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Abstract

Despite significant evidence suggesting that intermediate- and high-mass stars form in clustered environments,
how stars form when the available resources are shared is still not well understood. A related question is whether
the initial mass function (IMF) is in fact universal across galactic environments, or whether it is an average of IMFs
that differ, for example, in massive versus low-mass molecular clouds. One of the long-standing problems in
resolving these questions and in the study of young clusters is observational: how to accurately combine
multiwavelength data sets obtained using telescopes with different spatial resolutions. The resulting confusion
hinders our ability to fully characterize clustered star formation. Here we present a new method that uses Bayesian
inference to fit the blended spectral energy distributions and images of individual young stellar objects (YSOs) in
confused clusters. We apply this method to the infrared photometry of a sample comprising 70 Spitzer-selected,
low-mass (Mcl< 100Me) young clusters in the galactic plane, and we use the derived physical parameters to
investigate how the distribution of YSO masses within each cluster relates to the total mass of the cluster. We find
that for low-mass clusters this distribution is indistinguishable from a randomly sampled Kroupa IMF for this range
of cluster masses. Therefore, any effects of self-regulated star formation that affect the IMF sampling are likely to
play a role only at larger cluster masses. Our results are also compatible with smoothed particle hydrodynamics
models that predict a dynamical termination of the accretion in protostars, with massive stars undergoing this
stopping at later times in their evolution.

Key words: methods: statistical – open clusters and associations: general – stars: formation – stars: protostars –
stars: statistics

1. Introduction

The physical characterization of individual young stars at
different stages of their formation, from an initial cold clump
that undergoes gravitational collapse to the onset of the
hydrogen-burning phase and through a period of gas accretion
that can last for several million years, is at the base of our
understanding of the process of star formation at global scales.
Key outstanding questions relate to the initial mass function
(IMF): are all of the stellar masses in the galaxy produced via a
single universal IMF, or does the distribution of masses depend
on the environment, making the integrated galactic IMF of stars
(IGIMF; Kroupa & Weidner 2003) different from the canonical
IMF? If it depends on environment, how different can it be, and
why? The answers to these questions are intimately linked to
the processes of early star formation and the universality of the
IMF (Kroupa 2001; Kroupa & Boily 2002; Chabrier 2003;
Elmegreen et al. 2008; Bastian et al. 2010; Kroupa et al. 2013).

If the IMF results from a random sampling process in any
given cluster, then star formation is agnostic to the conditions
of the environment, including the total mass of the birth cluster;
no self-regulation is at play (other than setting a limit to the
maximum stellar mass if the entire cluster mass resides in
that star). Alternatively, the stellar masses in a cluster are
preferentially determined by some kind of feedback (for
example, competitive accretion), starting with the most massive
of its members in such a way the resulting IGIMF has no gaps.
This self-regulated process results in optimal sampling (Kroupa
et al. 2013) and populates the cluster with an optimal number
of stars starting from the most massive star in the cluster. Self-
regulated star formation implies that the mass of the most
massive star should depend on the available resources in the

cluster, and that there should exist a nontrivial correlation
between the stellar mass of the cluster (Mcl) and the mass of its
most massive star (mmax). While the existence of a correlation
is not unique to self-regulation, other models of star formation
predict a correlation with distinctly different slopes and cutoffs.
Stellar clusters provide a valuable resource in probing the

answers to such questions about the shape and cutoff of the
IMF because their populations reflect the distribution of stellar
masses possible in a range of cluster masses, and hence the
extent to which these environmental effects influence the stellar
mass distribution. Observational properties of clusters also
allow for critical comparisons between existing models. In the
competitive accretion scenario (Bonnell et al. 2001), for
example, stars in a young cluster accrete from a shared
reservoir of gas, and in the cluster core the high relative
velocities between stars result in Bondi–Hoyle accretion that in
turn produces a fragmented IMF that is steeper at the high-mass
end. Not all models of star formation result in optimal sampling
of an IMF: if star formation is not self-regulated, the IMF can
be understood as a probability distribution, and stellar masses
are randomly sampled from it (Weidner et al. 2013).
The preferred way to analyze clusters of young stars and

characterize their stellar mass distributions is through multi-
wavelength surveys, especially in the infrared. Surveys of the
galactic plane in the past decade, using the Spitzer, Herschel,
and WISE observatories, have greatly improved the number
statistics of individual observations. The analysis of these data
sets to date has resulted in a scenario that generally agrees with
early studies that suggested that a large fraction of stars form in
embedded clusters (e.g., Lada & Lada 2003). The observations
also revealed a continuous distribution of young stellar surface
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densities in the galactic plane (Bressert et al. 2010), suggesting
that there is no clear-cut distinction between isolated and
clustered star formation but rather a broad range of environ-
ments forming stars. In addition to core clustering developing
during the collapse and fragmentation of a massive primordial
molecular cloud, a multiplicity of young stars is expected to
develop at smaller scales when the conditions for disk
fragmentation are met, as has been demonstrated by numerical
simulations (Stamatellos & Whitworth 2009; Lomax et al.
2015) and observations (Tobin et al. 2016).

In this paper, we take a new approach to the issue of
determining stellar masses in clusters using spectral energy
distribution (SED) fitting. SED models are often applied to
photometric data sets taken across optical and infrared bands,
without taking into account unresolved multiplicity. Even for
nearby clusters, where we have good chances of resolving
individual young stellar objects (YSOs) at the shortest infrared
wavelengths, the emission from individual stars is often
blended together within the beam of infrared telescopes at
longer wavelengths. So far, some of the most sophisticated
attempts to address this problem involve replacing photometric
bands with spatially resolved spectrophotometric points (For-
brich et al. 2010) and including bands in the fitting only as
upper limits if there is evidence for multiplicity (Mottram
et al. 2011). The Robitaille et al. (2006; R06 hereafter) SED
models are by far the most common set of models used to
characterize YSOs. They have been used to study the properties
of entire star-forming regions both within the Milky Way (e.g.,
Indebetouw et al. 2007; Azimlu et al. 2015) and in the nearby
Magellanic clouds (e.g., Simon et al. 2007; Carlson et al.
2012). However, it is almost always assumed that the modeled
photometry comes from a single YSO (Robitaille 2008).

In order to deal with the issue of SED fitting of multiple
YSOs, in this paper we propose a new method. We use existing
SED models to create informative priors for the photometry of
unresolved multiple systems, and we then perform Bayesian
inference to obtain the most likely physical parameters of
individual YSOs, given the set of images and blended
photometry of the clusters. We apply this method to the SEDs
of 70 low-mass (Mcl< 100Me), blended clusters. We interpret
the derived physical parameters in the context of different
models of star formation, and we discuss the implications of
our results for the IMF in the mass range of these observations,
which corresponds to the low-mass end of the cluster mass
distribution. Our method is an alternative to recent methods
that use hydrodynamical simulations to generate SEDs of
multiple YSO systems, which can be computationally expen-
sive (Lomax & Whitworth 2018).

This paper is organized as follows. In Section 2 we describe
the photometry used in the present study, the determination of
distances to the sources, and the matching technique used to
associate multiple UKIRT InfraRed Deep Sky Survey
(UKIDSS) sources to single Galactic Legacy Infrared Midplane
Survey Extraordinaire (GLIMPSE) detections. Section 3
describes the probabilistic algorithm to simultaneously fit the
SEDs and images of blended YSOs. We describe the results of
applying this algorithm to the 70 clusters in Section 4, where
we also describe the overall statistics of the SED parameters
estimated with our method. In Section 5 we discuss the
implications of our results for the sampling of the IMF in the
mass range of the studied clusters and compare the correlations
found between individual YSOs and their parent clusters with

theoretical and semiempirical models of star formation. Finally,
in Section 6 we present our conclusions.

2. Observational Data Sets

We use observations from the GLIMPSE (Benjamin et al.
2003; Churchwell et al. 2009) and MIPS Inner Galactic Plane
Survey (MIPSGAL; Carey et al. 2005) surveys, carried out
with the Spitzer Space Telescope’s InfraRed Array Camera
(IRAC; Fazio et al. 2004) using bands IRAC 1 (3.6 μm), IRAC
2 (4.5 μm), IRAC 3 (5.6 μm), and IRAC 4 (8.0 μm). The data
set of observations studied here covers the inner Galactic plane
( ℓ 65 ∣ ∣ ). A first attempt to isolate intrinsically red sources
from the large (>30 million sources) GLIMPSE catalog was
made by Robitaille et al. (2008). They established several
criteria to come up with a photometrically reliable set of red
∼2×104 sources that was not affected by saturation,
sensitivity issues, or variability. In their catalog, which is at
least 65% complete and consists of ∼19,000 sources,
approximately 30%–50% are likely to be AGB stars, and
approximately 50%–70% are likely to be YSOs. The authors
point out that their catalog does not provide a complete picture
of Galactic star formation as seen by Spitzer, since it does not
include blended sources, extended sources, or sources with
molecular emission that blueshifts them in the IRAC bands.
Morales & Robitaille (2017; MR17 hereafter) have isolated a

sample of 8325 GLIMPSE YSO candidates that have
corresponding UKIDSS (Hewett et al. 2006) coverage.
UKIDSS provides imaging data in the near-infrared (NIR)
bands J (1.17 μm), H (1.49 μm), and K (2.03 μm) and has a
better angular resolution than that of GLIMPSE by a factor >2.
In this paper, we are assuming that the sources detected in
UKIDSS are resolved into individual objects, which we find a
reasonable assumption at the range of heliocentric distances
considered here. The UKIRT telescope resolution is character-
ized by 0.8 arcsec in the J, H, and K bands. At this resolution
and given our range of heliocentric distances (∼0.5–15 kpc),
we can resolve projected physical distances between 0.001 and
0.06 pc, whereas the typical separation between stars in a
globular cluster is about 0.3 pc.
Following the MR17 approach, we use an empirical method

for source matching that evaluates the smoothness of the SED
transition between NIR and mid-infrared (MIR) bands for each
of the UKIDSS sources with respect to the GLIMPSE/
MIPSGAL fluxes by comparing the cubic spline that fits the
SED of each UKIDSS source (and associated GLIMPSE/
MIPSGAL source) with the simple quadratic function that fits
the four middle points that define the NIR-to-MIR transition
(H, K, 3.6, and 4.5 μm). Similarity between these two curves
indicates a higher likelihood that a given UKIDSS source
contributes to the GLIMPSE flux. This is a generic method that
could be robustly applied for matching SEDs across gaps at
other wavelengths.
We use the same quantitative criteria as MR17 (their

Equation (2)) to identify UKIDSS sources that match the SED
of the corresponding GLIMPSE object, but here we increase
the angular distance threshold to 1″ in order not to miss likely
multiple matching UKIDSS sources that could be farther from
the GLIMPSE object than the stricter original threshold of
0 57. We further expand this distance to 2″ to account for
marginal sources that might not match the SED according to
the spline method, but that are potential contributors to the
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IRAC fluxes. After manually discarding a few targets with
extended emission for which the point spread function (PSF)-
fitting photometry erroneously assigns multiple UKIDSS
sources, we ended up with a sample of 194 GLIMPSE objects
with more than one UKIDSS source contributing to the flux in
the IRAC and MIPS bands, where they appear blended into a
single source.

The above classification is equivalent to the one defined by
MR17 as UM_SM(i.e., we also required that the K-band fluxes
of the multiple UKIDSS sources were within a factor of 10), for
which they found the greatest number of objects with cluster-
like appearance in the UKIDSS images. The larger angular
distance threshold used here, together with the visual
refinement, allowed us to spot an important fraction of the
∼265 UM_SMobjects predicted by MR17 via Monte Carlo
(MC) simulations of possible misclassification by the original
SED matching criteria (with threshold of 0 57). The direct
classification by MR17 (i.e., without MC simulations) gives
only 79 objects within the UM_SMcategory.

We remark that this empirical SED matching only represents
a preliminary step for cluster identification, and that the
detailed cluster characterization done in the present paper does
not adopt any assumption on the UKIDSS sources from that
step. Indeed, all UKIDSS sources within 2″ (corresponding to
the width of the IRAC PSF) will be modeled here as potential
contributors to the IRAC/MIPS fluxes. Therefore, in the
context of this paper, we define a cluster as a single GLIMPSE
source that has two or more matching UKIDSS sources within
the radius defined by the IRAC PSF width, which is 2″. We
realize that this definition relies purely on spatial coincidence,
and therefore we are not claiming that these objects are clusters
in a dynamical or evolutionary sense. However, we believe that
it is safe to assume that infrared sources that are close to each
other and that have potentially matching SEDs belong to the
same class and are likely to be physically related to each other.
This assumption might be wrong in a few specific cases, but it
is very unlikely that it will affect the validity of our statistical
analysis.

We also note that, given that our selection represents a subset
of the original catalog of YSO candidates identified by
Robitaille et al. (2008) as single GLIMPSE sources, there are
no objects in our sample that were already multiple in
GLIMPSE. Figure 1 shows multiwavelength views for three
of the selected clusters. Shown in the figure are three color
images using both UKIDSS and IRAC colors, together with the
SEDs in each case derived from the images.

Our final list of 70 low-mass YSO clusters (see Table 2)
results from restricting the sample to those objects with
available distance estimates, needed for the physical modeling
performed in this paper. For objects that are part of a star-
forming region (infrared dark cloud, submillimeter clump, H II
region), we use the distances to the regions reported in the
literature. For objects with LSR velocity measurements, we use
a kinematic distance solution based on a Galactic rotation
model following Morales et al. (2013, their AppendixB.4).
For many other objects in our sample, we use the large data set
of LSR velocities and kinematic distance ambiguity (KDA)
resolutions provided by Wienen et al. (2015), who carried out
molecular line follow-up observations toward several sources
detected in the APEX Telescope Large Area Survey of the
Galaxy (ATLASGAL).

3. Bayesian Parameter Estimation

This section describes the Bayesian parameter estimation
methods that we have designed to characterize clustered
YSOs.4 The statistical model for SED fitting is introduced
first, followed by a discussion of the optimization and sampling
of the resulting posterior probability distributions. The
statistical model for image fitting is described at the end of
the section, together with the strategy to combine results from
SED and image fitting to reduce the variance of our results.

