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ABSTRACT

Many astronomical phenomena exhibit patterns that have periodic behavior. An important step when analyzing data
from such processes is the problem of identifying the period: estimating the period of a periodic function based
on noisy observations made at irregularly spaced time points. This problem is still a difficult challenge despite
extensive study in different disciplines. This paper makes several contributions toward solving this problem. First,
we present a nonparametric Bayesian model for period finding, based on Gaussian Processes (GPs), that does
not make assumptions on the shape of the periodic function. As our experiments demonstrate, the new model
leads to significantly better results in period estimation especially when the light curve does not exhibit sinusoidal
shape. Second, we develop a new algorithm for parameter optimization for GP which is useful when the likelihood
function is very sensitive to the parameters with numerous local minima, as in the case of period estimation. The
algorithm combines gradient optimization with grid search and incorporates several mechanisms to overcome the
high computational complexity of GP. Third, we develop a novel approach for using domain knowledge, in the form
of a probabilistic generative model, and incorporate it into the period estimation algorithm. Experimental results
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validate our approach showing significant improvement over existing methods.
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1. INTRODUCTION

Many astronomical phenomena exhibit periodic behavior.
Discovering their period and the periodic pattern they exhibit
is an important task toward understanding their behavior. A
significant effort has been devoted to the analysis of light curves
from periodic variable stars. For example, the top part of Figure 1
shows the magnitude of a light source over time. The periodicity
of the light source is not obvious before we fold it. However, as
the bottom part illustrates, once folded with the right period we
get convincing evidence of periodicity. The object in this figure
is classified as an eclipsing binary (EB). Other sources show
periodic variability due to processes internal to the star (Petit
1987).

The problem of period estimation from noisy and irregularly
sampled observations has been studied before in several disci-
plines. Most approaches identify the period by some form of
grid search. That is, the problem is solved by evaluating a crite-
rion @ at a set of trial periods {p} and selecting the period p that
yields the best value for ®(p). The commonly used techniques
vary in the form and parameterization of ®, the evaluation of
the fit quality between model and data, the set of trial periods
searched, and the complexity of the resulting procedures. Two
methods we use as baselines in our study are the Lomb-Scargle
(LS) periodogram (Scargle 1982; Reimann 1994) and the phase
dispersion minimization (PDM; Stellingwerf 1978), both known
for their success in empirical studies. The LS method is rela-
tively fast and is equivalent to maximum likelihood estimation
under the assumption that the function has a sinusoidal shape.
It therefore makes a strong assumption on the shape of the
underlying function. On the other hand, PDM makes no such
assumptions and is more generally applicable, but it is slower
and is less often used in practice. A more extensive discussion
of related work is given in Section 5.

The paper makes several contributions toward solving the
period estimation problem. First, we present a new model for

period finding, based on Gaussian Processes (GPs), that does not
make strong assumptions on the shape of the periodic function.
In this context, the period is a hyperparameter of the covariance
function of the GP and accordingly the period estimation is cast
as a model selection problem for the GP. As our experiments
demonstrate, the new model leads to significantly better results
compared to LS when the target function is non-sinusoidal. The
model also significantly outperforms PDM when the sample
size is small.

Second, we develop a new algorithm for period estimation
within the GP model. In the case of period estimation the
likelihood function is not a smooth function of the period
parameter. This results in a difficult estimation problem which
is not well explored in the GP literature (Rasmussen & Williams
2005). Our algorithm combines gradient optimization with grid
search and incorporates several mechanisms to improve the
complexity over the naive approach.

In particular we propose and evaluate: an approximation using
a two-level grid search, approximation using limited cyclic
optimization, a method using sub-sampling and averaging, and a
method using low-rank Cholesky approximations. An extensive
experimental evaluation using artificial data identifies the most
useful approximations and yields a robust algorithm for period
finding.

Third, we develop a novel approach for using astrophysics
knowledge, in the form of a probabilistic generative model,
and incorporate it into the period estimation algorithm. In
particular, we propose to employ the generative model to bias
the selection of periods by using it as a prior over periods or
as a post-processing selection criterion choosing among periods
ranked highly by the GP. The resulting algorithm is applied and
evaluated on astrophysics data showing significantly improved
performance over previous work.

The next section provides some technical background and
defines the period estimation problem as GP inference. The
following three sections present our algorithm, report on
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Figure 1. Top: brightness of an eclipsing binary star over time; bottom:
brightness vs. phase.

(A color version of this figure is available in the online journal.)

experiments evaluating it and applying it to astrophysics data,
and discuss related work. The final section concludes with a
summary and directions for future work.

2. PRELIMINARIES: GP FOR PERIOD FINDING

This section provides technical background on GPs and their
optimization procedures and defines the period finding problem
in this context.

Throughout the paper, scalars are denoted using italics, as in
x,y € R; vectors and matrices use lowercase and capital bold
typeface, as in x, y, K, A; and x; denotes the ith entry of x. For
a vector x and real-valued function f : R — R, we extend the
notation for f to vectors so that f(x) = [f(x1),..., fx)IT,
where the superscript T stands for transposition. [ is the identity
matrix.

2.1. Gaussian Processes

This section gives a brief review of GP regression. A more
extensive introduction can be found in Rasmussen & Williams
(2005) and Bishop (2006).

