakisaqi=[IM(N + 1))
inherent in such a generalized semimicroscopic theory, @
first noted in [16], was developed and applied by Dénau — Z V};V(Q;IM)V}‘W(CY;IM), @)
and Frauendorf [17,18]. Recently further development at v
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each of which should be independentiofas it is auto- k= (MK + Kpn) - (10)
matically independent a¥/. To evaluate these sum rules

one needs the CEP for the neutron leveld®&d of both " Thus, in fitting CPC to the data in the odd nuclei, we are

arities, which had been obtained earlier [19] and th allowed to choose and indeed find slightly different values
P " %or the effective coupling constants. For these purposes

proton levels of**"Eu, which were obtained for present .
use. The results are shown below in Table I. It has beeﬁnd for the further development, the actual valuengb

verified that the sums in (7) depend pronly in the third reflected only in the value that has to be assigned to the
decimal place effective coupling strengths.

We consider the results given in the table to be strongly Since we are dealing with operators of the form
encouraging. In this regard, two points must be noted. O — Z R (11)
The first concerns the problem of the normalization of 2 GaiyiQailyi
the CFP. Though we failed to emphasize the point in
our previous work, transition matrix elements calculatedheir core matrix elements are again quadratic sums in the
in CPC are independent of an overall rescaling of thesame set of CFP as enter the calculation of the number.
normalization, provided it is the same for all statesThe first test of self-consistency is that these sums have
|Jv). In our work we assumed unit normalization, asa@ “shape” consistent with the rigid rotor assumption, as
in the strong coupling core-particle model, but this choiceexpressed in (8), a test that is passed with flying colors.
cannot be exact, as we know from our early work onThis is seen partly from Fig. 1, which emphasizes the fact
spherical nuclei [11]. To make the appropriate correctionghat not only is the angular momentum dependence of
requires incorporating into our algorithm a set of sumthe electric quadrupole matrix elements given correctly,
rules derived from the Fermion anticommutation relationsbut also their magnitudes and signs. From the fact that
This has not yet been done. Second, to achieve a resufteé neutron quadrupole matrix elements follow parallel
so close to the exact one, we must include (numericallgurves, we deduce the valug= 1.1.
significant) contributions from a large number of solutions ~ Self-consistency: pairing=-For the pairing matrix ele-
of the eigenvalue problem, including high-lying ones thatments, which are linear combinations of matrix elements
play no role in the fit to the known observables of the oddof type
nuclei. _These.points are relevant as well for the remainder (IMn(n — Dlagay|I'M'n' (N + 1))
of our discussion.

Self-consistency: quadrupole matrix elementsn the _ # ) VI,
reference Hamiltonian (1) there occur three quadrupole Z Ul (s M)V (e EMOR),, - (12)
coupling constants. In the case under discussion, the ) . ) ]
experimental electric quadrupole matrix elements are ithere are again two tests. First there is the requirement
good agreement with rigid rotor values. For the CPC calthat the matrix elements be independent of angular
culations we then assume proportionality between neutroffomentum, as was assumed in the input. Second we
and proton mass quadrupole elements, as expressed by RSt reproduce the value of this matrix element. For
relation

Juv

(IMK|Q"|I'M'K') = n{(IMK|Q"|I'M'K"),  (8) 300 . . ,
where 7 is a constant evaluated below. It follows that Eﬁ;’;ns (“'Eu); +ve parity
for the core-particle theory, we can work with the proton 200 | - protons (VEU;—veparty  ___----""]

---- protons ('57Eu); Total

guadrupole moment alone provided we introduce different
effective coupling strengths for the neutron and proton

spectra, according to the equations = 100 By
K;ff = (Kpp + 7]K,,,,), 9) 6 s
Vo oot .
TABLE |. Particle number, actual and calculated, iiﬁGd. -10.0
(N) Actual Calculated

Neutrons+ 44 45.06 -20.0 : ‘ ! !
Neutrons— 52 50.64 ° ? “m ° 8 10
Neutrons total 94 95.70

Protons+ 38 36.26 FIG. 1. Values of the matrix elements ad” for %Gd.

Protons— 26 28.90 The negative values represent the diagonal eleméikis=
Protons total 64 65.16 0||QP|lIK = 0), whereas the positive values show the off-

diagonal elementdK = 0[|Q”||I + 2K = 0).

4349



VOLUME 78, NUMBER 23 PHYSICAL REVIEW LETTERS 9 UNE 1997

TABLE Il. Contributions to the moment of inertia arising from the different terms in
the Hamiltonian. Here sp refers to the single particle contributi@nto the quadrupole
contribution, andA to the pairing term.

Ey — Ey I Iy Ia Jiotal Jexp
Neutron + 0.00291 0.00121

Neutron— 0.00532 —0.00236
Neutron total 0.00823 . —-0.00157

Proton+ 0.001943 0.00141 —0.00232

Proton— 0.001272 0.000523 0.00194

Proton total 0.003215 0.001933 —0.00126

Total 0.01145 —0.000643 0.001144 0.011951 0.0124

the neutron pairing, the diagonal matrix elements varadd to the algorithm a proper formulation for normaliza-
monotonically between 1.859 faf = 0 and 1.814 for tion of the coefficients of fractional parentage.
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