3.1. Likelihood

Our goal is to simultaneously fit the SEDs of m sources that
are observed in n different bands. The sources appear resolved
as individual objects in the first n′ bands, but are blended
together within the beams of the remaining n–n′ bands. Thus,
in the unresolved bands, we have a single photometric
measurement for all m sources. We fit the sources using a
grid of precalculated model SEDs M that depend on parameters
{θ}. For source i, then, we have a set {θi} of parameters, and
we can denote the full set of parameters for all sources i=1,
K, m as Θ={θ1, K, θm}. Data D consists of the fluxes
observed in all bands, resolved and unresolved, and their
respective uncertainties. For source i and resolved band j, the
measured flux is Fij, with associated measurement error σij,
whereas for the unresolved sources the integrated measured
flux is Fj, with associated error σj. The modeled flux for source
i in band j is Mij. With this nomenclature, the log-likelihood of
observing a particular set of photometry for the cluster, if we
assume that it was drawn from model M, is
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Our problem reduces to finding the set of model parameters
Θ that optimizes the probabilistic model above. We are
therefore faced with a maximum-likelihood estimation pro-
blem. But rather than just finding the best-fitting model, we can
use our predictive model to estimate the probabilities over all
possible solutions; that is, we perform Bayesian inference.

3.2. Bayesian Formulation

Rather than being interested in knowing which observations
are expected given the model parameters, we would like to
infer the physics; that is, we want to know which parameter
models are more probable given the observed photometry. This
means that we assume the model parameters to be random
variables with associated probability distributions P DQ( ∣ ), as
opposed to the frequentist view, in which parameters have
absolute, true values. Once we infer P DQ( ∣ ), the posterior
distribution, we can obtain a point estimate for the parameter
values, usually the maximum a posteriori (MAP) estimate. The
marginalization of the joint posterior with respect to each
model parameter also provides complete information about the
uncertainties on those parameters. Formally, the chain rule

4 The Python code containing the detailed algorithms can be found athttps://
github.com/juramaga/Bayesian_fitter.

3

The Astrophysical Journal, 864:71 (24pp), 2018 September 1 Martínez-Galarza et al.

https://github.com/juramaga/Bayesian_fitter
https://github.com/juramaga/Bayesian_fitter


from probability theory provides a relation between the
likelihood and the posterior distributions:

P D P D P D P D P, , 2Q ´ = Q = Q ´ Q( ∣ ) ( ) ( ) ( ∣ ) ( ) ( )

which gives the well-known Bayes theorem:

P D P D P , 3Q µ Q Q( ∣ ) ( ∣ ) ( ) ( )

where P(Θ), the prior distribution, encodes any belief we might
have (prior to obtaining the current photometry) on the
parameter values. In general, priors become more informative
in the analysis as fewer data points are available to inform
the model.
The R06 models comprise a library of SED models for a

broad range of YSO parameters. The fixed grid of parameter

Figure 1. Three GLIMPSE sources with multiple UKIDSS matches. In each figure, the left panel is a composite three-color UKIDSS image with the J band in blue,
the H band in green, and the K band in red, and the circles indicate the UKIDSS sources detected within 2″ of the corresponding GLIMPSE source. The green circle is
for the nearest source in angular separation, the magenta circles for the others, and the bigger dashed-line circle indicates the 2″ search radius. The center panel is a
composite three-color GLIMPSE image with the 3.6 μm band in blue, the 5.8 μm band in green, and the 8.0 μm band in red. The right panel shows the SEDs of the
corresponding GLIMPSE (blue points) and UKIDSS sources (green points for the nearest source and red points for the others).
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values was originally generated by randomly sampling YSO
ages (t) and masses (m*), and then assigning corresponding
accretion rates and disk/envelope properties using theoretical
or semiempirical relations. The resulting SEDs (each of them
generated at 10 different viewing angles) are then convolved
with a library of observing filters from the ultraviolet to the far-
infrared, giving model fluxes for all models in each band. To
account for interstellar extinction, these “raw” SEDs can then
be further obscured by a dust screen of optical extinction AV,
using the typical Galactic ISM extinction curve modified for
the MIR extinction whose properties are derived in Indebetouw
et al. (2005). The models are normalized to a distance of 1 kpc,
but can be easily scaled to the desired distance.

The priors on mass (M*) and age (t*) are set by the original
precalculated SED grid and are proper uniform priors

min, max( ) defined on the logarithmic space of YSO ages
and masses. Class 0 YSOs are undetected below 20 μm, so we
expect to detect mostly class I/II YSOs. The lifetime of a class
I YSO is about 105 years, whereas that of a class II YSO is on
average a few times 106 years. We modify the age prior and use
a normal distribution , m s( ) centered at tlog 5.5 years* =
with a broad standard deviation of one order of magnitude:

P Mlog 1, 3 4* = -( ) ( ) ( )

P tlog 5.5, 1 . 5*  s= =( ) ( ) ( )
We use a normal prior for AV. Although in principle we

could use reddening data from Pan-STARSS photometry (e.g.,
Green et al. 2015) in order to obtain a better estimate of
extinction in the line of sight and at the distance to our sources,
we decide to adopt a more conservative approach: we use a
normal distribution centered at AV=10mag, with a standard
deviation of σAv=0.8mag. This mean is about 0.5 dex higher
than the mean of the distribution for our sources, as derived
from Pan-STARRS data, and is justified by the fact
that at scales that are smaller than the beam of the 1.8m
Pan-STARRS telescope, we expect optical extinction to be
higher than average toward regions of massive star formation.
As for the inclination angle f, we assume that it is proportional
to the cosine of the inclination angle, as expected from an
ensemble of randomly oriented disks:

P Alog 1.0, 0.8 6V  s= =( ) ( ) ( )
P cos . 7f fµ( ) ( )

We now have a probabilistic model that gives the posterior
probability for the YSO parameters (Equation (3)). When
computing P DQ( ∣ ) by brute force, calculating the posterior at
each possible point of the parameter space is computationally
intractable. Even more so for the parameter space of our
problem, whose dimensionality is dim=4×nsources (four
parameters for each source plus one degree of freedom to
account for uncertainty in the distance to the sources, minus
one degree of freedom, due to the fact that the unresolved
photometric points must satisfy the condition that their sum
must equal the observed flux in each band).

The majority of the 14 varying parameters in the R06 models
are correlated to other model parameters (Robitaille et al. 2006,
2008). For example, the envelope accretion rate (dMenv/dt)
steeply decays for all models for ages beyond 105 years. In
general, most parameters show a correlation with either the YSO
mass or age. Therefore, for a cluster with three visible clustered
YSOs (a typical case in our data set), the dimensionality of the

parameter space is 12, but dimensionality grows linearly with the
number of sources. Typically, the three UKIDSS bands are
observed for each of the cluster members, whereas the IRAC
bands are observed for the cluster as a whole. The MIPS24 band
is not available for all clusters. Therefore, for a cluster with three
resolved UKDISS sources, we have at most 14 observations
available to fit the 12 parameters.
Probability distribution functions can be efficiently sampled

using stochastic methods such as Markov chain Monte Carlo
(MCMC) sampling. MCMC methods can be extremely slow at
converging if the initial guess for the parameters is far from a
significant peak of probability, especially in a parameter space
with many dimensions, such as in our case. It is therefore a
good course of action to first use an optimization algorithm to
find a MAP estimate, and then use the MAP result to initialize
the MCMC sampler.

3.3. Optimization of the Probabilistic Model with
Genetic Algorithms

We use a genetic algorithm (GA) to optimize the posterior
probability distribution prior to MCMC fitting. GAs are
inspired in the stochasticity of biological evolution: given an
initial population of solutions (we will call these solutions
individuals), whose genes (the parameter values) are replicated
using a particular mechanism into the following generation,
only the fittest solutions (those with larger posterior prob-
ability) will survive after many generations. In the context of
our problem, the fitness function is the posterior probability of
Equation (3), and after each generation the resulting population
will be graded according to the average value of this fitness.
Given a random initial population, with random values
assigned to the genes of each individual, at each generation
we perform the following operations between individuals:

1. Reproduction.Given a population of individuals with
different fitnesses, we update the population in such a
way that the best-fit individuals will have more offspring,
while keeping the total number of individuals unchanged.

2. Crossover. We randomly exchange genes between the
members of the updated population to create new
individuals. Such exchange of genes is performed by
cutting and then exchanging parameters between parent
individuals.

3. Mutation.Natural selection and diversity would not
happen without unlikely random mutations of the genes.
To simulate mutation in our population of individuals, we
randomly change the value of one of the parameters in a
random individual, with very low probability.

The average fitness of the new generation and the fitness of
the individuals are evaluated. Evolution should lead to an
increase in fitness with each generation. After a sufficient
number of generations, the population should be primarily
composed of highly fit individuals (i.e., solutions with a higher
posterior probability). By selecting the best among these
descendants, we obtain the best possible solution.
The main parameters controlling the outcome of this

evolutionary process within the algorithm are as follows:

1. The size of the population (N). This parameter remains
fixed along the entire simulation and should be adjusted
so that it is not too small (which would make crossover
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unlikely, resulting in only a small portion of the
parameter space being explored) or too large (which
would make the whole process very slow). We use a
population of between 30 and 40 members, depending on
the number of sources being fitted.

2. The probability of mutation (pm), which should be kept
low to avoid turning the algorithm into a random search.
We have used values between 1% and 2%.

3. The survival rate of the best-fit individuals (ps), that is,
the fraction of individuals (ordered by decreasing fitness)
that are selected to become parents of the next generation.
Here we use between 20% and 40% for this parameter.

4. The probability po of an individual being selected to be a
parent of the next generation even if they are not among
the best-fit individuals. For this parameter we use a value
of 5%.

5. The crossover probability (pc), or how likely it is that
crossover takes place. If there is no crossover at all,
children are just identical copies of parents. Here we
adopt pc=1.0.

Our adopted values represent a reasonable estimate based on
trial-and-error experiments, and the final conclusions do not
depend critically on their precise values. For each cluster in
Table 2, we optimize the posterior probability of Equation (1)
by applying the GA with the parameters specified above, over
104 generations, and we use the outcome of this process to
initialize the MCMC fitting.

3.4. MCMC: Sampling the Parameter Posteriors

The output parameters of the GA optimization are used as
initialization parameters of the MCMC sampler. We use our
own implementation of the standard Metropolis–Hastings
algorithm, for which we customize the proposal distributions
in order for it to work with a discrete grid of model parameters.
In the t*−M* plane, our proposal distribution consists of a
uniform probability of jumping from current location t M,i i* *( )
to another point t M,i i1 1* *+ +( ) that is at a distance of at most
rprop from the current location, with rprop tuned to obtain an
acceptance rate of about 30%.

Similar uniform distributions are chosen for AV and the
distance to the source d. For the inclination angle, the proposal
function takes the form of a unitary jump between neighboring
inclination angles. We use a total number of niter=106

iterations. It is customary to ignore a certain number of traces at
the start of the MCMC trace, because early in the chain the
algorithm has not yet converged. Here we set this burn-in
period to 20% of the total number of elements in the trace. In
order to check for convergence of the MCMC method, we use
the Geweke test.

3.5. A Probabilistic Model for Unresolved Images

We consider two sources to be unresolved in the Spitzer
bands if their UKIDSS coordinates are 2″ apart or less.
Although the resolution of the IRAC images is below this
number (∼1 2), disentangling them using simple PSF fitting
might be problematic, and we therefore consider them to be
unresolved for the purposes of flux estimation. Yet, because the
point response functions (PRFs) for the IRAC bands are
sampled every fifth of a pixel, additional information about
how much each source in the cluster contributes to the
unresolved fluxes is contained in the images. Here we develop

an approach to image fitting that is complementary to the
model-dependent SED fitting. In Section 3.6 we describe how
the two approaches complement each other.
The idea is simple: using the models for the oversampled

PRFs in each IRAC band and the position of the cluster
members in the resolved (UKIDSS) images as priors for the
location of the sources in the unresolved (IRAC) images, we
can build a probabilistic model that can be fit to reproduce the
observed IRAC images. The model depends on the following
parameters: the position of each source on the IRAC image
(xi, yi), the multiplicative scale factor Ai for each individual
PRF (related to the contribution of each source to the total flux
in each pixel), and the background level B.
We assume that the observed Spitzer images are the result of

two separate processes. First, at the individual pixel level,
photons hit the detector with a certain average rate that can be
modeled as a Poisson process.5 That is, we spatially discretize
the image by assuming that for each pixel, photons arrive
independently of each other at a constant rate so that there is an
average number of photon hits per unit time. Second, we
assume that for each pixel, such a process happens as many
times as we have sources in the cluster. We assume that
independent Poisson processes happen simultaneously in each
pixel for each source that contributes to the flux in that pixel. In
other words, we assume that the image is the result of a mixture
of PRFs.
Explicitly, we assume that the probability of measuring an

image containing m sources with flux density Nk in the kth
pixel, given the parameters of our model, that is, the set of PRF
scaling factors Ai, the positions (xi, yi) of the sources in the
IRAC images, and a uniform background level B, and
assuming that the fluxes of neighboring pixels are uncorrelated,
can be expressed as the product of Poisson distributions:

P N A
D e

N
, 8k

k

n
k
N D

k1

k k k

=
=

-
({ }∣ )

!
( )

where Dk is the average number of photons reaching the kth
pixel per unit time (i.e., the flux density in the kth pixel), and nk
is the total number of pixels in the image. Note that in this
equation, each of the Dk is in fact a linear combination of the
corresponding elements of the m PRFs centered at the location
of the sources (from the resolved images), plus a background
term:

D n A BPSF . 9k
i

m

i i0 å= ´ +
⎡
⎣⎢

⎤
⎦⎥ ( )

We fit the observed images in all four bands using this
probabilistic model, and for each tested model we use the
UKIDSS coordinates to choose the PRF subsample that
corresponds to the location within the IRAC pixels. Since the
UKIDSS source positions are known with a precision of ∼0 3,
we allow for a variation of ±1 in the actual subsampled PRF
used when we perform the fitting. For the scaling factors and
background and source positions, we assume uniform priors
and sample the resulting posterior distribution using MCMC.
The posterior probabilities for the PRF scaling factors are

5 We use a Poisson process here because we want the model to be applicable
in low-photon-count scenarios (e.g., X-ray astronomy). In the high-photon-
count regime, the Poisson model generalizes to a normal model.
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directly related to the flux contributed by each source to the
unresolved photometry.

3.6. Assessing the Reliability of the Method

The SED and image fitting algorithms described in the
previous section can be used iteratively in order to reduce the
variance in the estimates of the physical parameters of the
individual YSOs, by using the output flux posteriors of one
method as priors in the other method. Here we describe how we
combine the two in order to improve the quality of our results,
and then we validate the reliability of the method by applying it
to a simulated cluster with known physical parameters.

3.6.1. Iterative Fitting of the SEDs and the Images

Given the set of resolved NIR and unresolved MIR
photometry for a given cluster, we perform the fitting of the
data in three steps.

