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Abstract

We propose a new sequential classification model for astronomical objects based on a recurrent
convolutional neural network (RCNN) which uses sequences of images as inputs. This approach
avoids the computation of light curves or difference images. To the best of our knowledge, this
is the first time that sequences of images are used directly for the classification of variable
objects in astronomy. In addition, we solve partially the problem of transfer learning from
synthetic to real-world images. This is done by transforming synthetic light-curves to images in
a realistic way, by taking into account observational conditions and instrumental parameters.
This approach allows us to generate datasets to train and test our RCNN model for different
astronomical surveys and telescopes. Moreover, using a simulated dataset is faster and more
adaptable to different surveys and classification tasks compared to collecting real labeled image
sequences. To test the RCNN classifier trained with a synthetic dataset, we used real-world
data from the High cadence Transient Survey (HiTS) obtaining an average recall of 87% on
four classes: supernovae, RR Lyrae, non–variables, and asteroids. We compare the results of our
model with those of a light curve classifier, in both simulated and real data. Our RCNN model
outperforms the light curve classifier due to the extra information contained on the images.
The results obtained encourage us to use and continue developing the proposed method for
astronomical alert brokers systems that will process alert streams generated by new telescopes
such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.

Keywords: astronomical databases: miscellaneous - methods: statistical - methods: data analysis -
supernovae: general - techniques: image processing
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2 Carrasco et al.

1 INTRODUCTION

Astronomy is faced with the challenge of increas-
ingly large streams of data produced by large survey
telescopes. New telescopes, such as the Large Synop-
tic Survey Telescope (LSST, Ivezic et al., 2008) and
the Zwicky Transient Facility (ZTF, Smith et al.,
2014) are designed to study variables and transients
on wide areas of the sky. Variable stars, such as pul-
sating (e.g. RR Lyrae, Cepheids) or eclipsing stars;
or transients, such as supernova explosions, are ex-
pected to be produced in large numbers. These
objects have characteristic timescales from hours
to months, and can be detected and characterized
by repeatedly observing the same region of the sky.
Obtaining these repeated images with large cam-
eras will generate a very large volume of data. For
example, it is estimated that the LSST will generate
30 TB of raw data per night to produce a complete
image of the southern sky every 3 days.
Some research areas in astronomy require the

classification of a large number of objects: e.g. super-
novae are needed to estimate cosmological distances
for studies about the expansion of the universe
(Riess et al., 1998; Schmidt et al., 1998), and vari-
able stars such as RR Lyrae or Cepheids are needed
to map the structure of the Milky Way and serve as
cosmic distance ladders (Ngeow et al., 2013; Feast
et al., 2014). In order to classify different astronom-
ical objects in these large data streams we need
to apply fast and accurate classification methods
capable of managing large amounts of data in real-
time. This problem will be addressed by systems
called astronomical alert brokers (e.g. ALeRCE,
ANTARES Narayan et al. (2018), LASAIR), which
are capable of receiving, processing, classifying and
reporting important information about the alert
streams generated by these telescopes in real time.
Traditional methods to classify variable astro-

nomical objects are based on pre-processing a se-
quence of images (calibration) followed by feature
extraction (measurement). One way to extract fea-
tures from a sequence of images is doing photometry
(e.g. Naylor, 1998), which is the calculation of the
total amount of light arriving from the source to
the camera as a function of time, generating a time
series called a light curve. In principle, a point–like
source’s light curve should contain all the relevant
information about the source, but when the detec-
tion is spurious the information contained in the

pixels becomes more relevant for the classification.
Additionally, extragalactic sources such as super-
novae tend to be near extended sources, i.e. galaxies,
whereas galactic variable stars tend to be relatively
isolated, information which is also contained in the
image pixels.
Obtaining the light curve reliably requires per-

forming difference imaging first for certain sources
(e.g. when the object occurs in a bright galaxy),
which is the process of aligning, convolving and
differencing pairs of images to show only those pix-
els which have changed from frame to frame (e.g.
Förster et al., 2016). Computing the difference im-
age presents some problems, most of the time it is
necessary to reduce the quality of one of the two
images to subtract them correctly and it is also very
sensitive to alignment errors between the frames.
Once the full light curves are computed, addi-

tional features can be extracted by manual design
or automatic learning from the data. In the case of
manual feature extraction, the scientist must design
attributes that are expressive enough to contain rel-
evant information for the classification, which could
require a lot of effort and time (e.g. Belokurov et al.,
2003, 2004; Bloom et al., 2012; Brink et al., 2013;
Nun et al., 2015; Benavente et al., 2017; Castro
et al., 2018). Learning features directly from the
data is one way to avoid manual design and can be
very useful to find informative attributes for classi-
fication (Cabrera-Vives et al., 2016, 2017; Sedaghat
& Mahabal, 2017; George & Huerta, 2017; Shal-
lue & Vanderburg, 2018; Charnock & Moss, 2017;
Mahabal et al., 2017; Protopapas, 2017). However,
even if representative features are obtained, if the
data from the pre-processing step is not informative
enough or contains errors from the procedure it will
be difficult to obtain a good classification.
Deep learning techniques are examples of data-