We start with the following regression model:

y = fuwlx)+e, (1)

where f,(x) is the regression function with parameter w and
€ is iid Gaussian noise. For example, in linear regression
fuw(x) = wTx and therefore y ~ N(w'x, 1/02). Given the data
D={x;,y},i =1,..., N,one wishes to infer w and the basic
approach is to maximize the likelihood L(w, D) = Pr(D|w).

In Bayesian statistics, the parameter w is assumed to have a
prior probability Pr(w) which encodes the prior belief on the
parameter. The inference task becomes calculating the posterior
distribution over w, which, using the Bayesian formula, is given
as

Pr(w|D) o Pr(D|w) Pr(w). 2)

The predictive distribution for a new observation x* is given by

Pr(f(x*)|D) = /Pr(f(x*)IW)Pr(WID)dw. 3)
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Returning to linear regression, the common model assumes that
the prior for w is a zero-mean multivariate Gaussian distribution,
and the posterior turns out to be multivariate Gaussian as well. In
contrast with many Bayesian formulations, the use of GP often
allows for simple inference or calculation of desired quantities
because of properties of multivariate Gaussian distributions and
corresponding facts from linear algebra.

This approach can be made more general using a nonpara-
metric Bayesian model. In this case, we replace the parametric
latent function f,, by a stochastic process f where f’s prior is
given by a GP. A GP is specified by a mean function (assumed
to be zero in this paper) and covariance function K(-, -). This
allows us to specify a prior over functions f such that the dis-
tribution induced by the GP over any finite sample is normally
distributed. More precisely, the GP regression model with zero
mean and covariance function (-, -) is as follows. Given sam-
ple points [x,...,x,]T let K = (K(x;, x;));,j. The induced
distribution on the values of the function at the sampling points
is

fE[f(x), ..., fx )" ~ N, K), 4)

where A/ denotes the multivariate normal distribution. Now
assuming that y; is generated from f(x,), using iid noise as
in Equation (1), and denoting y = [y;,..., y,]T we get that
y ~ N(0, K + o %) and the joint distribution is given by

v ) o

Using properties of multivariate Gaussians we can see that the
posterior distribution f|y is given by

Prf|D) = N K@ I+K) 'y, o2 (c’I+K)'K). (6)

Similarly, the predictive distribution for some test point x
distinct from the training examples is given by

Pr(f(x.)lxs, D) = /Pr(f(x*)lx*, HPe(fID)df

= N&kx )@’ T+K)y, Kxy, x,)
— k(x.) (@’ T+ K)'k(x.)), 7

where k(x,) = [K(x1, x4), ..., Kxy, xO]T.

Figure 2 illustrates GP regression, by showing how a finite
sample induces a posterior over functions and their values for
new sample points.

2.2. Problem Definition

In the case of period estimation the sample points x; are
scalars x; representing the corresponding time points, and we
denote x = [x1,...,x,]T. The underlying function f(-) is
periodic with unknown period p and corresponding frequency
w = 1/p. To model the periodic aspect we use a GP with a
periodic covariance function

®)

. 2 L X
Ko, x;) = f exp {_2sm (wr (x; — x;)) }

02

where the set of hyperparameters* of the covariance function is
given by @ = {8, w, £}. It can be easily seen that any f generated

4 Typically, in a hierarchical model, the parameters of the top level (e.g.,
parameters of the prior) that affect the next level are called hyperparameters. In
GP regression, the parameter is the regression function f and the
hyperparameters are the parameters of the covariance function.
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Figure 2. Illustration of prediction with GP regression. The data points
D = {x;, y;} are given by the crosses. The shaded area represents the pointwise
95% confidence region of the predictive distribution. As can be seen from
Equation (7), GP regression can be seen to perform a variant of kernel regression
where f(x,) is a weighted average of all the measurements y. While the values
of the weights are obscured because of the inverse of the covariance matrix in
that expression, one can view this roughly by an analogy to nearest neighbor
regression where the mean of f(x*) is affected more by the measurements
whose sampling points are close to x* and the variance of f(x*) is small if x*
is surrounded by measurements. A deeper discussion of the equivalent kernel is
given in Rasmussen & Williams (2005).

(A color version of this figure is available in the online journal.)

by Ky is periodic with period 1/w. Figure 3 illustrates the role
of the other two hyperparameters. We can see that 8 controls
the magnitude of the sampled functions. At the same time, £
which is called characteristic length determines how sharp the
variation is between two points. The plots also demonstrate that
the shape of the periodic functions is highly variable. If desired,
other base kernels (Rasmussen & Williams 2005) can be used
and made to be periodic in a similar manner, and as in other
work it is easy to add a “trend” to the data to capture functions
that are not purely periodic. In this paper, we focus on period
finding with the purely periodic kernel and leave such extensions
to future work.

In our problem each star has its own period and shape and
therefore each has its own set of hyperparameters. Our model,
thus, assumes that the following generative process is the one
producing the data. For each time series j with arbitrary sample

points x/ = [x{, e xl{,j]T, we first draw

filb; ~ GP(Q, Ky, ). ©))
Then, given x/ and f; we sample the observations

¥~ N(fixh), D). (10)

Denote the complete set of parameters by M = {#, ’2}. For
each time series j, the inference task is to select the correct
model for the data {x/, y/}, that is, to find M that best describes
the data. This is the main computational problem studied in this
paper. The next subsection reviews two standard approaches for
this problem.