Step 1. Using the model of Equation (1), we simultaneously
fit the SEDs of the cluster members and obtain posterior
probabilities for the model parameters. We also obtain posterior
predictive distributions for the unresolved fluxes in this step.
The posterior predictive is the distribution of unobserved
photometry D̃ conditioned on the observed data D. It is
constructed by averaging the likelihood of new unseen data
points over all possible parameter values, weighted by their
posterior probability:

p D D p D p D d . 10ò= Q Q Q( ˜∣ ) ( ˜∣ ) ( ∣ ) ( )

Note that the probability of measuring a given unresolved
flux for a given cluster member, given the observed data,
equals the likelihood of that flux given the model parameters
times the probability of that particular choice of parameters,
marginalized over all possible parameter values. We can obtain
a posterior predictive for each of the unresolved bands, for each
of the cluster members. Visually, the posterior predictive can
be understood as the histogram of all of the model fluxes in a
particular band when the models are taken from the MCMC
sampled parameters.

Step 2. Using the image -fitting model from Equations (8)
and (9), we then fit the observed IRAC images and derive
posterior probabilities for the fluxes in the unresolved bands.
We use the posterior predictives derived in step 1 for the
relative fluxes as priors for the image fitting. Note that this is
consistent from a statistical point of view, since we are not

using the same information in both models. While for the SED
fitting we use the integrated fluxes to constrain the unresolved
fluxes, in the image fitting we are using the pixel-by-pixel
fluxes. We get new posterior distributions for the fluxes as an
output of the image fitting.
Step 3. Finally, we refit the SEDs, but this time we use the

posterior probabilities for the fluxes obtained in the previous
step as individual photometric measurements in the unresolved
bands. We do this for all four IRAC bands, but not for the
MIPS 24 μm band, since at the MIPS resolution of 6″ we
would not get a good constraint on the unresolved fluxes since
the UKIDSS sources are within 2″ only. The end result of this
three-step fitting algorithm is the best-fitting SED and images
in each band, as well as the posterior probabilities for the
relevant model parameters, evaluated for each individual
source in the cluster.

3.6.2. Simulated Cluster

In order to assess the reliability of our method in recovering
the physical parameters of clustered YSOs, we have tested it on
simulated clusters composed of three YSOs whose properties
have been sampled from the library of R06 models. We have
simulated the coordinates of these objects from a 2D normal
probability density function with a standard deviation corresp-
onding to the typical size of the clusters in our sample (∼2″).
We assigned UKIDSS, IRAC, and MIPS photometry to each
source according to the corresponding R06 SEDs, and we then
added 10% Gaussian noise. We also simulated IRAC images of
simulated clusters by convolving the Gaussian profiles of the
point sources with a model of the instrument PSF and then
binning the convolved image to resemble the IRAC pixels and
matching the total fluxes with the SED fluxes. In Figure 2 we
show an example of a simulated IRAC 1 image compared with
the result of our image-fitting algorithm. The cluster is
effectively unresolved within the IRAC beam, as is the case
in many real clusters for which SED fitting of the individual
members is algorithmically difficult and in fact has not been
attempted so far. Our approach allows for detailed modeling of
the individual sources.
Following the steps described above, we first fit the set of

resolved and unresolved photometry to obtain posterior
probability distributions for the unresolved IRAC fluxes of
the simulated cluster. The posterior predictives for the
unresolved fluxes of each individual source are in excellent
agreement with the ground truth values, as shown in Figure 3.

Figure 2. IRAC 8 μm images of a simulated cluster of blended YSOs indicating the position of the individual sources with red crosses. The left panel corresponds to
the originally simulated image, while the right panel shows the best fit using our method.
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We then fit the IRAC images using those posterior probabilities
as priors for the relative contributions of each source, and
finally we refitted the SEDs using the posterior predictives from
image fitting as resolved mid-infrared data points. The final
results are the posterior probability distributions for the
physical parameters. In Table 1 we compare the ground truth
values for the model parameters with the credible intervals
resulting from our Bayesian fitting. In our experiments with
simulated clusters, the ground truth values fall within or very
close to the 1σ credible intervals for all individual sources. We
therefore expect our parameter estimation to be reliable within
the uncertainties of the R06 models themselves.

4. Results

This section summarizes the results of applying the SED/
image fitting method described in the previous section to the 70
low-mass YSO clusters listed in Table 2. These results consist
of the simultaneous fits to the blended SEDs, the best-fitting
IRAC images generated by the image-fitting algorithm, and the
derived posterior distributions for the model parameters after
both methods have been combined.

4.1. SED and Image Fitting

To illustrate our SED-fitting method, in Figure 4 we show
fits to the photometry of two blended clusters (IDs 6307 and
1364), each containing three protostars. The left panels show
the simultaneous fits to the resolved UKIDSS photometry and
the unresolved GLIMPSE photometry of each of the individual
sources in each cluster. The middle panels show the resulting
posterior predictives (Equation (10)) for the flux in IRAC band
1. These quantify the uncertainties in the unresolved fluxes
derived from our SED-fitting method that are later used as
priors for the image fitting. The right panels show fits to
the SEDs of the same objects once the predicted photometry
from the image-fitting algorithm is incorporated (step 3 in
Section 3.6).

Next, the posterior predictives in the middle panels of
Figure 4 are used as priors for the 2D fitting of the IRAC
images. Figure 5 shows the resulting fits to the data for sources
6307 and 1364, in IRAC bands 1 and 4, respectively. Also
shown are the updated posteriors for the flux contribution for

these two sources, after image fitting has been performed. The
latter significantly reduces the variance in the estimated flux of
the dominant sources, at the expense of larger variances for the
dimmer sources, which do not contribute much to the total flux.
Individual source flux densities are estimated by integrating
over the modeled PRFs, for each source in a given cluster, and
converted into millijansky. The 1σ uncertainties in these flux
densities are given by the 13.6% and 86.4% percentiles of the
posterior PDFs.
The right panels of Figure 4 show the resulting fits when the

updated resolved photometry is included. Similar results are
obtained for most individual sources within the clusters. We
note that the Herschel mission observed both of these sources
with PACS and SPIRE at 70, 160, 250, 350, and 500 μm. We
have retrieved the Herschel photometry from Guzmán et al.
(2015). For ID 1364, the retrieved fluxes fall within the 1σ
region of the posterior predictives for the corresponding
wavelengths. For the weaker source, ID 6307, the projected
Herschel fluxes were below the detection limits. This
agreement with measurements at longer wavelengths that were
not included in the fit is an excellent sanity check for our
method and highlights its predictive power.
The flux posteriors in the right panels of Figure 5 can now be

reinterpreted as resolved photometric measurements with
associated uncertainties in each band and included in the
SED fitting. The estimated fluxes in the IRAC bands and their
uncertainties are listed in Table 2. Our predicted individual

Figure 3. Posterior predictives from our deblending SED fitting approach (shaded histograms) compared with the ground truth photometry of a simulated blended
cluster, for IRAC bands 1 and 4. Each histogram corresponds to the distribution of possible fluxes for one particular source, and the dashed lines represent the
corresponding true value of the photometry.

Table 1
Comparison with Simulated Cluster

Parameter 1σ Interval True value

tlog 1
* 5.75 0.10

0.34
- 5.88

mlog 1
* 0.07 0.12

0.23
- 0.30

Alog V
1 0.84 1.19

0.16
- 1.00

tlog 2
* 6.21 0.50

0.44
- 6.37

mlog 2
* 0.27 0.29

0.09
- 0.37

Alog V
2 0.87 0.17

0.11
- 1.00

tlog 3
* 6.18 0.42

0.46
- 6.07

mlog 3
* 0.12 0.24

0.32- - 0.01

Alog V
3 0.81 0.43

0.19
- 1.00
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Table 2
GLIMPSE Sources, Derived Fluxes, and Physical Parameters

Source ID α δ d (kpc) δd (kpc) F3.6 (mJy) F4.5 (mJy) F5.8 (mJy) F8.0 (mJy) tlog yr* ( ) M Mlog * ( ) Alog magV ( )

360 267.2023 −28.0199 5.9 2.0 116.87±3.70 332.32±8.52 582.80±14.93 582.80±14.93 5.04 0.32
0.11

-
+ 1.20 0.01

0.06
-
+ 1.76 0.02

0.02
-
+

12.43±3.13 58.17±8.37 201.23±14.18 201.23±14.18 5.92 0.40
0.25

-
+ 1.01 0.05

0.14
-
+ 1.77 0.05

0.03
-
+

1062 268.3317 −25.2607 3.54 1.36 19.09±5.53 5.17±1.14 8.05±1.72 8.05±1.72 5.23 0.63
0.59

-
+ 0.56 0.26

0.32
-
+ 0.75 0.43

0.24
-
+

30.76±4.78 33.24±1.65 29.70±1.93 29.70±1.93 6.31 1.24
0.33

-
+ 0.62 0.07

0.12
-
+ 0.74 0.45

0.22
-
+

0.01±0.02 0.00±0.02 0.00±0.00 0.00±0.00 6.75 0.18
0.14

-
+ 0.57 0.18

0.19- -
+ 0.25 0.42

0.28
-
+

1277 269.4151 −24.3469 2.88 1.35 21.23±1.95 11.63±1.61 9.25±1.76 9.25±1.76 6.30 0.93
0.35

-
+ 0.66 0.11

0.05
-
+ 1.08 0.15

0.08
-
+

24.83±2.02 22.40±1.89 22.42±1.93 22.42±1.93 6.54 0.55
0.27

-
+ 0.56 0.06

0.11
-
+ 0.77 0.23

0.19
-
+

1364 269.9419 −24.0042 3.59 0.96 24.06±3.02 27.88±1.84 27.14±6.37 27.14±6.37 6.35 0.44
0.26

-
+ 0.66 0.05

0.08
-
+ 1.28 0.08

0.06
-
+

0.05±0.08 0.01±0.03 0.04±0.06 0.04±0.06 6.11 0.35
0.41

-
+ 0.06 0.33

0.27- -
+ 0.59 0.49

0.35
-
+

4.28±2.44 1.74±1.61 15.70±6.20 15.70±6.20 5.44 0.38
1.10

-
+ 0.65 0.33

0.10
-
+ 1.58 0.16

0.08
-
+

1369 270.2175 −24.1208 1.28 0.09 4.97±1.02 3.21±0.78 3.78±1.16 3.78±1.16 5.66 0.61
0.42

-
+ 0.02 0.37

0.35
-
+ 1.25 0.16

0.08
-
+

2.77±1.24 3.35±0.85 4.07±1.48 4.07±1.48 5.72 0.82
0.66

-
+ 0.07 0.48

0.44- -
+ 0.90 0.38

0.21
-
+

0.10±0.16 0.04±0.10 0.02±0.08 0.02±0.08 6.20 1.08
0.50

-
+ 0.56 0.26

0.39- -
+ 1.01 0.29

0.14
-
+

1396 270.7117 −24.299 1.3 0.1 17.50±3.09 21.33±1.17 12.59±3.64 12.59±3.64 6.34 0.11
0.32

-
+ 0.58 0.07

0.07
-
+ 1.47 0.02

0.02
-
+

8.51±3.52 1.03±0.48 8.71±8.48 8.71±8.48 6.07 0.40
0.38

-
+ 0.13 0.36

0.22
-
+ 0.68 0.46

0.21
-
+

1437 270.2374 −23.825 4.97 0.26 22.71±1.25 34.14±1.41 47.96±2.84 47.96±2.84 6.13 0.12
0.28

-
+ 0.75 0.10

0.06
-
+ 1.21 0.74

0.13
-
+

0.10±0.21 0.18±0.34 1.99±4.40 1.99±4.40 5.41 0.45
0.44

-
+ 0.17 0.50

0.32
-
+ 1.08 0.26

0.13
-
+

1493 270.0784 −23.4725 2.4 0.13±0.11 0.08±0.11 0.11±0.21 0.11±0.21 6.08 0.41
0.40

-
+ 0.03 0.43

0.34- -
+ 1.23 0.16

0.13
-
+

1.47±0.52 2.89±0.58 5.43±1.08 5.43±1.08 6.33 0.57
0.36

-
+ 0.52 0.15

0.12
-
+ 1.60 0.08

0.07
-
+

0.09±0.11 0.06±0.14 0.15±0.30 0.15±0.30 5.96 0.55
0.38

-
+ 0.23 0.34

0.49- -
+ 1.23 0.17

0.13
-
+

1566 270.5074 −23.0983 3.81 0.77 49.15±3.04 66.30±4.01 67.15±5.25 67.15±5.25 6.54 0.29
0.14

-
+ 0.78 0.07

0.04
-
+ 1.43 0.05

0.05
-
+

9.03±2.95 13.54±4.22 23.22±5.22 23.22±5.22 6.43 0.21
0.19

-
+ 0.69 0.08

0.06
-
+ 1.52 0.10

0.04
-
+

0.52±0.38 0.92±0.82 5.03±2.05 5.03±2.05 5.33 0.36
0.45

-
+ 0.33 0.56

0.24
-
+ 1.38 0.14

0.13
-
+

1629 270.7366 −22.8421 2.7 0.5 25.14±1.43 38.91±1.49 59.06±2.04 59.06±2.04 6.49 0.18
0.21

-
+ 0.74 0.07

0.08
-
+ 1.53 0.07

0.06
-
+

0.02±0.01 0.01±0.01 0.01±0.01 0.01±0.01 6.45 0.42
0.33

-
+ 0.57 0.21

0.25- -
+ 0.65 0.30

0.30
-
+

0.17±0.11 0.05±0.08 0.10±0.27 0.10±0.27 6.10 0.39
0.32

-
+ 0.44 0.27

0.33
-
+ 1.51 0.15

0.11
-
+

0.10±0.10 0.10±0.11 0.04±0.06 0.04±0.06 5.99 0.57
0.38

-
+ 0.47 0.32

0.44- -
+ 0.92 0.27

0.14
-
+

2.61±0.64 3.84±0.62 4.78±1.04 4.78±1.04 5.45 0.16
0.34

-
+ 0.15 0.13

0.33
-
+ 1.17 0.30

0.16
-
+

1807 270.5608 −21.5428 3.47 0.75 6.91±1.24 0.12±0.17 0.13±0.21 0.13±0.21 5.03 0.26
0.33