driven solutions extracting features automatically
that have proven to be successful in classifi-
cation problems. Convolutional neural networks
(Fukushima, 1980) use spatially correlated data
such as images (Krizhevsky et al., 2012; Szegedy
et al., 2015) and temporal correlations such as audio
(Lee et al., 2009; Abdel-Hamid et al., 2014). Recur-
rent neural networks, such as those containing Long
Short Term Memory units (LSTM, Hochreiter &
Schmidhuber, 1997; Gers et al., 1999), have been ap-
plied to many natural language processing problems
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(Goldberg & Hirst, 2017) like translation (Sutskever
et al., 2014) and speech recognition (Graves et al.,
2013).

Recently, deep learning has been successfully ap-
plied to astronomical problems using convolutional
neural networks, for example, for real/bogus sepa-
ration (Cabrera-Vives et al., 2016, 2017), photome-
try computation (Kimura et al., 2017), calculation
of an image comparable to the difference image
(Sedaghat & Mahabal, 2017), gravitational wave
detection (George & Huerta, 2017) and exoplanet
detection (Shallue & Vanderburg, 2018). Recurrent
neural networks have been used for light curve clas-
sification (Charnock & Moss, 2017; Mahabal et al.,
2017; Protopapas, 2017; Naul et al., 2018).

Recurrent convolutional neural networks are a
special type of neural network where convolutional
layers are combined with recurrent layers. Usually,
a first stage of convolutional layers extract features
from the raw data and generate high-level repre-
sentations in deeper layers, then a second stage of
recurrent layers uses the features yielded by the
convolutional layers to learn time dependencies. Ex-
amples of applications are action recognition in
videos (Sainath et al., 2015; Donahue et al., 2017;
Zhao et al., 2017a) and speech recognition (Zhao
et al., 2017b).

The first contribution of this work is to propose
a model to classify variable astronomical objects
based on a recurrent convolutional neural network
(RCNN), which uses sequences of images directly
as inputs. In this way, we ensure that all the in-
formation available on the images is fed to the
classifier without inducing errors by computing the
light curve (e.g. in spurious sources) or the differ-
ence images (e.g. in badly convolved images). Our
model consists of initial convolutional layers aimed
at learning spatial correlations automatically from
the images at each epoch, followed by a recurrent
layer aimed at learning time dependencies between
frames within the sequence of images. To the best of
our knowledge, this is the first time that sequences
of images are used directly to classify astronomical
objects.
The second contribution of this work is to deal

partially with the transfer learning problem from
synthetic to real-world images. We generate syn-
thetic image sequences that take into account the
instrumental and observing conditions of different

surveys. Using a simulated dataset is faster and
more adaptable to different surveys and classifica-
tion tasks, compared to collecting real labeled data
which is time-consuming and fixed to the specific
survey where the images were taken. Furthermore,
by randomizing simulations correctly we could gen-
erate a virtually infinite number of labeled samples,
avoiding the problem of manually labeling a large
number of real objects. Simulating a dataset allows
us, for example, to create data samples for tele-
scopes that are still under construction such as the
LSST. We can also tune the simulation parame-
ters according to a specific classification task and
scientific objective.
The structure of the remainder of this article is

the following: in Section 2 we describe the process
of simulating synthetic images and in Section 3 we
present our deep learning framework with our pro-
posed RCNN classifier and a light curve classifier
for comparison purposes. In Section 4 we present
the classification results obtained with our proposed
RCNN model, and compare it with a light curve
classifier. In Section 5 we discuss the main implica-
tions of this work and in Section 6 we summarize
the main conclusions as well as future steps.

2 DATA SIMULATION

In order to train the proposed model, we build a
simulated dataset of labeled sequences of images,
using the following procedure. First, all the informa-
tion required to mimic realistic observing conditions
which correspond to instrument specifications, ob-
servation dates, exposure times and atmospheric
conditions is gathered. These parameters are speci-
fied in Section 2.1. In this work we simulate observ-
ing conditions for the HiTS Survey 2015 on band g
(Förster et al., 2016). Next, we simulate light curves
based on physical and empirical models, and sample
them using the observation dates. The instrument
specification, exposure time and atmospheric condi-
tions are used to generate an image for each point in
the light curve, and this is done for each simulated
light curve. In this way, we produce an irregularly
sampled movie of 21x21 pixels for each astronomi-
cal object. The simulated image sequence dataset
is used to train the proposed RCNN model, which
is explained in Section 3. In the next sections we
explain the image simulation process in detail.
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2.1 Synthetic data simulation parameters

Deep neural network models (and machine learning
models in general) are applicable to data follow-
ing the same distribution of the data used to train
them. The simulation process was made adjustable
to different observing conditions, so our model can
be trained and applied to different instruments. To
apply the proposed RCNN classifier to a different
survey, we should only gather representative param-
eters, simulate images and train a new model.