Before presenting these we clarify two methodological is-
sues. First, notice that our model assumes homogeneous noise
N(0, 6?), i.e., the observation error for each x; is the same.
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Experimental results on the OGLEII data set (not shown here)
show that o2 estimated from the data is very close to the mean
of the recorded observation errors, and therefore there is no ad-
vantage in explicitly modeling the recorded observation errors.
Of course, this may be different in other surveys; incorporat-
ing observation errors can be easily done by using 03 + o in
Equation (10).

Second, as defined above, our task is to find the full set
of parameters M. Therefore, our framework and induced
algorithms can estimate the underlying function, f, through
the posterior mean f , and thus yield a solution for the regression
problem—predicting the value of the function at unseen sample
points. However, our main goal and interest in solving the
problem is to infer the frequency w where the other parameters
are less important. Therefore, a large part of the evaluation in the
paper focuses on accuracy in identifying the frequency, although
we also report results on prediction accuracy for the regression
problem.

2.3. Model Selection
2.3.1. Marginal Likelihood

The standard Bayesian approach is to identify the hyperpa-
rameters that maximize the marginal likelihood. More precisely,
we try to find M* such that

M* = argmax [log [Pr(y|x; M)]], (11)
M
where the marginal likelihood is given by

log Pr(y|x; M)

log (/ Pr(y|f, x; M) Pr(f|x; M)df)

1
—5 Y (K+o’D7ly
1 sri_g B
—510g|K+a I] —510g2n (12)

and Equation (12) holds because y ~ N(0,K + o°I)
(Rasmussen & Williams 2005). Typically, one can optimize the
marginal likelihood by calculating the partial derivative of the
marginal likelihood w.r.t. the hyperparameters and optimizing
the hyperparameters using gradient-based search (Rasmussen
& Williams 2005). As we show below, gradients alone cannot
be used to solve our problem completely and therefore our al-
gorithm elaborates and improves over this approach. We do,
however, use the conjugate gradients optimization as a basic
step in our algorithm. The partial derivative of Equation (12)
w.r.t. the parameter 6; is (Rasmussen & Williams 2005)

0 0K,
3—%1ogPr<y|x;M>=Tr((aoeT—K;‘) %, ) (13)

where K, = K +o’landa = K 'y.

2.3.2. Cross-validation

An alternative approach (Rasmussen & Williams 2005) picks
hyperparameter M by minimizing the empirical loss on a hold
out set. This is typically done with a leave-one-out (LOO)
formulation, which uses a single observation from the original
sample as the validation data, and the remaining observations
as the training data. The process is repeated such that each
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Figure 3. Sample functions from a GP with covariance function in Equation (8) where the period is fixed to be 5, i.e., w = 0.2. Top row: 8 = 0.1 vs. § = 10 while £

is fixed to be 0.6. Bottom row: £ = 0.3 vs. £ = 1 with § = 0.3.
(A color version of this figure is available in the online journal.)

observation in the sample is used once as the validation data. To
be precise, we choose the hyperparameter M* such that

M = ar%\r/lnin Z(yi — fLia)?, (14)

i=1

where f_,- is defined as the posterior mean given the data
{x_;, y_;} inwhich the subscript —i means all but the ith sample,
that is,

foi) =K, ) (K_; +o’D7"y_,. (15)
It can be shown that this computation can be simplified
(Rasmussen & Williams 2005) using the fact that

(K +0°D)""yl;

yi — foilx) = m, (16)

where [-]; is the ith entry of the vector and [-];; denotes the
(i, th entry of the matrix.

3. ALGORITHM

We start by demonstrating experimentally that gradient-based
methods are not sufficient for period estimation. We generate
synthetic data and maximize the marginal likelihood w.r.t.
0 = {B, w, £} using conjugate gradients. For this experiment,
30 samples in the interval [—10, 10] are generated according
to the periodic covariance function in Equation (8) with § =
[1,0.25, 1]. Fixing B, £ to their correct values, the marginal
likelihood w.r.t. the period 1/w is shown in Figure 4 (left). The
figure shows that the marginal likelihood has numerous local
minima in the high frequency (small period) region that have no
relation to the true period. Figure 4 (right) shows two functions
with the learned parameters based on different starting points
(initial values).

The function plotted in dark color estimates the true function
correctly while the one in light color does not. This is not
surprising because from Figure 4 (left), we can see that there is
only a small region of initial points from which the algorithm
can find the correct period. We repeated this experiment using
several other periodic functions with similar results. These
preliminary experiments illustrate two points.
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Figure 4. Illustration of sensitivity of the marginal likelihood. A light curve is generated using the GP model with parameters § = 1, w = 0.25, and £ = 1. Left: the
marginal likelihood function vs. the period, where the dotted line indicates the true period. Right: the black circles are the observations and the dotted line (covered
by the dark estimated curve) is the true function. The dark line which covers the true curve and the light line are the learned regression functions given two different

starting points of w.

(A color version of this figure is available in the online journal.)

11-13).

1: Initialize the parameters randomly.

2: repeat

3:  Jointly find w, 8*, ¢*, o* that maximize Equation (12) using conjugate gradients.

4:  for all w in a coarse grid set C do

5: Calculate the marginal likelihood Equation (12) or the LOO Error Equation (14) using 8%, (*, c*.
6: end for

T Set w to the best value found in the for loop.

8: until Number of iterations reaches L1 (L1 = 2 by default)

9: Record the Top K (K = 10 by default) frequencies W* found in the last run of for loop (lines 4-6).
10: repeat

11:  Jointly find w, 8%, ¢*, o* that maximize Equation (12) using conjugate gradients.