-
+ 0.64 0.49

0.19
-
+ 1.47 0.20

0.11
-
+

2.67±1.05 34.76±1.38 72.74±2.15 72.74±2.15 6.04 0.54
0.27

-
+ 0.91 0.06

0.02
-
+ 1.85 0.07

0.02
-
+

0.01±0.01 0.00±0.00 0.00±0.00 0.00±0.00 6.52 0.46
0.21

-
+ 0.51 0.29

0.27- -
+ 0.81 0.28

0.09
-
+

2.69±0.85 1.14±0.38 1.85±0.66 1.85±0.66 6.14 0.78
0.47

-
+ 0.56 0.09

0.13
-
+ 1.58 0.05

0.10
-
+

2073 272.3163 −21.053 3.81 0.59 1.65±0.55 1.68±0.54 1.61±0.70 1.61±0.70 6.30 0.41
0.09

-
+ 0.47 0.12

0.02
-
+ 1.45 0.10

0.02
-
+

12.36±1.04 12.84±0.91 12.29±1.09 12.29±1.09 6.28 0.21
0.20

-
+ 0.77 0.09

0.04
-
+ 1.34 0.04

0.00
-
+

0.39±0.29 0.03±0.04 0.57±0.42 0.57±0.42 6.35 0.49
0.10

-
+ 0.35 0.11

0.10
-
+ 1.24 0.03

0.10
-
+

2090 272.5295 −20.9922 4.13 0.51 0.05±0.06 0.03±0.04 0.02±0.03 0.02±0.03 6.09 0.51
0.49

-
+ 0.06 0.54

0.23
-
+ 0.54 0.38

0.28
-
+

0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 6.57 1.34
0.25

-
+ 0.51 0.26

0.28- -
+ 0.75 0.26

0.20
-
+

0.02±0.05 0.00±0.01 0.02±0.08 0.02±0.08 5.79 0.98
0.64

-
+ 0.12 0.32

0.52- -
+ 1.29 0.18

0.16
-
+

3.89±0.98 8.31±2.40 10.40±3.10 10.40±3.10 5.75 0.53
0.72

-
+ 0.64 0.15

0.13
-
+ 1.52 0.07

0.10
-
+

1.25±1.11 8.60±2.12 11.92±2.96 11.92±2.96 6.16 0.52
0.37

-
+ 0.70 0.08

0.15
-
+ 1.69 0.07

0.09
-
+

2130 272.5325 −20.7702 3.73 0.59 0.02±0.02 0.01±0.01 0.00±0.00 0.00±0.00 6.08 0.77
0.44

-
+ 0.10 0.49

0.23- -
+ 1.03 0.27

0.08
-
+

6.06±2.51 4.87±1.04 16.42±2.14 16.42±2.14 5.06 0.65
0.78

-
+ 0.53 0.21

0.17
-
+ 0.57 0.33

0.27
-
+

1.11±1.25 0.44±0.40 1.02±1.06 1.02±1.06 5.14 0.46
1.69

-
+ 0.46 0.57

0.13
-
+ 1.21 0.14

0.07
-
+
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Table 2
(Continued)

Source ID α δ d (kpc) δd (kpc) F3.6 (mJy) F4.5 (mJy) F5.8 (mJy) F8.0 (mJy) tlog yr* ( ) M Mlog * ( ) Alog magV ( )

2133 271.9143 −20.4448 2.73 0.84 8.19±2.33 7.81±1.83 7.63±2.48 7.63±2.48 5.36 0.31
0.87

-
+ 0.50 0.26

0.14
-
+ 1.34 0.14

0.07
-
+

8.05±2.48 10.88±2.01 16.72±3.22 16.72±3.22 6.38 0.35
0.29

-
+ 0.64 0.08

0.08
-
+ 1.57 0.09

0.05
-
+

2141 271.9798 −20.4531 2.63 0.87 19.98±1.84 26.22±3.38 33.12±2.85 33.12±2.85 6.36 0.33
0.26

-
+ 0.67 0.05

0.09
-
+ 1.55 0.05

0.05
-
+

1.94±1.52 1.68±1.88 3.12±2.33 3.12±2.33 5.31 0.28
0.67

-
+ 0.49 0.34

0.16
-
+ 1.49 0.10

0.07
-
+

2412 272.6466 −19.2146 3.59 0.56 20.03±1.66 19.40±1.37 17.45±2.50 17.45±2.50 6.50 0.22
0.26

-
+ 0.64 0.08

0.12
-
+ 1.28 0.08

0.07
-
+

1.61±1.04 2.75±1.22 3.57±2.48 3.57±2.48 5.71 0.44
0.96

-
+ 0.29 0.42

0.22
-
+ 1.11 0.18

0.11
-
+

0.15±0.13 0.08±0.07 0.02±0.03 0.02±0.03 6.14 0.40
0.33

-
+ 0.08 0.31

0.26- -
+ 0.29 0.62

0.31
-
+

0.29±0.28 0.26±0.34 0.14±0.23 0.14±0.23 5.75 0.44
0.47

-
+ 0.04 0.37

0.37- -
+ 1.05 0.35

0.15
-
+

2416 273.0237 −19.3811 3.80 0.52 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 5.39 0.22
0.07

-
+ 0.67 0.11

0.11- -
+ 0.12 0.24

0.10
-
+

0.09±0.06 0.00±0.00 0.03±0.01 0.03±0.01 6.28 0.13
0.13

-
+ 0.18 0.09

0.10
-
+ 1.14 0.05

0.15
-
+

0.01±0.01 0.00±0.00 0.01±0.01 0.01±0.01 5.54 0.04
0.36

-
+ 0.76 0.24

0.03- -
+ 0.45 0.26

0.06- -
+

0.01±0.01 3.62±3.77 6.82±4.17 6.82±4.17 4.48 0.07
0.08

-
+ 0.22 0.23

0.15- -
+ 0.24 0.24

0.03
-
+

63.49±1.95 95.97±3.10 128.19±3.81 128.19±3.81 6.21 0.09
0.07

-
+ 0.80 0.03

0.04
-
+ 1.43 0.04

0.04
-
+

2419 272.6617 −19.188 3.59 0.56 7.05±2.02 2.83±1.51 6.73±3.60 6.73±3.60 6.51 0.15
0.16

-
+ 0.70 0.15

0.07
-
+ 1.46 0.05

0.07
-
+

5.04±2.04 21.93±2.29 43.57±4.27 43.57±4.27 5.20 0.15
0.33

-
+ 0.61 0.12

0.07
-
+ 1.09 0.15

0.19
-
+

0.19±0.15 0.19±0.16 0.25±0.23 0.25±0.23 6.26 0.39
0.51

-
+ 0.00 0.28

0.20
-
+ 0.73 0.11

0.44
-
+

0.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00 6.70 0.11
0.12

-
+ 0.65 0.19

0.20- -
+ 0.00 0.39

0.29
-
+

2713 273.0283 −17.6483 13.80 0.77 0.02±0.07 0.00±0.00 0.00±0.00 0.00±0.00 5.64 0.53
0.61

-
+ 0.13 0.44

0.34
-
+ 1.08 0.20

0.20
-
+

24.19±1.89 2.06±1.98 30.38±2.35 30.38±2.35 6.32 0.17
0.21

-
+ 0.89 0.05

0.08
-
+ 0.85 0.51

0.16
-
+

4.09±1.61 19.74±21.43 3.28±2.07 3.28±2.07 6.06 1.07
0.51

-
+ 0.74 0.08

0.07
-
+ 0.57 0.36

0.23
-
+

2985 274.06 −16.9622 2.15 0.73 0.01±0.01 0.00±0.01 0.01±0.01 0.01±0.01 6.54 0.96
0.23

-
+ 0.41 0.29

0.34- -
+ 1.20 0.16

0.13
-
+

0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 6.65 0.38
0.22

-
+ 0.72 0.20

0.27- -
+ 0.69 0.38

0.21
-
+

0.58±0.60 0.42±0.45 1.54±1.41 1.54±1.41 5.84 0.30
0.47

-
+ 0.02 0.36

0.33
-
+ 1.36 0.09

0.09
-
+

7.84±1.03 8.17±0.79 8.53±1.37 8.53±1.37 6.28 0.49
0.39

-
+ 0.52 0.07

0.06
-
+ 1.29 0.06

0.05
-
+

3156 274.2054 −16.4183 3.88 0.43 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 5.94 0.91
0.64

-
+ 0.37 0.33

0.44- -
+ 1.17 0.39

0.21
-
+

1.43±0.61 3.18±0.73 3.65±1.16 3.65±1.16 5.22 0.89
1.03

-
+ 0.58 0.40

0.22
-
+ 1.36 0.52

0.24
-
+

4.07±0.82 1.32±0.51 1.21±0.66 1.21±0.66 5.70 0.54
0.85

-
+ 0.46 0.40

0.10
-
+ 0.94 0.24

0.18
-
+

7.44±1.06 12.37±1.08 14.61±1.55 14.61±1.55 6.29 0.52
0.32

-
+ 0.71 0.10

0.17
-
+ 1.56 0.09

0.07
-
+

3227 274.8098 −16.5083 2.09 0.71 6.21±1.33 6.73±1.20 9.71±2.05 9.71±2.05 5.69 0.82
0.90

-
+ 0.57 0.18

0.14
-
+ 1.58 0.09

0.05
-
+

1.85±1.00 2.50±1.11 3.44±1.80 3.44±1.80 5.60 0.49
0.65

-
+ 0.34 0.39

0.20
-
+ 1.43 0.10

0.08
-
+

3282 274.4012 −16.0383 2.72 0.61 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 6.52 0.25
0.30

-
+ 0.48 0.32

0.29- -
+ 1.08 0.12

0.12
-
+

20.91±1.80 24.15±2.14 28.73±3.11 28.73±3.11 6.17 1.37
0.37

-
+ 0.72 0.08

0.15
-
+ 1.50 0.04

0.05
-
+

0.07±0.07 0.04±0.05 0.05±0.10 0.05±0.10 6.36 0.30
0.31

-
+ 0.53 0.25

0.28- -
+ 0.27 0.53

0.39
-
+

2.98±1.45 6.73±1.86 6.53±2.68 6.53±2.68 5.36 0.43
0.62

-
+ 0.57 0.42

0.18
-
+ 1.45 0.15

0.10
-
+

3538 275.2079 −14.7652 4.07 0.38 13.08±3.25 8.87±4.12 8.21±5.67 8.21±5.67 6.45 0.17
0.15

-
+ 0.70 0.08

0.10
-
+ 1.48 0.04

0.05
-
+

0.01±0.01 0.05±0.04 0.07±0.11 0.07±0.11 5.85 0.22
0.74

-
+ 0.24 0.29

0.29- -
+ 1.28 0.14

0.02
-
+

11.25±3.72 29.01±3.33 38.00±5.11 38.00±5.11 6.32 0.16
0.08

-
+ 0.94 0.17

0.15
-
+ 1.62 0.11

0.09
-
+

1.40±2.11 0.62±0.94 1.28±1.94 1.28±1.94 6.56 0.66
0.16

-
+ 0.47 0.34

0.20
-
+ 1.48 0.14

0.05
-
+

3568 275.7657 −14.9323 3.74 0.42 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 6.61 0.24
0.26

-
+ 0.29 0.28

0.07- -
+ 0.57 0.23

0.13
-
+

0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 6.46 0.48
0.06

-
+ 0.75 0.13

0.35- -
+ 0.77 0.29

0.18
-
+

2.18±0.85 3.33±0.98 17.19±6.20 17.19±6.20 6.50 0.27
0.23

-
+ 0.66 0.14

0.14
-
+ 1.69 0.09

0.05
-
+

3.97±1.03 9.40±1.20 9.44±3.19 9.44±3.19 3.70 0.38
0.49

-
+ 1.35 0.09

0.05
-
+ 1.32 0.14

0.11
-
+

3749 274.7755 −13.598 1.8 0.1 1.68±1.44 1.37±1.07 2.17±1.52 2.17±1.52 5.59 0.66
0.44

-
+ 0.13 0.30

0.49- -
+ 1.29 0.14

0.08
-
+
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Table 2
(Continued)

Source ID α δ d (kpc) δd (kpc) F3.6 (mJy) F4.5 (mJy) F5.8 (mJy) F8.0 (mJy) tlog yr* ( ) M Mlog * ( ) Alog magV ( )

19.21±1.73 18.01±1.48 16.01±1.85 16.01±1.85 6.57 0.30
0.24

-
+ 0.52 0.05

0.07
-
+ 1.38 0.05

0.04
-
+

3756 274.6668 −13.51 1.8 0.1 7.57±1.23 10.29±1.53 12.99±2.42 12.99±2.42 6.47 0.27
0.31

-
+ 0.57 0.07

0.13
-
+ 1.66 0.04

0.05
-
+

1.82±1.48 5.82±1.72 8.27±2.60 8.27±2.60 5.84 0.33
0.63

-
+ 0.33 0.37

0.17
-
+ 1.55 0.07

0.05
-
+

3776 275.2404 −13.7086 1.99 0.64 5.75±1.39 7.43±1.58 8.50±2.21 8.50±2.21 5.86 0.34
0.66

-
+ 0.34 0.43

0.13
-
+ 0.90 0.19

0.12
-
+

3.92±1.54 5.96±1.69 3.75±2.35 3.75±2.35 5.90 0.34
0.51

-
+ 0.18 0.47

0.21
-
+ 0.85 0.29

0.16
-
+

3786 274.8371 −13.4591 1.8 0.1 9.58±1.10 8.31±0.90 9.03±1.37 9.03±1.37 5.30 0.45
0.37

-
+ 0.12 0.24

0.36
-
+ 1.05 0.36

0.19
-
+

1.88±0.82 1.42±0.77 2.35±1.40 2.35±1.40 5.67 0.60
0.61

-
+ 0.04 0.34

0.38- -
+ 1.16 0.23

0.12
-
+

4013 276.3031 −12.741 11.84 0.40 14.25±1.57 6.07±1.30 9.95±1.70 9.95±1.70 6.36 0.21
0.26

-
+ 0.86 0.13

0.08
-
+ 1.12 0.08

0.05
-
+

0.02±0.02 0.05±0.12 0.02±0.05 0.02±0.05 6.19 1.38
0.31

-
+ 0.49 0.55

0.28
-
+ 1.31 0.24

0.13
-
+

39.26±1.95 40.06±1.77 40.69±2.08 40.69±2.08 6.31 0.15
0.16

-
+ 1.00 0.09

0.15
-
+ 1.24 0.11

0.05
-
+

4101 276.713 −12.4251 4.71 0.31 17.11±3.07 24.36±5.02 21.13±4.14 21.13±4.14 5.69 0.95
0.81