The observing condition parameters are com-
posed of camera and exposure parameters. A cam-
era has a unique list of parameters describing the
conversion from photons to digital units. An expo-
sure has a unique list of parameters which describe
the time and duration of the exposure, as well as
the relevant atmospheric conditions during expo-
sure. These parameters are summarized in Table 1.
Herein we simulate data for the HiTS survey, which
consists of 50 fields observed with 62 CCD cameras
per field, and between 25 and 30 observations per
field. In this work, we use empirical observing con-
ditions which are sampled from real observations
from HiTS. The typical observing conditions are
described in Förster et al. (2016).

The simulated images are produced assuming a
given point spread function (PSF), which is sampled
from a collection of empirical PSFs, an efficiency
of conversion from physical units to analog digital
units given by the camera and exposure parameters
and the sky level given in the exposure parameters.
Next, Poissonian and readout noise are added and
the saturation level is applied to the resulting image.
More details are given in Section 2.3.

Table 1 Image Simulation Parameters: Camera param-
eters are constant for a given instrument, but exposure
parameters vary in time.

Camera parameters
Gain [e-/ADU] Read Noise [e-]

Saturation [ADU] Pixel Scale [arcsec/pixel]
Exposure parameters

Date [MJD] Seeing [pixels]
Airmass Sky brightness [ADU]

Zero Point [mag] Filter [g, r, i or z]
Exposure Time [sec] Limiting magnitude [mag]

2.2 Light curve simulation

We use seven classes of astronomical objects (see
Table 2): two non variable (non–variable stars and
galaxies) and five variable or transient (RR Lyrae,
Cepheids, eclipsing binaries, supernovae and aster-
oids). Variable sources are simulated in two steps: 1)
sampling from either a physical model or empirical
data, and 2) adjusting their brightness by sampling
from the magnitude distributions described below.
In order to sample each type of light curve for a
given observation date we used different interpola-
tion methods.
We start by sampling a light curve either from

a physical model or from empirical data. Table 2
shows the source of the light curves we sampled
from. Supernova redshifts and light curves are
obtained from simulations which take into ac-
count cosmology and supernova rates, the tele-
scope parameters, and physical models for SNe
II from Moriya et al. (2017) and spectrophoto-
metric templates for SN Ia from Hsiao et al.
(2007). RRLyrae, Cepheids, and eclipsing bina-
ries were sampled from real data from Sesar et al.
(2010), Hartman et al. (2006), and using the LSST
Catalog Simulation database (https://www.lsst.
org/scientists/simulations/catsim, CatSim)
respectively. Light curves for non–variable objects
were simply simulated as a constant light curve,
and asteroids as a single peak. Galaxy simulations
are explained in Section 2.3.

We sample light curves using the empirical expo-
sure parameters from HiTS and scale them to follow

1https://www.lsst.org/scientists/simulations/
catsim
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Figure 1. Magnitude density distribution of the simulated
data.
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Table 2 Class description, astronomical sources simulated in this work.

Astronomical Object Generation model

Supernovae Simulations based on physical models of SNe II from (Moriya et al., 2017)
and SN Ia spectrophotometric templates from (Hsiao et al., 2007)

RR Lyrae 483 light curve templates, sampling
a random phase and average magnitude (Sesar et al., 2010)

Cepheids 600 real cepheids light curve Hartman et al. (2006) fitted
with a Gaussian process for interpolation (Rasmussen & Williams, 2005)

Eclipsing Binaries 375 Eclipsing binaries templates from
CatSim1, part of the LSST simulation tools

Non-Variable objets Constant brightness value
for each time of observation

Galaxies Exponential and De Vaucouleur’s luminosity profile
using parameters from SDSS galaxy catalog (Blanton et al., 2017)

Asteroids Simulated as a bright source
in just a single time of observation

a magnitude distribution that reproduces the HiTS
observations. Magnitudes for non–variable sources,
eclipsing binaries, Cepheids, and asteroids are sam-
pled from the green curve in Figure 1. This distribu-
tion was obtained by fitting an exponential function
to the distribution of stars in HiTS. A constraint
was added to smooth the decay at large magnitudes
in order to follow the supernovae magnitude dis-
tribution. This was performed by multiplying the
exponential density distribution by a cutoff func-
tion f(m,mcutoff) = 1 − erf(m−mcutoff)/2, where
erf is the error function and mcutoff is the value
where f(m,mcutoff) = 0.5. The supernovae magni-
tude distribution decay at large magnitudes can
be mimicked by using mcutoff = 22.8 for the all
the classes, except for RR Lyrae and galaxies. For
RR Lyrae, mcutoff = 21.5 was chosen to make the
distribution with magnitude boundaries based on
Medina et al. (2018).