12:  for all w in a fine grid set F that covers W* do

13: Calculate the marginal likelihood Equation (12) or the LOO Error Equation (14) using 8*, (*,o*.
14:  end for

15:  Set w to the best value found in the for loop.

16: until Number of iterations reaches Lo (L2 = 2 by default)

17

: Output the frequency w* that maximizes the marginal likelihood or minimizes the LOO Error in the last run of for loop (lines

Figure 5. Hyperparameter Optimization Algorithm.

1. At least for the simple data in this experiment, and when
other parameters are known, the marginal likelihood func-
tion is maximized at the correct period. This shows that in
principle we can find the correct period by optimizing the
marginal likelihood. In practice, the region around the max-
imum may be very narrow, we have to deal with multiples
of the correct period, and account for possibly very small
periods and the problem is not so easy.

2. On the other hand, the plots clearly show that it is not
possible to identify the period using only gradient-based
search.

Therefore, as in previous work (Reimann 1994; Hall et al.
2000), our algorithm uses grid search for the frequency. The grid
used for the search must be sufficiently fine to detect the correct
frequency and this implies high computational complexity. We
therefore follow a two-level grid search for frequency where
the coarse grid must intersect the smooth region of the true
maximum and the fine grid can search for the maximum itself.
The two-level search significantly reduces the computational
cost. Our algorithm presented in Figure 5 combines this with

1.

gradient-based optimization of the other parameters. There are
several points that deserve further discussion, as follows.

In step 3, we can successfully maximize the marginal
likelihood w.r.t. B, £, and o> using the conjugate gradients
method, but this approach does not work for the frequency
w. The reason is that the objective function is highly
sensitive w.r.t. w and the gradient is not useful for finding
the global maximum. This property justifies the structure of
our algorithm. This issue has been observed before and grid
search (in particular using two stages) is known to be the
most effective solution (Reimann 1994; Hall et al. 2000).

. Our algorithm uses cyclic optimization estimating w, o, 8,

and £. That is to say, we fix other parameters o, 8, £ and
optimize w and then optimize o, B, £ when w is fixed.
We keep doing this iteratively but use a small number
of iterations (in our experiments, the default number of
iterations is 2). A more complete algorithm would iterate
until convergence but this incurs a large computational
cost. Our experiments demonstrate that a small number
of iterations is sufficient.
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3. Insteps 3 and 11, we incorporate w into the joint optimiza-
tion of the marginal likelihood. This yields better results
than optimizing w.r.t. the other parameters with fixed w.
This shows that the gradient of w sometimes still provides
useful information locally, although the obtained optimal
value w is discarded.

4. We use an adaptive search in the frequency domain, where
at the first stage we use a coarse grid and later a fine grid
search is performed at the neighbors of the best frequencies
previously found. By doing this, the computational cost is
dramatically reduced while the accuracy of the algorithm
is still guaranteed.

5. Two possible improvements to the algorithm that might
appear useful are less effective than our algorithm. First,
in the coarse grid search, optimizing 8, £, and o2 for each
w separately is too expensive because each computation of
the gradient requires costly inversion of the kernel matrix.
Second, one might be tempted to replace the fine grid
search with a gradient-based search for the optimal w. Our
experiments on OGLEII (not reported here) show that this
routine is inferior both in accuracy and in time complexity.
This suggests that the region around the maximum is very
narrow in many cases and shows that gradient search is
expensive in this problem.

Two additional approximations are introduced next, specifi-
cally targeting the coarse and fine grids respectively and using
observations that are appropriate in each case.

3.1. Ensemble Subsampling

The coarse grid search in lines 4-6 of the algorithm needs
to compute the covariance matrix w.r.t. each frequency in C
and invert the corresponding covariance matrix, and therefore
the total time complexity is O(|C|N 3). In addition, different
stars do not share the same sampling points.> Therefore, the
covariance matrix and its inverse cannot be cached to be used
on all stars. The computational cost is too high when the coarse
grid has a large cardinality. Our observation here is that it might
suffice to get an approximation of the likelihood at this stage of
the algorithm, because additional fine grid search is done in the
next stage.

Therefore, to reduce the time complexity, we propose an
ensemble approach that combines the marginal likelihood of
several sub-sampled times series. The idea (Protopapas et al.
2005) is that the correct period will get a high score for all
sub-samples, but wrong periods that might score well on some
sub-samples (and be preferred to others due to outliers) will
not score well on all of them and will thus not be chosen. For
the approximation, we sub-sample the original time series such
that it only contains a fraction f of the original time points,
repeating the process R times. The marginal likelihood score
is the average over the R repetitions. Our experiments over
the synthetic data set justify using f = 15% and R = 10.
For OGLEII we constrain this to have at least 30 points (to
maintain minimal accuracy) and at most 40 points (to limit
complexity). This approximation reduces the time complexity
to O(IC| x R x (fN)?).