-
+ 0.71 0.11

0.29
-
+ 1.03 0.33

0.12
-
+

8.14±4.62 9.37±8.35 6.81±5.46 6.81±5.46 5.73 0.97
0.86

-
+ 0.62 0.15

0.23
-
+ 1.19 0.19

0.09
-
+

4745 278.6758 −8.5279 6.05 0.36 7.06±1.21 8.06±1.37 8.93±2.45 8.93±2.45 5.43 0.87
0.89

-
+ 0.93 0.12

0.22
-
+ 1.42 0.11

0.10
-
+

3.03±1.13 4.81±1.27 6.12±2.26 6.12±2.26 5.65 0.73
0.56

-
+ 0.96 0.10

0.15
-
+ 1.56 0.12

0.10
-
+

4750 278.6704 −8.5073 6.05 0.36 0.01±0.02 0.00±0.00 0.20±0.20 0.20±0.20 4.80 0.68
0.40

-
+ 0.63 0.18

0.19
-
+ 0.95 0.30

0.19
-
+

3.34±1.49 3.65±1.74 8.05±1.99 8.05±1.99 6.02 0.19
0.34

-
+ 0.82 0.08

0.12
-
+ 1.73 0.08

0.05
-
+

3.07±1.25 4.45±3.79 3.93±2.14 3.93±2.14 6.48 1.11
0.24

-
+ 0.57 0.13

0.14
-
+ 1.27 0.11

0.05
-
+

0.42±0.50 0.58±0.87 0.90±1.15 0.90±1.15 6.06 0.64
0.28

-
+ 0.84 0.13

0.09
-
+ 1.68 0.07

0.14
-
+

4796 278.6437 −8.1738 <1.27 0.75±0.54 0.62±0.57 1.38±0.91 1.38±0.91 4.86 0.18
0.21

-
+ 0.84 0.10

0.08- -
+ 0.58 0.15

0.14
-
+

5.92±1.73 3.31±1.73 0.67±1.54 0.67±1.54 5.95 0.13
0.00

-
+ 0.64 0.02

0.25- -
+ 1.19 0.03

0.01
-
+

2.15±2.43 1.59±1.48 0.80±0.74 0.80±0.74 6.95 0.16
0.05

-
+ 0.98 0.01

0.22- -
+ 1.10 0.16

0.10
-
+

15.60±1.78 27.84±2.78 42.27±2.09 42.27±2.09 6.22 0.00
0.12

-
+ 0.74 0.07

0.02
-
+ 1.57 0.03

0.00
-
+

4816 278.5914 −8.0471 3.10 0.44 1.13±0.84 0.87±0.64 1.02±0.72 1.02±0.72 5.51 0.33
0.35

-
+ 0.12 0.40

0.38
-
+ 1.31 0.14

0.11
-
+

8.95±1.69 2.47±1.44 0.41±0.58 0.41±0.58 5.12 0.33
0.54

-
+ 0.42 0.35

0.39
-
+ 0.79 0.17

0.18
-
+

0.01±0.00 0.02±0.01 0.27±0.21 0.27±0.21 6.77 0.25
0.13

-
+ 0.75 0.16

0.15- -
+ 0.82 0.12

0.18
-
+

6.12±1.34 9.90±1.47 14.83±1.69 14.83±1.69 5.13 0.85
1.30

-
+ 0.76 0.13

0.26
-
+ 1.49 0.18

0.10
-
+

1.55±0.78 2.46±0.86 0.24±0.52 0.24±0.52 5.18 0.31
0.59

-
+ 0.20 0.26

0.35
-
+ 1.38 0.12

0.08
-
+

4955 278.5693 −7.2357 6.38 0.48 7.04±2.30 11.97±2.27 16.42±4.43 16.42±4.43 6.73 0.06
0.00

-
+ 0.65 0.11

0.00
-
+ 1.40 0.00

0.00- -
+

0.14±0.12 0.01±0.00 0.00±0.01 0.00±0.01 6.63 0.00
0.00

-
+ 0.15 0.00

0.08- -
+ 1.03 0.00

0.02
-
+

1.27±0.64 0.32±0.35 3.91±4.59 3.91±4.59 3.67 0.05
0.00

-
+ 0.11 0.00

0.06- -
+ 0.14 0.00

0.00
-
+

33.09±3.01 43.68±2.71 56.12±3.68 56.12±3.68 6.23 0.00
0.00

-
+ 0.96 0.00

0.04
-
+ 1.50 0.00

0.00
-
+

20.85±4.01 10.51±3.71 12.77±7.44 12.77±7.44 6.32 0.03
0.00

-
+ 0.77 0.00

0.00
-
+ 1.48 0.00

0.00
-
+

5201 279.6925 −6.4813 5.93 0.42 9.58±0.99 12.46±0.93 14.59±1.42 14.59±1.42 4.98 0.07
0.03

-
+ 0.76 0.05

0.04
-
+ 1.41 0.03

0.04
-
+

0.05±0.07 0.08±0.14 0.83±0.61 0.83±0.61 5.04 0.18
0.15

-
+ 0.30 0.16

0.48- -
+ 1.29 0.11

0.10
-
+

0.02±0.02 0.01±0.03 0.01±0.01 0.01±0.01 6.09 0.20
0.41

-
+ 0.18 0.09

0.26- -
+ 1.02 0.20

0.06
-
+

0.70±0.29 1.08±0.31 1.79±0.65 1.79±0.65 6.32 0.03
0.00

-
+ 0.77 0.00

0.00
-
+ 1.48 0.00

0.00
-
+

0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 6.78 0.27
0.04

-
+ 0.42 0.03

0.14
-
+ 0.48 0.50

0.08
-
+

5504 280.9674 −4.6098 3.09 0.43 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 4.74 0.01
0.00

-
+ 0.55 0.05

0.12- -
+ 0.39 0.00

0.44- -
+

6.24±1.51 10.33±2.29 10.98±1.93 10.98±1.93 5.55 0.00
0.85

-
+ 0.47 0.20

0.00- -
+ 1.33 0.00

0.12
-
+

20.71±1.93 21.69±2.11 26.02±2.36 26.02±2.36 5.78 0.62
0.00

-
+ 0.58 0.37

0.09
-
+ 1.51 0.13

0.00
-
+

0.01±0.01 0.00±0.02 0.00±0.01 0.00±0.01 5.65 0.68
0.11

-
+ 0.62 0.34

0.03
-
+ 1.50 0.11

0.03
-
+

5559 281.0159 −4.2557 4.64 0.39 0.34±0.37 0.24±0.37 0.21±0.40 0.21±0.40 6.00 0.98
0.55

-
+ 0.27 0.37

0.46- -
+ 0.98 0.30

0.17
-
+

7.57±1.02 8.20±0.81 10.52±1.23 10.52±1.23 5.64 0.56
0.62

-
+ 0.34 0.40

0.25
-
+ 0.66 0.45

0.27
-
+
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Table 2
(Continued)

Source ID α δ d (kpc) δd (kpc) F3.6 (mJy) F4.5 (mJy) F5.8 (mJy) F8.0 (mJy) tlog yr* ( ) M Mlog * ( ) Alog magV ( )

7.95±1.40 17.46±2.27 17.34±3.66 17.34±3.66 6.09 1.02
0.56

-
+ 0.57 0.11

0.15
-
+ 0.60 0.44

0.26
-
+

5686 280.9778 −3.4684 4.62 0.40 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 6.53 0.28
0.12

-
+ 0.78 0.13

0.15
-
+ 1.60 0.10

0.05
-
+

16.52±1.79 16.37±2.37 29.28±3.78 29.28±3.78 6.48 0.43
0.22

-
+ 0.17 0.38

0.21- -
+ 0.91 0.13

0.16
-
+

0.01±0.02 0.00±0.00 0.00±0.00 0.00±0.00 6.23 0.07
0.16

-
+ 0.77 0.17

0.20
-
+ 1.78 0.07

0.08
-
+

0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 6.60 0.32
0.19

-
+ 0.13 0.30

0.19- -
+ 0.26 0.60

0.32
-
+

0.42±0.58 0.23±0.32 0.90±1.15 0.90±1.15 6.48 0.18
0.19

-
+ 0.48 0.33

0.16- -
+ 0.28 0.30

0.40
-
+

5976 281.904 −2.1462 7.08 0.50 23.42±3.07 31.14±3.41 35.26±5.47 35.26±5.47 4.39 0.90
0.28

-
+ 0.02 0.29

1.40- -
+ 1.35 0.39

0.80
-
+

19.45±2.55 26.97±2.74 35.48±4.61 35.48±4.61 5.40 0.77
0.33

-
+ 0.92 0.06

0.55
-
+ 1.44 0.12

0.16
-
+

2.23±1.45 2.56±1.64 8.13±2.30 8.13±2.30 4.56 0.24
0.11

-
+ 1.31 0.25

0.15
-
+ 1.42 0.16

0.10
-
+

2.03±1.23 3.10±1.49 5.21±1.38 5.21±1.38 5.02 0.62
1.36

-
+ 0.95 0.31

0.29
-
+ 1.41 0.30

0.23
-
+

9.77±1.02 16.49±1.15 28.63±1.91 28.63±1.91 5.89 0.33
0.29

-
+ 0.76 0.08

0.15
-
+ 1.44 0.07

0.14
-
+

5997 282.0054 −2.0609 7.33 0.25 0.28±0.48 0.40±0.76 0.68±0.92 0.68±0.92 6.28 0.10
0.21

-
+ 0.79 0.05

0.08
-
+ 1.45 0.15

0.08
-
+

4.45±1.69 4.01±1.48 2.91±1.03 2.91±1.03 5.74 0.69
1.42

-
+ 0.48 0.60

0.09
-
+ 1.30 0.25

0.11
-
+

6004 282.0535 −2.0414 7.07 0.50 19.32±2.26 17.49±1.98 17.39±3.14 17.39±3.14 5.28 0.39
0.26

-
+ 0.74 0.17

0.32
-
+ 0.98 0.21

0.18
-
+

0.06±0.07 0.17±0.17 0.16±0.16 0.16±0.16 6.12 0.19
0.20

-
+ 0.75 0.08

0.06
-
+ 0.76 0.19

0.11
-
+

39.90±2.21 32.65±1.81 32.19±2.74 32.19±2.74 5.38 0.56
1.22

-
+ 0.29 0.35

0.28
-
+ 1.03 0.51

0.20
-
+

0.01±0.01 0.00±0.00 0.00±0.00 0.00±0.00 6.20 0.34
0.23

-
+ 0.89 0.08

0.08
-
+ 1.42 0.05

0.04
-
+

6028 281.718 −1.7779 7.07 0.95 3.10±0.86 5.58±0.99 4.92±1.33 4.92±1.33 6.41 0.22
0.17

-
+ 0.29 0.34

0.15- -
+ 0.33 0.60

0.19
-
+

4.43±0.95 6.90±0.98 6.59±1.46 6.59±1.46 6.31 0.22
0.20

-
+ 0.73 0.13

0.17
-
+ 1.58 0.10

0.09
-
+

0.01±0.02 0.00±0.00 0.00±0.00 0.00±0.00 6.40 0.15
0.22

-
+ 0.81 0.16

0.15
-
+ 1.62 0.07

0.06
-
+

8.77±2.20 7.03±1.50 7.45±2.35 7.45±2.35 6.17 0.25
0.55

-
+ 0.06 0.24

0.27- -
+ 0.51 0.18

0.40
-
+

6148 282.1367 −1.1541 7.01 1.02 0.04±0.05 0.03±0.05 0.01±0.03 0.01±0.03 6.35 0.22
0.28

-
+ 0.72 0.08

0.12
-
+ 1.28 0.08

0.08
-
+

0.23±0.26 0.18±0.24 0.10±0.18 0.10±0.18 5.99 0.73
0.42

-
+ 0.18 0.41

0.21
-
+ 1.20 0.17

0.14
-
+

7.35±2.59 4.71±1.38 4.95±1.75 4.95±1.75 6.03 0.38
0.47

-
+ 0.40 0.19

0.12
-
+ 0.25 0.44

0.36
-
+

0.56±0.29 0.65±0.46 1.58±1.10 1.58±1.10 6.46 0.43
0.30

-
+ 0.60 0.09

0.12
-
+ 0.79 0.35

0.22
-
+

6256 282.466 −0.4041 3.14 0.45 0.01±0.02 0.00±0.01 0.01±0.02 0.01±0.02 5.29 0.77
0.74

-
+ 0.22 0.19

0.65- -
+ 0.89 0.43

0.22
-
+

0.91±0.34 2.82±0.66 4.42±1.32 4.42±1.32 6.05 0.50
0.72

-
+ 0.55 0.18

0.38- -
+ 0.85 0.41

0.14
-
+

0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 6.63 0.54
0.15

-
+ 0.54 0.13

0.11
-
+ 1.55 0.05

0.06
-
+

2.15±0.74 3.17±0.69 6.28±1.22 6.28±1.22 5.49 0.38
0.22

-
+ 0.54 0.21

0.43- -
+ 0.22 0.35

0.34
-
+

6286 282.8543 −0.2419 11.35 0.46 0.01±0.01 0.00±0.00 0.00±0.01 0.00±0.01 6.42 0.24
0.19

-
+ 0.66 0.07

0.16
-
+ 0.45 0.74

0.27
-
+

3.41±4.18 1.21±2.05 17.61±16.33 17.61±16.33 5.96 0.64
0.70

-
+ 0.21 0.43

0.17
-
+ 0.64 0.36

0.36
-
+

2.50±5.54 8.22±25.34 12.25±36.49 12.25±36.49 6.22 0.20
0.28

-
+ 0.75 0.10

0.18
-
+ 1.40 0.13

0.11
-
+

7.22±1.34 9.09±1.38 8.72±1.78 8.72±1.78 6.32 0.16
0.36

-
+ 0.68 0.11

0.12
-
+ 1.17 0.13

0.12
-
+

6307 282.4882 0.0925 0.56 0.54 0.45±0.30 0.36±0.26 0.45±0.54 0.45±0.54 5.84 0.63
0.46

-
+ 0.04 0.46

0.33- -
+ 1.56 0.09

0.06
-
+

2.85±1.23 2.60±1.09 4.27±2.00 4.27±2.00 6.37 0.59
0.34

-
+ 0.63 0.21

0.35- -
+ 1.32 0.07

0.06
-
+

11.46±2.22 9.67±1.24 18.98±4.53 18.98±4.53 6.25 0.64
0.36

-
+ 0.46 0.27

0.43- -
+ 1.20 0.09

0.12
-
+

6512 283.3616 1.264 3.58 0.46 0.05±0.06 0.02±0.03 0.01±0.01 0.01±0.01 5.82 1.06
0.20