2.3 Image simulation using light curves

Having simulated light curves sampled with the
corresponding cadence, we use the zero point values
Zp(t) to convert each point of the light curve from
magnitudes to ADU using:

m(t) = Zp(t) − 2.5 log
(ADUs(t)

T (t)

)
, (1)

where t is the observation time and T (t) is the
exposure time for an image at time t. Usually, there

are other terms in this conversion associated with
airmass and color, but these Zp’s were computed
using PanSTARRS1 (Chambers et al., 2016) to
fit the resulting magnitude of known sources. For
each of the light curves we choose a random CCD
array and use its exposure parameters at different
epochs. Then, for each point in ADU units of the
light curve, a point spread function (PSF) pt(x, y) is
used to generate a source image, where x, y are pixel
coordinates and

∑
x,y pt(x, y) = 1. We generate the

source image (see example shown in Figure 3) by
creating an empty image of 21 × 21 and adding
ADUs(t)·pt(x−x0, y−y0) where x0, y0 is the center
of the source in the 21 × 21 image, sampled from a
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Figure 2. Light curve examples for each class of astronomi-
cal object in the database. Galaxies are simulated by using
method in section 2.3
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uniform distribution within the single image central
pixel to simulate random centering errors. The PSF
pt is estimated by averaging real source images
from the HiTS survey and computing its FWHM by
fitting a 2D-Gaussian function as an estimation of
size. We used PSFs estimations with different sizes,
but for each observation time t we match one pt with
the current FWHM(t). Dates with FWHMs larger
than 2” were not used. A random rotation and
mirroring is applied to make the classifier invariant
to rotations of the PSF.
Some of the sources may have a host galaxy, so

we simulated them by using exponential and De
Vaucouleurs profiles with parameters obtained from
the Sloan Digital Sky Survey (SDSS, Blanton et al.,
2017), including the following (if many bands are
used, these quantities are per band): radii, ellip-
ticities, proportion between the two profiles, and
the luminosity of the galaxy in magnitudes. The
magnitudes are converted to ADUs units and dis-
tributed using the exponential + De Vaucouleurs
profile. These profiles have a spike in the center,
concentrating most of the flux in the central pixel.
In order to avoid this issue, we sample 20 uniform
random positions inside the central pixel, compute
the bulge profile and average them to distribute the
flux correctly across the image. We finally convolve
this image with pt(x, y) generating a galaxy image
IMgal. In order to simulate SN in a host galaxy, we
sample the position from a distribution following
the exponential profile. Figure 3 shows an example
image of a simulated SN on a host galaxy.
The last step for image simulation is producing

a joint image by adding up the PSF-like image,
the galaxy, and the sky brightness Sky(t) for time
t. Then, we convert ADU pixels to electrons e−
multiplying by the corresponding Gain of the cam-
era, in order to apply independent Poisson noise to
each pixel and Gaussian readout noise. Finally, the
image is converted back to ADUs. An example of
the resulting image is shown in Figure 3.
Host galaxies were added on 50% of the super-

novae objects and 5% on the rest of the classes.
These proportions are artificial, but based on prior
knowledge about the abundance of supernovae oc-
currence on hosts galaxies and the low probability
of finding other classes near a host galaxy. As men-
tioned before, the galaxy class is a simulated image
of a host galaxy with varying exposure parameters.

Sky and poisson noise

Figure 3. Summary of the image simulation process. The
light coming from the source is spread in the Source Image. A
simulated host galaxy is added to the source image. The sky
brightness is added as a constant value to all the pixels and
Poisson noise is sampled with variance equal to the number
of photons in each pixel.

Examples comparing real image sequences from
HiTS and simulated sequences for non–variable
objects can be found in Appendix A.

3 DEEP LEARNING FRAMEWORK

Our goal is to discriminate among the seven classes
shown in Table 2. Fig. 2 shows examples of light
curves for each of the categories (except for the
galaxy class). We simulated 686,000 objects for the
training set, 85,750 for validation set and 85,750
for the test set. Each set has a balanced number of
objects per class.

We propose a new model to classify astronomical
objects based on a recurrent convolutional neural
network (RCNN), which uses a sequence of images
as input. Convolutional layers are able to automat-
ically learn the spatial correlation between pixels
in the input image and extract high-level features,
which are used by the recurrent layer to learn time
dependencies among images sampled at irregular
times. The components of this network are the fol-
lowing:

Fully connected layer Usually placed at the end of
the architecture. It takes high-level representations
obtained by lower layers and applies the transfor-
mation Y = f(WX + b), where X is the input of
the layer, W are the weights, b is the bias and f
is non-linear activation function. Typical choices
for f are the rectifying linear unit (Nair & Hinton,
2010), hyperbolic tangent or logistic sigmoid.
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Figure 4. RCNN architecture. The input tensor with shape (21, 21, nw) is shown at the left of the image. Every layer is
described at the bottom and the shape of the data is described at the top. The light curve classifier architecture is the one
specified on the right side of the image.