5 When multiple time series have the same sampling points (as might be the
case with a whole field in a survey) we can store the values of the kernel
matrices and their inverses (per setting of w, 8, and /) and reuse these. This has
the potential to significantly reduce the time complexity of the algorithm.
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3.2. First-order Approximation with Low-rank Approximation

Similar to the previous case, the time complexity of fine grid
search is O(JF|N?). In this case, we can reduce the constant
factor in the O(N?) term. Note that in step 13, other parameters
are fixed and the grid is fine so that the marginal likelihood is a
smooth function of w. Suppose we have wy, w; € F where F is
the fine grid and Aw = |wy — w;| < €, where € is a predefined
threshold. Then, given K,,,, the covariance matrix w.r.t. wo, we
can get K, by its Taylor expansion as

oK )
K., = K, + — (wo)Aw + o(€?). a7
Jw
Denote K = (0K /ow)(wy) where KAw can be seen

as a small perturbation to K,,. At first sight, the
Sherman—-Morrison—Woodbury formula (Bishop 2006) appears
to be suitable for calculating the update of the inverse efficiently.
Unfortunately, preliminary experiments (not shown here) in-
dicated that this method fails due to numeric instability. In-
stead, we use an update for the Cholesky factors of the ma-
trix and calculate the inverse through these. Namely, given the
Cholesky decomposition of K,,, = LLT we calculate L such

that ZiT =K, + AwK ~ K w, - Details of this construction
are given in the Appendix.

3.3. Astrophysical Input Improvements

For some cases we may have further information on the type
of periodic functions one might expect. We propose to use such
information to bias the selection of periods, by using it to induce
a prior over periods or as a post-processing selection criterion.
The details of these steps are provided in the next section.

4. EXPERIMENTS

This section evaluates the various algorithmic ideas using
synthetic and astrophysics data and then applies the algorithm
to a different set of light curves. Our implementation of the
algorithms makes use of the gpml package (Rasmussen &
Nickisch 2010).°

4.1. Synthetic Data

In this section, we evaluate the performance of several
variants of our algorithm, study the effects of its parameters, and
compare it to the two most used methods in the literature: the
LS periodogram (Lomb 1976) and PDM (Stellingwerf 1978).

The LS method (Lomb 1976) chooses w to maximize the
periodogram defined as

. N2 o 2
Pis(w) = l [Z y;j cos(n;)] + [Z y; sin(n;)] ’ a8)

2 Y cos?(n;) > sin’(n;)

where 17; = w(x;—1). The phase 7 (that depends on w) is defined
as the value satisfying tan(wt) = ) sin(Qwx )/ coswx;).
As shown by Reimann (1994), LS fits the data with a harmonic
model using least squares.

In the PDM method, the period producing the least possible
scatter in the derived light curve is chosen. The score for a
proposed period can be calculated by folding the light curve
using the proposed period, dividing the resulting observation
phases into bins, and calculating the local variance within each

6 http://www.gaussianprocess.org/gpml/code/matlab/doc/
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bin, 6> = > .(y; — y)*/N — 1, where y is the mean value

within the bin and the bin has N samples. The total score is the
sum of variances over all the bins. This method has no preference
for a particular shape (e.g., sinusoidal) for the curve.

We generate two types of artificial data, referred to as
harmonic data and GP data below. For the first, data are sampled
from a simple harmonic function,

y ~ N(asin(wx + ¢1) + b cos(wx + ¢»), o°1), (19)

where a, b ~ Uniform(0, 5), w ~ Uniform(1, 4), ¢; ~ N (0, 1),
and the noise level o2 is set to be 0.1. Note that this is the model
assumed by LS. For the second, data are sampled from a GP
with periodic covariance function in Equation (8). We generate
B, £ uniformly in (0, 3] and (0, 3], respectively, and the noise
level o2 is set to be 0.1. The period is drawn from a uniform
distribution between (0.5, 2.5]. For each type we generate data
under the following configuration. We randomly sampled 50
time series each having 100 time samples in the interval [-5, 5].
Then the comparison is performed using sub-samples with size
increasing from 10 to 100. This is repeated ten times to generate
means and standard deviations in the plots.

The setting of the algorithms is as follows. In our algorithm,
we only use one stage grid search. For our algorithm and LS, the
lowest frequency fiin to be examined is the inverse of the span
of the input data 1 /(Xmax — Xmin) = 1/ T. The highest frequency
Jfmax 18 N/T. For the grid, the range of frequencies is broken
into even segments of 1/87. For PDM we set the frequency
range to be [0.02, 5] with the frequency increments of 0.001
and the number of bins in the folded period is set to be 15.

For performance measures we consider both “accuracy” in
identifying the period and the error of the regression function.
For accuracy, we consider an algorithm to correctly find the
period if its error is less than 1% of the true period, i.e.,
|p — pl/p < 1%. Further experiments (not shown here) justify
this approach by showing that the accuracies reported are not
sensitive to the predefined error threshold.

The results, where our algorithm does not use the sampling
and low-rank approximations, are shown in Figure 6 and they
support the following observations.

1. As expected, the top left plot shows that LS performs very
well on the harmonic data and it outperforms both PDM
and our algorithm. This means that if we know that the
expected shape is sinusoidal, then LS is the best choice.
This confirms the conclusion of other studies. For example,
in the problem of detecting periodic genes from irregularly
sampled gene expressions (Wentao et al. 2008; Glynn et al.
2006), the periodic time series of interest were exactly sine
curves. In this case, studies showed that LS is the most
effective of several statistical models.

2. On the other hand, the top right plot shows that our
algorithm is significantly better than LS on the GP data,
showing that when the curves are non-sinusoidal the new
model is indeed useful.

3. The two plots in the top row together show that our
algorithm performs significantly better than PDM on both
types of data, especially when the number of samples is
small.