-
+ 0.74 0.15

0.20
-
+ 1.55 0.10

0.09
-
+

2.30±8.13 13.22±1.27 12.58±17.48 12.58±17.48 5.75 0.87
0.67

-
+ 0.10 0.42

0.60- -
+ 0.80 0.38

0.27
-
+

0.00±0.00 0.58±0.43 0.82±0.59 0.82±0.59 6.08 0.37
0.32

-
+ 0.84 0.11

0.14
-
+ 1.76 0.09

0.08
-
+

0.13±0.19 0.21±0.32 0.42±0.67 0.42±0.67 5.75 0.59
0.69

-
+ 0.42 0.62

0.36
-
+ 1.60 0.14

0.16
-
+

0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 5.81 0.59
0.60

-
+ 0.36 0.38

1.10- -
+ 1.84 0.48

0.38
-
+

6530 283.324 1.3971 3.84 0.46 1.32±0.76 0.71±0.36 7.50±3.66 7.50±3.66 4.72 0.32
0.04

-
+ 0.01 0.31

0.35
-
+ 0.02 0.61

0.60
-
+

9.03±1.00 13.32±0.84 9.19±2.97 9.19±2.97 5.18 0.38
0.34

-
+ 0.22 0.24

0.22
-
+ 1.41 0.28

0.08
-
+
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Table 2
(Continued)

Source ID α δ d (kpc) δd (kpc) F3.6 (mJy) F4.5 (mJy) F5.8 (mJy) F8.0 (mJy) tlog yr* ( ) M Mlog * ( ) Alog magV ( )

0.00±0.01 0.02±0.02 0.02±0.03 0.02±0.03 6.36 0.20
0.21

-
+ 0.62 0.06

0.14
-
+ 1.37 0.09

0.08
-
+

6572 284.2129 1.3027 2.96 0.47 2.54±0.80 1.86±0.70 3.82±1.52 3.82±1.52 5.54 1.89
1.16

-
+ 0.42 0.36

0.46- -
+ 0.94 0.75

0.20
-
+

4.12±0.88 6.45±0.89 6.68±1.58 6.68±1.58 5.92 0.30
0.34

-
+ 0.44 0.34

0.12
-
+ 1.20 0.13

0.08
-
+

0.00±0.01 0.01±0.01 0.00±0.01 0.00±0.01 6.56 0.36
0.14

-
+ 0.56 0.06

0.09
-
+ 1.44 0.04

0.05
-
+

2.77±0.62 7.61±0.96 16.58±1.78 16.58±1.78 6.54 0.32
0.26

-
+ 0.03 0.20

0.14- -
+ 1.44 0.12

0.14
-
+

6590 283.3846 1.7837 3.61 0.47 3.30±0.74 4.59±0.93 8.03±2.07 8.03±2.07 5.16 0.00
0.00

-
+ 0.75 0.00

0.00
-
+ 1.63 0.01

0.03
-
+

2.10±1.03 0.99±0.64 0.88±0.70 0.88±0.70 6.36 0.18
0.26

-
+ 0.57 0.00

0.10
-
+ 1.55 0.06

0.00
-
+

6747 284.1658 2.3252 3.72 0.48 17.85±1.42 15.93±1.10 20.28±1.58 20.28±1.58 5.64 0.39
0.45

-
+ 0.30 0.36

0.25
-
+ 0.68 0.35

0.22
-
+

0.08±0.11 0.04±0.07 0.04±0.08 0.04±0.08 6.39 0.25
0.26

-
+ 0.65 0.05

0.07
-
+ 1.39 0.04

0.04
-
+

12.87±2.08 9.70±1.36 6.47±1.89 6.47±1.89 6.04 0.87
0.33

-
+ 0.25 0.31

0.43- -
+ 0.73 0.77

0.25
-
+

7137 285.2823 5.1651 1.88 0.46 22.53±1.95 26.09±1.60 32.33±2.08 32.33±2.08 5.48 0.37
0.62

-
+ 0.42 0.35

0.15
-
+ 1.32 0.09

0.06
-
+

7.37±1.84 7.73±1.81 9.67±2.35 9.67±2.35 6.55 0.36
0.20

-
+ 0.54 0.07

0.07
-
+ 1.37 0.04

0.04
-
+

7143 285.2769 5.1949 1.88 0.46 6.90±2.13 6.92±1.76 7.62±2.56 7.62±2.56 5.58 0.54
0.93

-
+ 0.49 0.30

0.12
-
+ 1.45 0.10

0.05
-
+

2.40±0.56 5.75±0.94 9.75±1.39 9.75±1.39 5.54 0.40
0.51

-
+ 0.32 0.34

0.24
-
+ 1.51 0.10

0.07
-
+

7183 285.9298 5.1744 2.48 0.47 0.15±0.25 0.12±0.33 0.21±0.99 0.21±0.99 6.05 1.29
0.58

-
+ 0.64 0.15

0.17
-
+ 1.68 0.11

0.07
-
+

5.46±1.31 6.71±0.99 7.79±1.53 7.79±1.53 5.79 0.71
0.56

-
+ 0.02 0.47

0.39
-
+ 1.32 0.16

0.13
-
+

7276 286.1944 6.0907 8.39 0.64 3.43±1.53 1.95±0.84 2.90±1.43 2.90±1.43 6.06 1.20
0.47

-
+ 0.75 0.09

0.21
-
+ 1.28 0.14

0.07
-
+

1.12±0.85 1.08±1.70 3.19±3.08 3.19±3.08 5.65 0.66
0.91

-
+ 0.62 0.15

0.12
-
+ 0.56 0.42

0.26
-
+

7492 287.454 8.0791 5.19 0.90 25.11±1.45 29.55±3.01 37.64±2.34 37.64±2.34 6.37 0.32
0.72

-
+ 0.57 0.18

0.11
-
+ 1.27 0.21

0.13
-
+

3.36±0.71 8.53±1.10 13.46±1.59 13.46±1.59 6.28 0.13
0.26

-
+ 0.80 0.05

0.04
-
+ 1.46 0.04

0.03
-
+

7516 287.5937 8.9819 11.20 0.50 0.64±0.50 1.83±0.91 2.14±1.28 2.14±1.28 5.73 0.81
0.47

-
+ 0.95 0.09

0.25
-
+ 1.70 0.14

0.07
-
+

2.93±1.01 6.34±1.88 8.21±2.25 8.21±2.25 5.51 0.87
0.79

-
+ 0.83 0.19

0.29
-
+ 1.58 0.15

0.14
-
+

7569 287.9451 9.7828 5.93 1.44 2.39±1.22 3.46±1.87 4.87±2.47 4.87±2.47 5.95 0.94
0.56

-
+ 0.71 0.11

0.08
-
+ 1.46 0.13

0.08
-
+

1.25±0.93 1.09±1.06 2.28±2.53 2.28±2.53 5.47 0.63
0.95

-
+ 0.66 0.21

0.10
-
+ 1.40 0.18

0.11
-
+

7580 287.9335 9.9845 5.91 2.10 12.03±1.30 28.54±1.78 45.91±2.74 45.91±2.74 5.70 0.51
0.88

-
+ 0.60 0.14

0.09
-
+ 1.37 0.11

0.07
-
+

5.16±1.27 9.93±1.41 13.60±1.93 13.60±1.93 3.62 0.20
0.33

-
+ 0.33 0.05

0.49
-
+ 1.08 0.14

0.11
-
+

7590 287.9285 10.1183 4.76 1.14 3.16±1.23 5.58±1.73 6.48±1.84 6.48±1.84 6.23 1.45
0.40

-
+ 0.62 0.23

0.33
-
+ 1.13 0.30

0.13
-
+

2.50±0.85 3.59±1.00 8.74±1.85 8.74±1.85 5.26 0.56
0.96

-
+ 0.54 0.24

0.16
-
+ 1.23 0.10

0.12
-
+

8304 292.2463 17.8265 9.76 0.56 10.20±1.06 16.89±1.19 24.67±1.95 24.67±1.95 6.36 0.84
0.21

-
+ 0.69 0.07

0.12
-
+ 1.44 0.13

0.07
-
+

0.02±0.05 0.00±0.01 0.05±0.13 0.05±0.13 6.23 0.08
0.21

-
+ 0.93 0.08

0.11
-
+ 1.62 0.11

0.06
-
+

0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 5.78 0.37
0.40

-
+ 0.19 0.34

0.20
-
+ 0.48 0.59

0.31
-
+

12.67±1.03 10.86±0.87 9.77±1.57 9.77±1.57 6.29 0.23
0.31

-
+ 0.07 0.27

0.20- -
+ 0.33 0.50

0.27
-
+

8376 292.5529 18.3298 1.92 0.64 0.73±0.52 0.20±0.33 0.78±1.23 0.78±1.23 5.40 0.63
1.12

-
+ 0.44 0.34

0.15
-
+ 1.11 0.29

0.17
-
+

1.74±0.64 4.20±1.65 5.43±2.00 5.43±2.00 5.79 0.73
0.54

-
+ 0.10 0.39

0.41- -
+ 1.07 0.25

0.13
-
+

8745 294.8893 23.9764 2.16 0.10 3.81±0.76 8.09±1.22 11.45±1.66 11.45±1.66 6.10 0.82
0.52

-
+ 0.48 0.32

0.14
-
+ 1.67 0.10

0.08
-
+

8.62±0.96 6.52±0.74 8.31±1.00 8.31±1.00 6.44 0.42
0.29

-
+ 0.59 0.08

0.10
-
+ 1.71 0.07

0.04
-
+

8870 296.7318 25.2053 2.5 0.61±0.55 0.25±0.42 0.12±0.24 0.12±0.24 6.00 0.41
0.60

-
+ 0.49 0.15

0.06
-
+ 1.08 0.13

0.08
-
+

3.22±1.34 5.61±1.26 7.97±2.37 7.97±2.37 5.99 0.49
0.43

-
+ 0.23 0.30

0.40- -
+ 0.81 0.36

0.19
-
+

18398 265.9022 −30.5484 <5.22 0.02±0.02 0.02±0.02 0.01±0.01 0.01±0.01 5.82 1.18
0.64

-
+ 0.81 0.16

0.27
-
+ 1.65 0.15

0.11
-
+

2.04±1.46 3.81±1.54 6.33±2.51 6.33±2.51 6.07 0.81
0.44

-
+ 0.10 0.43

0.32- -
+ 0.40 0.45

0.34
-
+

6.77±1.94 7.63±1.49 7.41±2.11 7.41±2.11 5.75 1.01
0.70

-
+ 0.75 0.19

0.25
-
+ 1.63 0.15

0.12
-
+

18695 265.7287 −29.3484 <6.01 2.36±1.47 2.04±1.23 2.34±1.55 2.34±1.55 5.31 0.59
1.21

-
+ 0.64 0.16

0.21
-
+ 0.95 0.38

0.18
-
+

0.79±0.62 0.90±0.79 0.96±0.90 0.96±0.90 5.67 0.79
0.81

-
+ 0.59 0.22

0.34
-
+ 0.91 0.35

0.18
-
+
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Table 2
(Continued)

Source ID α δ d (kpc) δd (kpc) F3.6 (mJy) F4.5 (mJy) F5.8 (mJy) F8.0 (mJy) tlog yr* ( ) M Mlog * ( ) Alog magV ( )

3.70±1.09 1.77±0.95 6.85±1.86 6.85±1.86 5.47 0.85
0.91

-
+ 0.60 0.30

0.27
-
+ 1.40 0.16

0.12
-
+

18738 266.1215 −29.402 <7.00 4.10±1.42 16.53±1.32 21.10±2.11 21.10±2.11 6.36 0.25
0.25

-
+ 0.75 0.09

0.12
-
+ 1.64 0.06

0.08
-
+

6.27 0.15
0.22

-
+ 0.89 0.07

0.11
-
+ 1.71 0.05

0.06
-
+
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luminosities will soon be put to the test using James Webb
Space Telescope (JWST) observations. With a spatial resolution
six or seven times larger than Spitzer-IRAC, JWST-MIRI will
be able to resolve most of our clusters into individual YSOs,
using filters centered at similar wavelengths, such as F560W
and F770W.

An example of the final model parameter posteriors can be
seen in Figure 6 for cluster 6307. Plotted are the posteriors for
stellar mass (m*), age (t*), and visual extinction (AV) for each
of the three individual sources. For each YSO in the cluster,
mass and age are degenerate, and the marginalized probabilities
typically show two possible solutions, with one of the two
probability maxima being significantly more prominent. It
would be extremely hard to spot these two solutions for
individual unresolved YSOs using conventional SED-fitting
methods. The estimated visual extinctions are well constrained
and typically have scatters of 0.3–0.4 dex and mean values
below 40mag.

For 6307, our results indicate similar evolutionary stages for
all three YSOs composing the cluster. The MAP estimates for
the individual ages are all within a 0.6 Myr range centered
around 6Myr. More generally, age uncertainties are still
significant (of the order of ±0.5 Myr or more), and coeval birth
of the three protostars cannot be assumed based on this
evidence alone. We discuss the likelihood of coeval birth
within individual clusters in Section 5.3.

For YSOs in a given cluster, the NIR fluxes from UKIDSS
do not necessarily correlate with YSO mass. A significant
fraction of the stellar luminosity is reprocessed and reemitted at
MIR wavelengths. Correctly associating NIR sources with MIR
fluxes is crucial to estimating the intrinsic luminosities of each

member, their masses, and the amount of obscuration due to
dust absorption in each case. Our method can do exactly that.
For example, cluster 1364 contains a dim, embedded NIR
source (red SED in the lower panels of Figure 4) that
nevertheless dominates the IRAC and MIPS bands and that is
significantly more massive than what would be expected from
its UKIDSS fluxes only. Given the spatial projected proximity
of this source to one other member of the cluster, it would have
been very difficult to estimate its mass using conventional
techniques.

4.2. Derived Properties of Clustered YSOs

We now describe the derived properties for the YSOs in our
sample and look at the correlations found between those
properties. We focus on three main aspects: (1) overall
statistics; (2) cluster-to-cluster variations in mass, age, and
extinction; and (3) variations of YSO properties within
individual clusters.

4.2.1. Overall Statistics

Figure 7 shows histograms of the YSO masses, ages, and
visual extinctions of all 207 individual sources that make up the
70 studied clusters. The values plotted correspond to the 50th
percentile from the MCMC sample chains. On average, there
are three detected sources per cluster, and clusters with two
detected members are significantly more common (28 out
of 70 clusters) than multiple clusters. The measured mass
distribution is bimodal with a main peak at m*∼3.0Me and a
secondary peak at m*∼0.8Me. The maximum derived mass
is m*∼22Me.