Convolutional layers These layers apply convolu-
tional operations to their inputs. The most popular
one is the convolution over images done by filters,
which are adjusted through the training process
(Fukushima, 1980; Krizhevsky et al., 2012; Szegedy
et al., 2015). The convolution Y between an image
X with a filter W plus a bias b is expressed as:

Yi,j,k =
∑

m,n,p

Xi−m,j−n,p ·Wm,n,p,k + bk, (2)

where X is a 3D tensor, the first two coordinates
m,n run over the position of the image and the
third one p runs over the depth or the number of
channels.W has one more dimension k representing

Table 3 Recurrent Convolutional Neural Network ar-
chitecture.

Layer Layer Parameters Output Dim
Input Layer 21 × 21 × na

w 21 × 21 × nw

BN (Batch norm) nw (mean and std) 21 × 21 × nw

Conv + BN 3 × 3 × 64, 64 21 × 21 × 64
Conv + BN 3 × 3 × 64, 64 21 × 21 × 64
Conv + BN 3 × 3 × 64, 64 21 × 21 × 64
Max pooling 2 × 2, stride 2 11 × 11 × 64
Conv + BN 3 × 3 × 64, 64 11 × 11 × 64
Conv + BN 3 × 3 × 64, 64 11 × 11 × 64
Conv + BN 3 × 3 × 64, 64 11 × 11 × 64
Max pooling 2 × 2, stride 2 6 × 6 × 64

Fully connected
(with dropout) 2304 × 1024 1024

LSTM 1024 + ∆t of samples
512 units 512

Output softmax 512 × 7 7 (n° classes)
anw is the number of images stacked in the input tensor

the output channels. Right after convolution, a non-
linear activation function is used, same as in the
fully connected layer.

Pooling layers These layers are applied to reduce
the representation dimensionality through the net-
work and act as a regularizer. In this work, we
used max pooling operations that takes the max-
imum value within a sub-matrix of the image,
Yi,j = max

(
Xi:(i+n),j:(j+m)

)
where i, j are the im-

age coordinates and n,m are the coordinates of the
sub-matrix.

Batch Normalization It is used to standardize the
values of the variables by shifting and scaling them.
Some of the effects of batch normalization are better
training speed and regularization (Ioffe & Szegedy,
2015). It is normally used between convolutional
layers and the operation is:

Y =
(
X − µd

σd

)
γ + β, (3)

where µd and σd are the mean and standard devia-
tion of the data computed using a moving average
µd = αµd + (1 −α)µbatch, where µbatch is the mean
for the current batch, α is a momentum parame-
ter, and γ and β are trainable parameters. In the
case of convolutional layer outputs, this operation
is applied independently for each channel.

Recurrent Layers and LSTM It is the part of the
network that learns time dependencies in a sequence
of inputs. There are many types of recurrent layers
and networks (Lipton et al., 2015) but most of them
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have a feedback connection to the input from previ-
ous time steps or a state (or both), where a state is
an arbitrary representation of a memory of previous
inputs. In particular, the recurrent model used in
this work is the Long Short Term Memory (LSTM,
Hochreiter & Schmidhuber, 1997; Gers et al., 1999).
The main characteristic of LSTM is the use of gates
that control the content of the state in order to
learn longer time dependencies than regular recur-
rent networks. LSTM has three main gates: the
forget gate removes part of the state using the in-
formation from current input and previous output,
the input gate updates the state, and the output
gate combines input, state, and previous output.

3.1 Sequence input to the model

Before inputting an image to the classifier we per-
form a preprocessing step that consists in subtract-
ing the sky in counts to the image as a constant
value. Then, we multiply each pixel by a factor
that ensures the same number of counts for a given
magnitude, making the conversion in equation 1
invariant to the zero point zp. The operation is the
following:

IMproc(x, y) = (IMorig(x, y) − sky) · 10
zpref−zp

2.5 , (4)

where IMproc(x, y) is the resulting preprocessed im-
age, IMorig(x, y) is the original image, and zpref is a
reference zero point, chosen as the zero point of the
first exposure for each field. We use IMproc(x, y) to
build the inputs to the model.

In the case of supernovae and asteroids, we con-
sidered objects where the source is detectable in
at least one of the images within the sequence i.e.,
one point of the original light curve in magnitude
must be above the limit of magnitude. We consider
the first point when this happens as the “first alert”
triggered by the rise of flux in time.
Because we are interested in classifying super-

novae in the early stages of the explosion, once an
alert is triggered (supernova explosion or asteroid
appearance) at time ti, we query the five images
before the alert and create a stack of nw consecutive
images using ti−5 as the first image of the stack. In
this work we used nw = 3, so if the alert occurs at
time ti, then the input images for the first stack are
at time (ti−5, ti−4, ti−3), then next time step input
will be at (ti−4, ti−3, ti−2), then (ti−3, ti−2, ti−1) and

so on. Therefore the input to the model is a stack
of nw consecutive images creating an input tensor
of shape (21 × 21 × nw).
We define Nd as the number of available dates,

which corresponds to the number of points between
five images before the first detection and last expo-
sure on the respective field. Nd depends on the first
detection date. We use the same Nd dates to build
the input sequence of other classes, in order to have
variable size and observation conditions for every
class in the dataset. We truncated the maximum
number of available dates to Nd = 20 for every
object to evaluate the model.
We use nw > 1 images stacked at the input and

not a single image because convolutional layers
can learn part of the short timescale dependencies
between these nw consecutive images, letting the
recurrent layer learn about longer timescale depen-
dencies. We also compute the difference in sampling
time between the first image of the sequence and
the rest of the images, so the model receives infor-
mation about the irregular time sampling for each
image.