4. The first two rows show the performance of the cyclic
optimization procedure with 1-5 iterations. We clearly see
that for these data sets there is little improvement beyond
two iterations. The bottom row shows two examples of the
learned regression curves using our method with different

‘WANG, KHARDON, & PROTOPAPAS

Table 1
Comparison of GPs: Original, Subsampling, and Subsampling Plus Low Rank
Cholesky Update
Original Subsampling Sub + LowR
ACC 0.831 +0.033 0.857 +0.038 0.849 £+ 0.028
S/TS 518.52 £ 121.49 197.59 £+ 14.10 170.75 +£17.93

Notes. ACC denotes accuracy and S/TS denotes the running time in seconds
per time series.

numbers of iterations. Although one iteration does find the
correct period, the reconstruction curves are not accurate.
However, here too, there is little improvement beyond two
iterations. This shows that for the data tested here two
iterations suffice for period estimation and for the regression
problem.

5. The performance of marginal likelihood and cross valida-
tion is close, with marginal likelihood dominating on the
harmonic data and doing slightly worse on GP data.

We next investigate the performance of the speedup tech-
niques. For this we use GP data under the same configuration as
the previous experiments. The experiment was repeated 10 times
where in each round we generate 100 light curves each having
100 samples but generated from different 6s. For the algorithm
we used two iterations for cyclic optimization and varied the
subsampling size, number of repetitions, and rank of the ap-
proximation. Table 1 shows results with our chosen parameter
setting using sampling rate of 15%, 10 repetitions, approxima-
tionrank M = | N /2], and grid search threshold ¢ = 0.005. We
can see that the subsampling technique saves over 60% of the
run time while at the same time slightly increasing the accuracy.
Low-rank Cholesky approximation leads to an additional 15%
decrease in run time, but gives slightly less good performance.
Figure 7 plots the performance of the speedup methods under
different parameter settings. The figure clearly shows that the
chosen setting provides a good tradeoff in terms of performance
versus run time.

4.2. Astrophysics Data

In this section, we estimate the periods of unfolded astro-
physics time series from the OGLEII survey (Soszynski et al.
2003).

OGLE surveyed the sky over a number of years and has a
huge number of light sources. The data we use here are a subset
of OGLEII, containing a total of 14087 light curves of periodic
variable stars that have previously been identified to be periodic
(and thus their period is known) and to be members of one
of three types: Cepheids, RR Lyrae, and EB (as illustrated in
Figure 8).

We first explore, validate, and develop our algorithm using a
subset of OGLEII data and then apply the algorithm to the full
OGLEII data’ except this development set. The OGLE subset
is chosen to have 600 time series in total where each category
is sampled according to its proportion in the full data set.

4.2.1. Evaluating the General GP Algorithm

The setting for our algorithm is as follows. The grid search
ranges are chosen to be appropriate for the application using
coarse grid of [0.02,5] in the frequency domain with the
increments of 0.001. The fine grid is a 0.001 neighborhood of the

7 http://www.cs.tufts.edu/t/ml/index.php?op=data_software
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Figure 6. Results for harmonic data (left column) and GP data (right column). Top: accuracy (mean and standard deviations) vs. the number of samples, where
solid lines marked with nml represent GP with marginal likelihood where n denotes the number of iterations. The corresponding dotted lines marked nrss denote
cross-validation results with n iterations. Middle: reconstruction error for the regression function vs. the number of samples. Bottom: reconstruction curve of GP in
two specific runs using maximum likelihood with different numbers of iterations.

(A color version of this figure is available in the online journal.)
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Figure 7. Accuracy (solid line) and Run time (dashed line) of approximation methods as a function of their parameters. Left: sub-sampling ratio (with R = 10).
Middle: number of repetitions (with 15% sub-sampling). Right: rank in low-rank approximation.

(A color version of this figure is available in the online journal.)
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Figure 8. Examples of light curves of periodic variable stars folded according to their period to highlight the periodic shape. Left: Cepheid, middle: RR Lyrae, and
right: eclipsing binary.

_ ~ Table 2 two aspects. First, for a symmetric EB, the true period and half
Comparisons of Different GPs on OGLEII Subset of the true period are not clearly distinguishable quantitatively.
GP-ML  GP-CV __ SGP-ML __ SGP-CV LS Second, methods that are better able to identify the true period of

EBs are prone to find periods that are integer multiples of single

IITR ACC 0.7856 07769 0.7874 0.7808 0.7333 bump stars like RR Lyrae stars and Cepheids. On the other
2ITR ACC 0.7892 0.7805 0.7910 0.7818 e .

3ITR ACC 0.7928 0.7806 0.7964 07845 hand, methods that fold RR Lyrag stars and Cepheld§ correctly
4ITR ACC 0.7946 0.7812 0.7982 0.7875 often give “half” of the true period of EBs. In particular, the
5ITR ACC 0.7964 0.7823 0.8000 0.7906 low performance of LS is due to the fact that it gives a half or

otherwise wrong period for most EBs.