Figure 4. Simultaneous SED fitting of spatially blended sources in clusters 6307 (upper panels) and 1364 (lower panels). The left panels show the initial SED fit when
only unresolved information is available from the IRAC bands. Each source is shown in a different color and with different symbols for the measured photometry. The
solid lines correspond to the MAP estimate, whereas the shaded lines correspond to the solutions within 1σ of the best fit. The middle panels show the posterior
predictives for the IRAC 1 band fluxes derived from fitting the unresolved SEDs. The right panels show the resolved fit after constraints from the image-fitting
algorithm have been incorporated. The IRAC fluxes resulting from sampling the image-fitting posteriors now appear as resolved measurements with associated
error bars.
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The age distribution is consistent with a relatively evolved
population; that is, most sources have derived ages compatible
with them being class II or class III YSOs, with only 11 out
of the 207 YSOs being 105 years or younger. This is not
surprising given the fact that we have selected sources with
clear NIR detections. The distribution peaks at 2.5Myr and is
more skewed toward younger ages.

The large majority of clusters are located in regions of high
visual extinction relative to the average AV for individual stars
at the same distances, as derived from the Pan-STARRS data.
For example, at distances of 15 kpc or less, Green et al. (2015)
derive E(B− V ) values in the galactic plane that are consistent
with AV<10 mag, whereas our distribution of AV values peaks
at about 20mag. Such increased extinction toward the YSO
clusters is expected and confirms that clustered star formation
occurs in regions that are significantly more embedded than
neighboring field stars; the broad distribution of AV for these
young stars is perhaps of more interest. The fact that
extinctions higher than about AV=50 are not detected is
probably a selection effect, since those sources are harder to
detect in the NIR.

4.2.2. Cluster-to-cluster Properties

Figure 8 shows the projected location of our YSO clusters
onto the galactic plane, color coded respectively by the derived
MAP values of (a) Mlog cl, the total stellar mass in the cluster
estimated as the sum of the individual masses detected; (b)

mlog max, the mass of the most massive member in the cluster;
(c) tlog *, the estimated age of the cluster; and (d) Alog V ,

the estimated visual extinction. The range of cluster stellar
masses in our clusters (uncorrected for incompleteness) is
1.5Me<Mcl<45Me, and it contains between two and five
detected members. On the other hand, the range of most
massive stars in each cluster is 0.9Me<mmax<22Me,
which suggests that the mass of detected mass in these clusters
is dominated by the most massive star, with significant
contributions from the second most massive in some cases.
About 90% of the studied clusters are closer to us than half the
distance to the most distant cluster in the sample. The most
massive YSO detected (located in cluster 3568), with a mass of
22Me, is at a distance of 3.7 kpc, just beyond the Sagittarius
arm at a galactic longitude of l 16~ ( ) . This is relatively close
compared with the most distant cluster, located at almost
15 kpc from us. This same source is also one of the least
evolved Class I sources. Its 24 μm flux density is almost an
order of magnitude higher than that of other cluster members.
The fact that the most massive source detected as part of a
cluster is not particularly far away hints at the fact that selection
effects of distance on measured masses, at least within the
distance range considered here, are not dramatic. However, in
Section 4.3, we take distance effects into account when we
correct Mcl for the effects of completeness.
As for the spatial distribution of evolutionary stages, cluster

5976 has the youngest age, estimated as the mean of the
individual YSO ages. It has five members and is only 3 arcsec
apart from a maser source identified in Szymczak et al. (2005),
in the far end of the 3 kpc arm, a clear indication of massive
star formation taking place in the region. The most evolved
cluster is 5686, which also contains five members and is

Figure 5. Left panels: MAP estimates from 2D image fitting for sources 6307 and 1364 in IRAC bands 1 and 4, respectively. Middle panels: original measured images
for the same sources in the corresponding bands, for source ID 6307 in IRAC bands 1 and 4. The red crosses indicate the locations of the UKIDSS sources. Right
panels: posterior distributions (P N Ak({ }∣ )) for the fluxes after image fitting. The color coding is the same as in Figure 4. For comparison, the posteriors after the
original SED fitting are shown as the solid-line histograms.
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located in a line of sight not too far away from that to 5476, but
closer to us, at about 1 kpc from the point where the Scutum–

Centaurus arm meets the galactic bar. The spatial distribution
of visual extinctions is also shown in Figure 8. Cluster 360,

located on the near side of the 3 kpc arm, has the highest
derived optical extinction (AV=58) and also neighbors (0 53)
a millimetric compact source containing a maser (Caswell
et al. 2010; Urquhart et al. 2013).

Figure 6. Posterior probability distributions of the model parameters for all three sources in cluster 6307, labeled according to the color of their SED in the upper
panels of Figure 4. These are the final posteriors after the resolved fluxes from the image analysis have been included for the IRAC bands. The gray scale matches the
probability density, and the marginalized probabilities are also shown. Vertical dashed lines correspond to the 0.25, 0.5, and 0.75 quantiles.
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4.2.3. Within-cluster Properties

Figure 9 illustrates the spatial distribution of mass and age
dispersions within each cluster. The majority of clusters have
small age dispersions, as measured by the difference between
the ages of the oldest and the youngest stars (tmax<2.5tmin),
hinting at a relatively quick (although not necessarily coeval)
formation of all detected members within the cluster. YSO age
dispersion is less than a factor of 3 in 60% of the clusters, and
more than a factor of 10 in only 13% of the cases. At least two
clusters (4955 and 2568) show a significant age dispersion
(tmax>400tmin), but those are cases where a few relatively
evolved sources (a few million years old or so) are in the same
cluster with a single, considerably embedded Class I young
source.

We searched for any existing correlations between the age of
the oldest member in a given cluster (tmax) and both the mass of
its most massive member (mmax) and the mass of its least
massive star (mmin). Figure 10 shows linear regression fits to
these two correlations. Based on a p-value analysis, we find
that at a 0.05 significance level, only the second of these two
linear fits is significant enough to reject the null hypothesis
with enough confidence. We will discuss the astrophysical
implications of this correlation in Section 5.3, where we
interpret it in terms of the cluster accretion history and the
effect of dynamical evolution of the cluster in stopping this
accretion. We note that the correlation holds across 1.5 orders
of magnitude in tmax, corresponding roughly to YSOs of classes
II and III.

4.3. The M mcl max- Correlation

An important question in star formation is whether there is a
nontrivial relationship between the total stellar mass of a cluster
and the number and mass of its individual protostars, and,
correspondingly, if and how the local IMF might be affected by
such a nonlinearity. We attempt to shed light on the issue in the
case of low-mass associations based on our results.

4.3.1. Corrected Mcl

Given a limiting flux below which faint sources are not
detected, the completeness of clusters is a function of distance.
Because the brightness of a source decreases as 1/d2, a star of a
given luminosity is about 900 times fainter at a distance of
15 kpc (the distance to the most remote of our cluster) than it

would be at half a kiloparsec, and the fraction of the total
cluster mass that remains undetected is therefore larger for
more distant clusters. We therefore proceed to estimate a
correction to Mcl for each cluster, based on their heliocentric
distances.
In order to estimate this correction, we first note that it would

be impractical to attempt to determine exactly how much mass
is undetected for each cluster, because of the very nature of
statistical sampling. However, we can obtain a reliable estimate
and the associated uncertainties by looking at the typical
properties of clusters of similar masses. A typical cluster in our
sample has only one star more massive than 5Me, with a few
exceptional cases having a single star more massive than
10Me. Using MC simulations, we randomly sampled 105

clusters containing a single 5Me star from a Kroupa IMF
corrected for binarity, and we evaluated the typical number of
members and total stellar masses of the resulting samples. We
find that a cluster with a single star above M*=5Me typically
contains about 150 members and has a total stellar mass of
∼45Me.
We then estimate the limiting mass at each heliocentric

distance as the SED-derived mass of the least massive object
detected in our sample within a small distance bin centered on
the corresponding distance. We fit an exponential function to
the resulting correlation and find that the limiting mass is
0.1Me at 1 kpc and 1Me at 10 kpc, with an uncertainty of 10%
in logarithmic space. Using the MC simulation, we then
estimate how much mass is typically contained below the
limiting masses at each distance. Our results indicate that at
1 kpc we are missing between 4% and 8% of the cluster mass,
whereas at 10 kpc this figure is between 45% and 55%. We use
those values and their uncertainties to adjust a correction to

Mlog cl that scales linearly with dlog , and we apply this
correction to the derived masses.

4.3.2. Derived Correlation and Mass–Luminosity Relationship

Figure 11 shows the resulting Mcl versus mmax correlation for
all 70 clusters studied here, all of which have five or fewer
detected members with typical masses m*∼3Me. The discussed
correction to Mcl has been applied and contributes to the slope of
this correlation according to m Mlog log 0.14max clD D = ,
which is the difference in the best-fitting slope before and after
the mass-completeness correction has been applied.

Figure 7. Histograms of source properties derived from the combined SED/image fitting. Shown are the 50% quantile values for YSO age, stellar mass, and visual
extinction. All 207 individual YSOs making up the 70 clusters are used to generate these histograms.
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For a given apparent brightness, L*∝d2. We can use this
expression in combination with the relationship between
limiting mass and distance estimated above in order to estimate
a mass–luminosity relation for the YSOs in our sample.
Plugging the numbers, we get L m 2.2

* *
µ . This derived mass–

luminosity correlation is satisfactorily consistent with theor-
etical ideas like those of Myers (2012), who suggests a relation
with a very similar exponent. However, the mass–luminosity
relation for young stars is very much more uncertain than it is
for stars dominated by nuclear burning processes or Kelvin–
Helmholtz contraction, and we therefore do not claim that our
results are necessarily a successful test of Myers (2012).
However, the agreement between our results and their
theoretical prediction increases the confidence in our results.

Accretion processes can dominate the luminosity of young
stars and are functions of their mass and age, not to mention
episodic periods determined by environmental considerations.
The Myers (2012) relation, for example, is derived for
protostars that are still accreting substantially, and of course
the relation will also vary when the IMF varies from normal.
All of these complexities, however, point to the potential value
of our new method in comparative analysis of clusters. In
future papers, we will explore larger samples to clarify the
processes underway in clusters and help distinguish clusters,

ascertain more accurately their ages, and probe their IMFs and
mass cutoffs.

4.3.3. Bayesian Linear Regression for the Correlation

We use a generalized linear model to perform Bayesian
linear regression and estimate posterior distributions for the
slope and the normalization of the resulting Mcl−mmax

correlation, and we compare these posteriors with theoretical
predictions and previous empirical findings. In order to perform
the statistical inference, we assume that each data point is
sampled from a normal distribution , m s( ). The correction
applied to Mcl for each cluster, which itself has an uncertainty
that has been accounted for, enters the fit as an additional error
for this parameter, and therefore the posterior distributions
resulting from Bayesian inference are consistent with all
possible sources of error, to the best of our knowledge. We use
uniform priors for both parameters.
The results of Bayesian linear regression are shown in

Figure 12. The left panel shows the posterior for the slope
compared to previous theoretical and semiempirical findings
shown as the vertical lines. The right panel shows the posterior
for the intercept compared with the same models. As for the
scatter, we show in Figure 13 the distribution of the differences
between mlog max and the mean of the distribution expected

Figure 8. Projected locations of the studied clusters onto the galactic plane with colors indicating different derived properties. The upper two panels show the total
stellar mass of the clusters and the mass of the most massive member in each of them. The lower two panels show the average ages and the average visual extinctions
for each cluster. The grid is centered on the Sun.
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from our linear model. The Wilcoxon signed-rank test
(Bhattacharyya & Johnson 1977) is used to determine whether
this distribution is compatible with random sampling. Accord-
ing to the test, if the values have been sampled randomly from
a symmetric distribution around the mean, then the percentage
of measurements between the 1/6th and 5/6th quantiles should
be around 66%. For the distribution of Figure 13, this
percentage is 65.7%.

In both figures, the posteriors are compared to the following
predictions for the Mcl−mmax correlation:

1. Salpeter IMF: Elmegreen (2000) model distributions are
constructed from a single-slope power-law Salpeter IMF;
their combined luminosity exceeds the binding energy of
the molecular cloud. The gravitational fate of the cluster
is determined by the star formation efficiency, and the
mass of the most massive star is set by the total number of
stars, that is, random sampling applies, and the formation
of isolated massive stars is possible (the double-dot-
dashed correlation), in Figure 11.

2. Empirical: Larson (1982, 2003) models compare the
properties of several molecular clouds with the stellar
populations of the clusters within (the ρ Ophiucus cluster,
the Orion Nebula cluster, the Quintuplet, and the R136
clusters) and derive the empirical relation shown as a
dash-dotted line in Figure 11. The slope of this
correlation (0.45) is shallower than what is predicted by
a nominal Salpeter slope; according to the authors, this is
the result of a lower star formation efficiency in the high-
mass end due to feedback.

3. Competitive accretion: Bonnell et al. (2003) modeled
stars in a young cluster accreting from a shared reservoir
of gas. In gas-dominated regions of the cluster, usually in
peripheral regions, the accretion is limited by tidal
interactions, whereas in the cluster core the high relative
velocities between stars results in Bondi–Hoyle accretion.
The latter results in a fragmented IMF that is steeper for
the high-mass stars that form in the cluster core with
respect to the shallower IMF for low-mass stars that form
in gas-dominated regions. This naturally results in the
Mcl−mmax correlation shown as the dotted line in
Figure 11.

4. Random sampling: Oey & Clarke (2005) analytically
derive the correlation between Mcl and mmax assuming

that the stars are randomly produced according to a
Salpeter IMF. The correlation they obtain is shown as the
long-dashed line in Figure 11. Their study, which
includes results for a sample of young, nearby OB
associations, concludes that there is a fundamental upper
mass limit that truncates the IMF and estimates a very
low probability for optimal sampling that depends on the
cluster mass.

5. Analytic random sampling: Weidner & Kroupa (2004)
assume in their study that a fundamental upper mass limit
exists at mmax=150Me and use the canonical multipart
Kroupa IMF to find the correlation shown as the short-
and-long-dashed line in Figure 11.

5. Discussion

In this section, we explore how the physical properties we
derive for individual YSOs in low-mass (Mcl< 100Me)
clusters reflect the physical processes of star formation in
individual clusters of various morphological types.