3.2 Image sequence classifier
architecture

Our model uses high-level representations of the
image obtained by convolutional layers as inputs
to the recurrent layer. This way, we can add infor-
mation to the memory of the classifier while the
images are received by changing the input as ex-
plained above. The LSTM units in the recurrent
layer contain memory cells that store learned knowl-
edge from previously seen input images.

As mentioned above, the input is a three dimen-
sional tensor of size (21, 21, nw), made by nw con-
secutive 21 × 21 images. We first apply a batch
normalization layer, followed by a convolutional
layer to increase the number of channels from nw

to 64 and an extra batch normalization layer. We
use 64 filters and a stride of 1 on each convolutional
layer with ReLU as activation function. Also a batch
normalization layer at the output of each convo-
lutional layer is implemented shifting and scaling
for each channel, a pool layer after the first three
convolutional layer + batch normalization, followed
by three convolutional layers + batch normalization
and a final pool layer.
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The output of the pool layer is flattened to a
vector of size 6×6×64 = 2304, i.e. the input to the
first fully connected layer with 1024 hidden units.
The time difference between the day of observation
of the nw images and the first image of the entire
sequence (nw size vector) is added to the input of
the LSTM layer with 512 units. The initial state of
the LSTM is an array filled with zeros and the state
is updated for every input tensor with nw stacked
images. Finally, the LSTM output is passed through
a fully connected layer with softmax activation
functions. The details of each layer are shown in
Table 3. Fig. 4 shows an illustration of the RCNN
architecture.

3.3 Light curve classifier

In order to quantify the advantages of using the
image sequence directly for the classification task,
we designed a light curve classifier using the fully
connected part of the RCNN architecture, shown
in Figure 4 and specified by the last 3 rows in
Table 3. Since convolutional layers learn the features
directly from the images and pass them to the
fully connected and recurrent part of the network,
we used the latter section of the architecture as a
classifier with light curves computed from images
as inputs.
The input to the light curve classifier is similar

to the one explained in section 3.1. For each of
the images at time ti given to the image sequence
classifier, we give the point of the light curve and
its variance estimated from the image using optimal
photometry (Naylor, 1998). We used nw = 3, which
implies a 6 dimensional input (3 points of the light
curve and 3 respective errors) for the light curve
classifier and also the difference between observation
time as described in 3.1. We also applied the flux
factor shown in equation 4, which was explained in
section 3.1.

3.4 Training Process

Recurrent neural networks are trained using gra-
dient descent (or variations), by using backpropa-
gation through time. Since features are extracted
from the image using convolutional layers and are
fed to the recurrent layer, the gradients through
time are also used to correct the parameters of the
convolutional layers. We used cross-entropy as loss

function to compare the outputs of the model with
the labels. The total loss of a single example has the
form loss =

∑Nd
t loss(t) where loss(t) is the cross-

entropy at time step t. The training algorithm is
Adam (Kingma & Ba, 2014) which is an adaptive
learning rate algorithm. The batch size was 256
and we run 30,000 iterations presenting a single
batch per iteration to the image sequence classifier
and the light curve classifier. The final model was
chosen by selecting the one that had the lower loss
in the validation set during the training process. We
used graphic processor units (GPUs) to train the
models. Each model takes 6 hours approximately
to complete 30,000 iterations in a GeForce GTX
1080 Ti.

4 RESULTS

After completing the training process, we evaluate
the image sequence classifier and the light curve
classifier models over the simulated dataset and
on real images from HiTS survey with known la-
bels. Five classes are available for real image se-
quences: supernovae, RR Lyrae, eclipsing binaries,
non-variables, and asteroids. We test 80, 111, 76,
500 and 55 examples per class, respectively. In the
case of supernovae and asteroids, we define the
first detection as the first point where the num-
ber of counts on the estimated light curve is five
times higher than the error, then build the input
to the models as described in section 3.1. For the
rest of the classes, the sequence starts at the first
exposure. Figure 5 shows a comparison between
the image sequence classifier (RCNN) and the light
curve classifier, in terms of the evolution of accuracy
as the models are fed with more samples, images
in case of the RCNN and light curve points in case
of light curve classifier, for simulated data and real
data. The figure shows also the recall of each of the
available classes of real data and accuracy for the
simulated dataset as a function of the magnitude of
the objects. From Figure 6 to 9, confusion matrices
are shown for both the image sequence classifier
and light curve classifier, for simulated and real
data. The confusion matrices are for time step 20,
instant at which most of the samples have already
been presented to the classifiers.
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Figure 5. Results comparison between image sequence classifier (top row) and light curve classifier (bottom row). The left
plot shows the accuracy for training and testing simulated data, and the average recall for available real classes. The mid plot
shows the evolution of recall per class as a function of the number of images (or points) presented to the model. The right
plot shows the accuracy on the simulated database as a function of the object magnitude and the number of images.