Notes. GP-ML and GP-CV are GP with the ML and CV criteria. SGP-ML and To illustrate the results, Figure 9 shows the periods found by
SGP-CV are the corresponding subsampling versions. The first column denotes LS and by GP on four stars. The top row shows two cases where
the number of iterations. the GP method finds the correct period and LS finds half the

period. The bottom row shows cases where LS identifies the

. . . . correct period and the GP does not. In the example on the left

top flr(e?ezrg:les efach ha“?‘g 20 p01nt95 V?tﬁ a sltep pi0.000dl SWe the GP doubles the period. In the example on the right the GP
use & = 20 top Irequencies in step 9 of the algorithm and vary identifies a different period from LS but given the spread in the

the numbgr of iterations in a cych'c optimization. When using correct period the period it uncovers is not unreasonable.
sub-sampling, we use 15% of the original time series, but restrict

sample size to be between 30 and 40 samples. This guarantees

. 4.2.2. Incorporating Domain Knowledge
that we do not use too small a sample and that complexity

is not too high. For LS we use the same configuration as in We next show how this issue can be alleviated and the
the synthetic experiment. Results are shown in Table 2 and performance can be improved significantly using a learned
they mostly confirm our conclusions from the synthetic data. In probabilistic generative model. The methods developed are
particular, ML is slightly better than CV and subsampling yields general and can be applied whenever such a model is available.
a small improvement. In contrast with the artificial data, more As illustrated in Figure 8, our astrophysics knowledge suggests
iterations do provide a small improvement in performances and that different types of stars have different typical shift-invariant
five iterations provide the best results in this experiment. Finally, “shapes.” In addition, each class has more than one such shape
we can also see that all of the GP variants outperform LS. and each individual star has some variation from the common

Although this is an improvement over existing algorithms shape. We use the Shift-invariant Grouped Mixed-effect Model
accuracy of 80% is still not satisfactory. As discussed by (GMT; Wang et al. 2010), which captures the common ““shapes”
Wachman (2009), one particularly challenging task is finding the via a mixture of GPs while at the same time allowing for
true period of EB stars. The difficulty comes from the following individual variations. This model was previously developed
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Figure 9. Examples of light curves where GP and LS identify different periods and one of them is correct. Each pair shows the time series folded by GP on the left and
LS on the right. The top row shows cases where LS identifies half the period. The bottom row shows cases where GP identifies double the period or a different period.

Table 3
Comparison of Different Regularization Parameters on OGLEII
Subset Using MAP
y 0 0.1 0.3 0.5 0.7 0.9 1
ACC 0.87027 0.85946 0.81802 0.81802 0.80901 0.80721 0.8

to capture and aid in the classification of the astrophysics
data. Once model parameters are learned we can calculate the
likelihood of a light curve folded using a proposed period.
Given the models, learned from a disjoint set of time series,
for Cepheids, EBs, and RR Lyrae stars with parameter sets
M;,i = {C, E, R}, there are two perspectives on how they can
be used.

Model as prior. The models can be used to induce an improper
prior distribution (or alternatively a penalty function) on the
period p. Given period p and sample points x the prior is given
by

Pr(p) = max_(Pr(ylx, p; M), (20)
where from the perspective of M;, x and corresponding points
in y are interpreted as if they were sampled modulo p. Thus,
combining this prior with the marginal likelihood, a Maximum
A Posteriori (MAP) estimation can be obtained. Adding a
regularization parameter y to obtain a tradeoff between the
marginal likelihood and the improper prior we get our criterion:

log Pr(p|x, y; M) = y logPr(y|x, p; M)

+(1 — y)log Pr(p), (2D
where Pr(y|x, p; M) is exactly as Equation (12) where the pe-
riod portion of M is fixed to be p. When using this approach with
our algorithm we use Equation (21) instead of Equation (12) as
the score function in lines 5 and 13 of the algorithm. The results
for different values of y (with subsampling and five iterations)
are shown in Table 3. The results show that GMT on its own

10

(y = 0) is a good criterion for period finding. This is as one
might expect because the OGLEII data set includes only stars
of the three types captured by GMT.

In this experiment, regularized versions do not improve the
result of the GMT model. However, we believe that this will be
the method of choice in other cases when the prior information
is less strong. In particular, if the data include unknown shapes
that are not covered by the generative model then the prior on its
own will fail. On the other hand when using Equation (21) with
enough data the prior will be dominated by the likelihood term
and therefore the correct period can be detected. In contrast, the
filter method discussed next does not have such functionality.

Model as filter. Our second approach uses the model as a
post-processing filter and it is applicable to any method that
scores different periods before picking the top scoring one as
its estimate. For example, suppose we are given the top K best
periods {p;},i = 1, ..., K found by LS, then we choose the
one such that

p* = argmax
iefl,...K}

<. max _[log Pr(ylx, p;; M,)]) . (22)
je

{C,E,R}

Thus, when using the GMT as a filter, step 17 in our algorithm
is changed to record the top K frequencies from the last for loop,
evaluate each one using the GMT model likelihood, and output
the top scoring frequency.

Heuristic for variable periodic stars. The two approaches
above are general and can be used in any problem where a model
is available. For the astrophysics problem we develop another
heuristic that specifically addresses the half-period problem of
EBs. In particular, when using the filter method, instead of
choosing the top K periods, we double the selected periods,
evaluate both the original and doubled periods {p;, 2p;} using
the GMT model, and choose the best one.

Results of experiments using the filter method with and
without the domain-specific heuristic are given in Table 4,
based on the five iteration versions of subsampling GP. The
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Table 4
Comparisons of the Accuracy of Different Algorithms on OGLEII Subset
Using the GMT as a Filter

Original Single Filter Filter
LS 0.7333 0.7243 0.9053
GP 0.8000 0.8829 0.9081
LS+GP e 0.8811 0.9297

Notes. Single denotes without the double period heuristic.

filter method significantly improves the performance of our
algorithm showing its general applicability. The domain-specific
heuristic provides an additional improvement. For LS, the
general filter method does not help but the domain-specific
heuristic significantly improves its performance. By analyzing
the errors of both GP and LS, we found that their error regions are
different. Therefore, we further propose a method that combines
the two methods in the following way: pick the top K periods
found by both methods and evaluate the original and doubled
periods using the GMT to select the best one. As Table 4 shows,
the combination gives an additional 2% improvement on the
OGLEII subset.