5.1. Construction of the IMF for Low-mass Clusters

Are all the stellar masses in the galaxy produced via a single
universal IMF, or does the distribution of masses depend on the
environment, making the integrated IGIMF of stars different
from the canonical IMF? (The IGIMF is usually discussed in
the context of massive stars, but here we consider it in its
broadest sense.) If the IMF results from a random sampling
process in any given cluster, then star formation is agnostic to
the conditions of the environment, including the total mass of
the birth cluster; no self-regulation is at play. If, on the other
hand, the stellar masses in a cluster are preferentially
determined starting with the most massive of its members,
then this implies that star formation is self-regulated, and that
the mass of the most massive star depends on the available
resources in the cluster.
The results from Figures 11–13 allow us to probe some of

the questions initially posed about the IMF, at least for our
sample of clusters with masses below 100Me. They indicate
that theMcl−mmax correlation is already present in this regime
of low-mass clusters, and that it is incompatible with simple
assumptions of a power law of slope 1. When the intercept and
the slope of the correlation are considered together, the

Figure 9. Projected locations of the studied clusters onto the galactic plane with colors indicating ranges of stellar ages (left panel) and masses (right panel). The color
code indicates the ratio between the highest and lowest value of the individual components of the cluster in each case.
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posterior distributions for the correlation parameters are most
compatible with the Oey & Clarke (2005) analytical model that
assumes a fundamental high-mass limit for stellar objects and
results in a truncated IMF. The distribution of mmax values
around the mean of the distribution expected from the linear
model is compatible with random sampling from that model,
according to the Wilcoxon signed-rank test.

This paper only samples clusters up to masses of 100Me and
does not address the upper mass limit possible in a normal
IMF. We can speculate, however, on whether it is likely that
the results in Figure 11 might extrapolate to larger mass
clusters. If it did, then the limit found by Oey & Clarke (2005)
of 120–200Me (although it is not very well determined) would
be reached in clusters of Mcl∼5000Me. Other authors have
made attempts to set a more specific limit, such as the Weidner
& Kroupa (2004) study, which also assumes random sampling,
but with a clear upper limit at mupper=150Me. This would
affect the normalization of the Mcl−mmax correlation, and our
data for relatively lower mass clusters appear to be incompa-
tible with that specific upper mass limit, as the normalization is
significantly off from this prediction.

In conclusion, our results show that random sampling of a
truncated IMF is the process most compatible with the
observational evidence, at least in the cluster mass range
considered here, and that no significant suppression of high- or
medium-mass stars occurs within the considered range of
cluster masses. On the other hand, our results do not rule out
optimal sampling at larger cluster masses; competitive accre-
tion, therefore, as a physical driving process remains a
plausible model for the formation of low-mass clusters as
well. More work is needed to determine if the star formation
processes allow feedback mechanisms to dominate in larger
clusters in a way that is ineffective in the smaller ones we
consider here. Whatever the precise shape of the Mcl−mmax

curve at high Mcl, it is clear that as more massive stars are
formed in more massive clusters, a much stronger radiation
field is present, more violent outflows are probable, and shorter
evolutionary timescales may overwhelm the effectiveness of
slow processes.
We confirm previous studies by Maschberger & Clarke

(2008) and Weidner et al. (2010), both of which conclude that
no suppression of high stellar masses can be inferred in clusters
below the 100Me limit, and that the distributions of stellar
masses in these clusters are compatible with random sampling.
However, our results do impose useful constraints on the
possible mass distributions of clusters below the 100Me limit.
Our results imply that individual stellar masses in galactic
clusters with masses below 100Me are statistically determined
at random from a Kroupa IMF. We find that stars with masses
m*>5Me can be formed in clusters containing of the order of
150 members and having total stellar masses Mcl=45Me.
The occurrence of such medium-mass stars in low-mass
clusters is both consistent with random sampling and confirmed
observationally in our sample of low-mass clusters.

5.2. Implications for Competing Theories of Star Formation

Competitive accretion is not ruled out for low-mass stars,
according to our above analysis and given the uncertainties, but
it is unlikely to affect the IMF of low-mass clusters
significantly. The theory of competitive accretion (Bonnell
et al. 2004) results in optimal sampling and predicts a slope of
the Mcl−mmax correlation within 1σ of our measured slope
and an intercept within 3σ of our measured value. However, the
competition for a limited reservoir of gas as envisioned in this

Figure 10. Relationship between the age of the oldest member in each cluster and (a) the most massive member and (b) the least massive member. The dotted lines are
linear fits to the data, with parameters of the fit indicated.

Figure 11. Mass of the most massive cluster member as a function of the
cluster mass. The dots are the point estimates from the MCMC sampling and
are color coded by cluster distance. The solid line corresponds to the best fit
using Bayesian linear regression, and the shaded blue area is the 1σ credible
interval. Also shown with different line styles are the theoretical and
semiempirical predictions discussed in Section 4.3. The r value of the linear
fit is also indicated.
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model is more likely to take place in more massive clusters than
those studied here. We can, nevertheless, rule out some of the
proposed models of star formation for low-mass clusters.

The empirical correlation found by Larson (2003) that holds
for more massive clusters such as the ρ Ophiuchus cluster, the
Orion Nebula cluster, and R136 breaks down for low-mass
clusters. This correlation results from an increasing difficulty in
forming progressively more massive stars due to the effects of
radiation pressure and winds, and it translates into a steeper
IMF than the one observed in the present work. At the mass
range studied here, however, the IMF appears to be self-similar,
implying that radiation effects in low-mass clusters do not
prevent the formation of the most massive stars allowed by the
IMF. Likewise, the Elmegreen (2000) model, which assumes a
dominant role for gravity in limiting growth, is excluded by our
results.

Consistency between the observed photometry and the
models informs the mode of star formation. For example,
the spherical geometries with accreting material assumed by
the Robitaille SED models are consistent with monolithic
collapse (McKee & Tan 2003), but inconsistent with the stellar
merger model (Bonnell et al. 1998), according to which
massive stars do not form via accretion, but rather as the result
of mergers of smaller stars. Also, if competitive accretion were
the preferred mode of SF in the Milky Way, we would expect
to see many more clusters than isolated single cores, and the

luminosity of the cluster members should depend on their
location with respect to the gravitational potential of the cluster.
Consistency is not the same as proof, however, so our results
are most valuable from a statistical point of view and in
providing a robust starting point for more detailed modeling.

5.3. Dynamical Stopping of Accretion and the IMF

Radiation hydrodynamical simulations have shown that in
clustered environments, the IMF originates from competition
between accretion and the dynamical interactions that terminate
this accretion (Bate 2012). In these simulations, low-mass and
high-mass stars form via the same process, but in the case of
massive stars, the dynamical termination of the accretion
occurs later. Building along these lines, Myers (2011) proposes
a model for competitive accretion in the dense regions of young
clusters. According to this model, which assumes a constant
birth rate for the protostars as opposed to coeval birth, the
maximum protostar luminosity in a cluster indicates the age
and mass of its oldest accreting protostar. The distribution of
protostar masses evolves in time as the least massive stars
undergo early accretion and then stop while the massive stars
continue accreting.
The significant correlation between tmax and mmin shown in

the left panel of Figure 10 supports this accretion-driven, mass-
evolving scenario: dynamical effects stop the accretion of
individual stars, but the termination of accretion occurs later for
massive stars. As the most massive stars in the cluster continue
feeding from the surrounding gas and accretion has been
terminated for stars of lower mass, the mass of the most
massive star in the cluster continues to increase. But with a
finite amount of gas available, longer accretion periods for the
massive stars also mean shorter accretion periods for the low-
mass stars, which explains the fact that the clusters that accrete
for longer also have the lowest-mass protostars (see
Figure 10(b)). This is consistent with the dynamical termina-
tion of the accretion scenario described in Bate (2012), which
translates into a time evolution of the distribution of masses as
accretion stops.
We interpret the lack of a significant correlation between tmax

and mmax as being the result of most clusters being close to the
final, time-independent mass distribution. Our hypothesis is
that this is a stage in their evolution that lasts for a relatively
long time, so our sample merely reflects this time-weighted
distribution. The last YSOs still accreting are reaching the

Figure 12. Posterior distributions for the slope (left) and intercept (right) of the Mcl−mmax correlation as derived from Bayesian linear regression, compared with the
values predicted by several theoretical end empirical studies (vertical lines). The blue solid line is the posterior measured from the data.

Figure 13. Distribution of mlog max values around the mean expected from our
linear model. The vertical lines indicate the 1/6th and 5/6th quantiles.
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dynamical termination of their accreting phases, and the mass
distribution is settling down, resulting in a negligible increase
of the maximum mass with age. This picture is consistent with
the distribution of ages shown in Figure 7, with the majority of
YSOs being older than 1Myr.

5.4. Accelerating Star Formation and Cascade Fragmentation

We pointed out in Section 4.2.3 that at least two clusters,
4955 and 2568, contain highly embedded YSOs next to more
evolved Class III objects. This association is not uncommon. In
nearby embedded clusters such as the Serpens cloud core and
NGC1333, Winston et al. (2009) have reported a significant
age spread of the YSO populations and report spatial
segregation of young stars of different ages. Additionally,
Willis et al. (2013) have shown that star formation in giant
molecular clouds spatially progresses across regions, with
younger, more embedded sources typically clustering in the
central regions of the cluster. One possible scenario to explain
age spreads of this magnitude is the accelerating star formation
proposed in Huff & Stahler (2006) for the Orion Nebula
cluster, according to which the parent cloud rapidly contracts
before dissipating, creating an event of accelerated star
formation. Contamination from field stars is less likely for
the spatially compact clusters studied here, but cannot be
completely ruled out. It is nevertheless hard to assess the
validity of this theory with such a small sample.

Another scenario to consider here is the turbulent fragmenta-
tion cascade (Joncour et al. 2017), in which the initial
fragmentation of a dense core into a wide pair will lead to
further fragmentation of each of the members of the pair, the
extent of which depends on the initial separation between both
fragments. The physical size of practically all of the small
clusters considered here is less than 0.15 pc, about the typical
width of the interstellar filaments identified by Herschel (André
et al. 2014). This implies that all members of a cluster can be
associated with a single initial core within a filament. A
significant fraction of the multiple systems in our sample are
wide pairs, with separations larger than 104 au.

According to the fragmentation cascade scenario, it is likely
that this wide configuration is an imprint of their spatial
correlation at birth. Further fragmentation of the pair is
predicted by the theory, and it is possible that fragmentation
at smaller scales is not resolved by our NIR observations. This
is something that we will be able to test with JWST.
Meanwhile, our observations are consistent with these clusters
being formed as the result of the fragmentation of a single
initial core. Since protostellar multiplicity is higher than the
multiplicity of field stars (Duchêne & Kraus 2013), suggesting
that early dynamical evolution disrupts these young clusters,
the ages derived by our analysis impose a lower limit on the
cluster age at which this dynamical disruption ends. This age is
of the order of the oldest individual age derived here, which is
just below 10Myr.

6. Conclusions

Most stars form in clusters, and studies of star formation
processes are inhibited by the fact that individual sources are
often blended in spatially unresolved young clusters. This long-
standing problem in the study of YSOs has hindered our ability
to characterize star formation processes more precisely,
especially the population of fainter, lower mass stars in clusters

with massive siblings. In this paper, we offer a new Bayesian
statistical method to address the issue. We analyze the infrared
SEDs of a sample of 70 Spitzer-selected, low-mass
(Mcl< 100Me) young clusters in the galactic plane whose
individual members appear blended together within the Spitzer
beam. The technique allows us to model the probable SEDs of
individual YSOs using all available bands, including those
where the cluster is spatially unresolved. Starting with prior
information from the highest resolution images, our method
estimates the most likely flux for each individual member in
each band by sequentially fitting the unresolved SEDs and
images, and for each individual YSO it recovers the posterior
probability distributions for the fundamental physical para-
meters: stellar mass, evolutionary stage, and optical extinction.
The combined information obtained on individual YSO

properties and the average properties of the low-mass clusters
allow us to investigate how star formation proceeds in clustered
environments containing tens of stars, and to assess whether the
IMF is populated randomly in this mass range, or if self-
regulating mechanisms lead to optimal sampling. Our main
conclusions to date are based on a modest but representative
sample of 70 clusters selected from Spitzer surveys and are
aimed in part at illustrating the power of this method.

1. We have extracted the most probable photometry for
YSO members of unresolved low-mass clusters across the
galactic plane; more definitive measurements would
require higher spatial resolution than is available. We
present the method and compare the results against a
variety of theoretical simulated scenarios. The method is
very general and can be applied to young protostellar
clusters with even larger-beam, longer-wavelength data
sets, including WISE and Herschel. The FIR measure-
ments in particular can also constrain the total dust
masses and temperatures of the clusters. The predictions
will soon be testable using the observational capabilities
of JWST.

2. For clusters with total stellar masses below 100Me, the
distribution of stellar masses within the clusters and its
relation to Mcl are indistinguishable from a randomly
sampled, truncated Kroupa IMF. Therefore, any effects of
self-regulated star formation that affect the IMF sampling
significantly enough to alter the shape of the Mcl−mmax

correlation are likely to play a role only at larger cluster
masses. This is perhaps not surprising as we expect the
effects of self-regulation to be detectable in the much
denser environments of massive Mcl>103Me clusters.

3. Random sampling of the IMF in low-mass clusters is able
to produce intermediate-mass stars (m*∼5Me) in
clusters with only 150 members that have total stellar
Mcl∼45Me.

4. The age of the oldest star is anticorrelated with the mass
of its least massive star. This supports the putative effects
of dynamical stopping in an accretion scenario, as derived
from several smoothed particle hydrodynamics simula-
tions. In this scenario, low-mass and high-mass stars form
via the same accretion mechanism, but the dynamical
termination of accretion occurs later in the case of
massive stars, which therefore end up accreting for longer
times.

5. Stellar mass growth due to accretion in stars that are born
at a constant rate produces a time-dependent distribution
of stellar masses. This distribution evolves as the least
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massive stars undergo an early termination of accretion
while the massive stars continue accreting for longer
times. When accretion stops for these massive stars, an
equilibrium distribution is reached. Our results indicate
that in clusters with masses below 100Me, this
equilibrium distribution is reached when the cluster age
reaches 1Myr.

6. The masses of all clusters studied here are compatible
with their having formed from the fragmentation of a
large core in a molecular filament. For those systems that
are binary, cascade fragmentation suggests that multi-
plicity can increase at smaller scales, beyond our
resolution limit. JWST will be able to test this hypothesis
in detail.

7. Using SED fitting, we have identified two sites of early
massive star formation in the vicinity of maser emission
sources. These sources contain some of the most
embedded YSOs in our sample and are located on
opposite sites of the 3 kpc arm.
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