5 DISCUSSION

As can be seen on the left plots of Figure 5, the
accuracy on the simulated database and recall on
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Figure 6. RCNN based image classifier confusion matrix on
simulated data after 20 inputs (22 images)
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classifier than the light curve classifier. Compar-
ing the confusion matrix on simulated data shown
in Figure 6 with the confusion matrix in Figure
7, we found that there are more supernovae mis-
classified when using the light curve classifier than
with the image sequence classifier. Supernovae are
misclassified mostly as Cepheids, non–variables and
galaxies by the light curve classifier. A possible ex-
planation is that the light curve classifier has no
information about the presence of galaxies, whereas
the image sequence classifier can infer this from
the data. This effect seems to be more important
for fainter sources, which tend to be more distant
and have smaller angular size galaxies, as can be
seen in Figure 5, right plot, where there is a clear
improvement in accuracy for fainter sources when
using the image sequence classifier in comparison
to the light curve classifier.
The image sequence classifier also shows an im-

provement in the classification of the variable star
classes with respect to the light curve classifier in
the case of the simulated dataset, as can be seen in
Figure 6 and 7, respectively. This result suggests
that the image sequence classifier is able to retrieve
the necessary information from the image to solve
the classification task. Since there is not much bias
on each class apart from the light curve shape, the
model must learn to perform some form of photom-
etry and extract the flux generated by the object
on the image. Thus, we can infer that the image
sequence classifier is capable of retrieving the un-
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Figure 8. RCNN based image classifier confusion matrix on
HiTS real data after 20 inputs (22 images)

derlying light curve used to simulate the source as
well as additional information from the image, such
as the presence of a host galaxy.
Another important issue is the effect of giving

some historical information about a source (super-
novae and asteroids) before the detection. In Figure
5, left and mid plots, we can see the improvement
in the accuracy and recall on sample number 6,
at the moment of the detection of a supernova or
asteroid. In Appendix B we illustrate some exam-
ples of the image sequence classifier working on real
supernovae, where we can observe this effect.

It is important to mention the fact that the sim-
ulations are good enough to classify correctly most
of the objects in the HiTS dataset. We can see
from Figure 8 that real non–variable objects are
perfectly classified using the image sequence clas-
sifier, as well as the majority of supernovae (71%),
RR Lyrae (89%) and asteroids (87%) in the HiTS
dataset, resulting in an average recall of 87% for
these four classes. This means that part of the trans-
fer learning problem from simulated to real-world
images is solved by the proposed methodology to
convert the flux of a light curve to image stamps.
The problem reduces to obtaining the right distri-
bution that represents the physical process of the
light passing through the atmosphere, lenses and
being captured by the CCD camera, by using the
estimated exposure conditions, camera parameters
and point spread function from empirical data.

Because the image simulation process is the same
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Figure 9. Light curve classifier confusion matrix on HiTS
real data after 20 inputs (22 points of the light curve)
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for all classes, the fact that eclipsing binaries are
misclassified as RR Lyrae resulting in a recall of
37%, suggests that the key feature to fix is the light
curve model used to generated synthetic data. The
relevant features could be the magnitude distribu-
tion, light curve variance as a function of magni-
tude, or the periods in the case of variable stars.
Simulated light curves must be similar enough to
the real ones in order to classify them correctly.
Furthermore, the relevant features of a simulated
object must be similar enough to the real ones,
so the distribution for each class such as magni-
tude, variance, detection criteria, or the proportion
of examples with a host galaxy should be chosen
carefully according to the scientific goals.

6 CONCLUSIONS

We have proposed a new sequential classification
model for astronomical objects based on a convolu-
tional recurrent neural network, which uses directly
sequences of images, without computing the light
curve or the difference image. Using empirical and
astrophysical models of different astronomical ob-
jects, we simulated data from the High cadence
Transient Survey (HiTS) to generate a synthetic
dataset of images for these astronomical objects,
considering realistic atmospheric conditions and
camera specifications. This synthetic dataset was
used to train the image sequence classifier, then
we evaluated the model on real images from the
HiTS survey. The results show that the proposed
model classifies correctly asteroids, RRLyrae, Su-
pernovae and Non–variables from the HiTS survey,
with the exception of eclipsing binaries. This has
been achieved by using only simulated data for
training, the images and observation dates as in-
puts, and the sky brightness estimation and zero
point to pre–process the image. To the best of our
knowledge, this is the first time that a sequential
classifier using sequences of images as inputs, and
without computing the light curve or the differ-
ence images, has been proposed in time-domain
astronomy.
In order to assess the improvement of using im-

ages instead of light curves, we computed optimal
photometry on the simulated images and trained
a light curve classifier. The light curve classifier
has to solve the same classification problem, but

using the light curve and the estimated variance.
We showed that the proposed sequential classifier
outperforms the light curve classifier.
This work also shows that having images at the

location of a transient event from before their first
detection, as a post-processing step, can be very
useful for the classification of astronomical alert
streams. For example, in our proposed model having
images of a supernova very early rise, before crossing
a given threshold on the light curve, can help the
classifier report better class probabilities.
A significant part of the transfer learning prob-

lem from synthetic to real-world images is solved at
the image generation step, which converts flux from
a source to an image stamp using realistic consid-
erations. This implies that using synthetic data is
a reliable way to train models before acquiring real
images from telescopes, as long as we have good
light curve models available and the correct pa-
rameter distributions to represent well objects for a
specific classification task and science goal. The fact
that our classifier works well on real-world images
after being trained with synthetic data encourage us
to use this methodology to train a classifier for new
telescopes such as the Large Synoptic Survey Tele-
scope (LSST, Ivezic et al., 2008) and the Zwicky
Transient Facility (ZTF, Smith et al., 2014). In
this way, we may have a sequential classifier model
available before receiving new data.

6.1 Future Work

The results presented in this paper could be im-
proved by searching for the best hyperparameters of
the recurrent convolutional neural network, as well
as testing different architecture and optimization al-
gorithms. Our model only uses the image sequence
preprocessed by zero points and sky brightness, and
the dates of observation. Other observation condi-
tions could be added to the model such as using
the point spread function as an extra input image,
or prior knowledge about the position of an object
in the sky. For example, RR Lyrae and Cepheids
are more likely to be found in the Milky Way plane
than supernovae.

Since we want to simulate other surveys and tele-
scopes, we need to gather the relevant information
about the observation conditions and camera speci-
fications. Some telescopes such as the LSST are not
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operative yet and it is necessary to predict the ob-
servation conditions in order to simulate data. For
this reason, invariance of the model to observation
conditions should be explored to increase robust-
ness to prediction errors. We propose to simulate
the sequence of images randomizing observation
conditions such as seeing, zero points, or airmass
sampled from realistic distributions. Furthermore,
our model is currently trained in band g, but it
could be adapted to classify the image sequence
combining information from more than one band,
i.e, a multi-band image sequence classifier.
If a real-world labeled dataset were available,

then fine-tuning (Yosinski et al., 2014; Oquab et al.,
2014) could be used after training the model with
simulated data. Fine-tuning has shown to be a so-
lution for many transfer learning problems. We can
also re-adjust the model parameters after training
with simulated data to make the classifier capable
of solving the problem for real-world data. It is
also important to mention that the light curve and
image simulation tools developed in this work could
be used to test other classifier models.

As future work we propose to modify the eclipsing
binary models to improve results on real data and
add more astronomical object classes, which means
gathering more light curve models and adding them
to the simulations, and use better priors for the
presence of host galaxies for every object. We can
also consider other effects associated with the CCD
camera, such as hot pixels and bad columns, incor-
porating the real/bogus separation naturally into
the proposed framework.
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APPENDIX A: SIMULATION EXAMPLES

In Figs.10 to 12, we show examples of simulated images compared to the real ones. Given a real non–
variable source with a known magnitude, we use the same dates where the source was observed and the
observation conditions to simulate a non–variable source. Sample time goes from left to right, top to
bottom. Since the estimated point spread function used for simulations is computed by averaging single
PSFs, simulated images have bigger PSFs than real ones. As can be observed, the pixel distribution on
the simulated images is very close to the real ones.

Real observation image sequence, magnitude = 18.20

Simulated image sequence
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Figure 10. Image simulation example 1

Real observation image sequence, magnitude = 18.80
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Figure 11. Image simulation example 2
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Real observation image sequence, magnitude = 19.50

Simulated image sequence
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Figure 12. Image simulation example 3

APPENDIX B: EXAMPLES OF THE IMAGE SEQUENCE CLASSIFIER MODEL
WORKING ON REAL SUPERNOVAE

Herein we show some examples of the RCNN based image sequence classifier working on HiTS supernovae
examples. From Figure 13 to 15, we show the light curve in counts of a supernova and the first detection
time (upper plot), probabilities of the object of being of a certain class according to the model through
time (mid plot) and the stamps corresponding to each observation date used as input (bottom plot). As
mentioned in section 4, the performance of the classifier gets better around the first detection of the
supernovae (image number six).
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Figure 13. Image sequence classification example 1
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Figure 14. Image sequence classification example 2
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Figure 15. Image sequence classification example 3
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