4.2.3. Application

Finally, we apply our method using marginal likelihood with
two-level grid search, sub-sampling, two iterations, and filtering
on the complete OGLEII data set minus the development
OGLEII subset. Note that the parameters of the algorithm,
other than domain-dependent heuristics, are chosen based on our
results from the artificial data. The accuracy is reported using
10-fold cross validation under the following setting: the GMT
is trained using the training set and we seek to find the periods
for the stars in the test set. We compare our results to the best
result from Wachman (2009) that used an improvement of LS,
despite the fact that they filtered out 1832 difficult stars due to
insufficient sampling points and noise. The results are shown in
Table 5. We can see that our approach significantly outperforms
existing methods on OGLEII.

5. RELATED WORK

Period detection has been extensively studied in the literature
and especially in astrophysics. The periodogram, as a tool for
spectral analysis, dates back to the 19th century when Schuster
applied it to the analysis of some data sets. The behavior of the
periodogram in estimating frequency was discussed by Deeming
(1975). The periodogram is defined as the modulus squared of
its discrete Fourier transform (Deeming 1975). Lomb (1976)
and Scargle (1982) introduced the so-called Lomb-Scargle
(LS) periodogram that was discussed above and which rates
periods based on the sum-of-squares error of a sine wave at
the given period. This method has been used in astrophysics
(Cumming 2004; Wachman 2009) and has also been used
in bioinformatics (Glynn et al. 2006; Wentao et al. 2008).
One can show that the LS periodogram is identical to the
equation we would derive if we attempted to estimate the
harmonic content of a data set at a specific frequency using
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the linear least-squares model (Scargle 1982). This technique
was originally named least-squares spectral analysis method
(Vanicek 1969). Many extensions of the LS periodogram exist
in the literature (Bretthorst 2001). Hall & Li (2006) proposed
the periodogram for non-parametric regression models and
discussed its statistical properties. This was later applied to
the situation where the regression model is the superposition of
functions with different periods (Hall 2008).

The other main approach uses least-squares estimates, equiv-
alent to maximum likelihood methods under Gaussian noise
assumption, using different choices of periodic regression
models. This approach, using finite-parameter trigonometric se-
ries of different orders, has been explored by various authors
(Hartley 1949; Quinn & Thomson 1991; Quinn & Fernandes
1991; Quinn 1999; Quinn & Hannan 2001). Note that if the
order of the trigonometric series is high then this is very close
to nonparametric methods (Hall 2008).

Another intuition is to minimize some measure of dispersion
of the data in phase space. PDM (Stellingwerf 1978), described
above, performs a least-squares fit to the mean curve defined
by averaging points in bins. Lafler & Kinman (1965) described
a procedure which involves trial-period folding followed by
a minimization of the differences between observations of
adjacent phases.

Other least-squares methods use smoothing based on splines,
robust splines, or variable-span smoothers. Craven & Wahba
(1978) discussed the problem of smoothing periodic curves with
spline functions in the regularization framework and invented
the generalized cross-validation score to estimate the period
of a variable star. Oh et al. (2004) extended it by substituting
the smoothing splines with robust splines to alleviate the
effects caused by outliers. Supersmoother, a variable-span
smoother based on running linear smooths, is used for frequency
estimation in McDonald (1986).

Several other approaches exist in the literature. Perhaps the
most related work is Hall et al. (2000) who studied non-
parametric models for frequency estimation, including the
Nadaraya—Watson estimator, and discussed their statistical prop-
erties. This was extended to perform inference for multi-period
functions (Hall & Yin 2003) and evolving periodic functions
(Genton & Hall 2007; Hall 2008). Our work differs from Hall
et al. (2000) in three aspects: (1) the GP framework presented
in this paper is more general in that one can plug in different
periodic covariance functions for different prior assumptions,
(2) we use marginal likelihood that can be interpreted to indi-
cate how the data agree with our prior belief, and (3) we intro-
duce mechanisms to overcome the computational complexity of
period selection.

Other approaches include entropy minimization (Huijse et al.
2011), data compensated discrete Fourier transform (Ferraz-
Mello 1981), and Bayesian models (Gregory & Loredo 1996;
Scargle 1998). Recently, Bayesian methods have also been
applied to solve the frequency estimation problem, for example
Bayesian binning for Poisson-regime (Gregory & Loredo 1996)
and Bayesian blocks (Scargle 1998). Ford et al. (2011) proposed
a Bayesian extension of multi-period LS that is capable of
estimating periodic functions having an additional polynomial

Table 5
Comparisons of Accuracies for Full Set of OGLEII
Method in Wachman (2009) LS-filter GP-filter GP-LS-filter
ACC 0.8680 0.8975 £ 0.04 0.8963 £ 0.03 0.9243 +0.03

11
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trend. The main difference from our work is the kernel-based
formulation in our approach.

6. CONCLUSION

The paper introduces a nonparametric Bayesian approach
for period estimation based on GP regression. We develop a
model selection algorithm for GP regression that combines
gradient-based search and grid search, and incorporates several
algorithmic improvements and approximations leading to a
considerable decrease in run time. The algorithm performs
significantly better than existing state of the art algorithms
when the data are not sinusoidal. Further, we show how domain
knowledge can be incorporated into our model as a prior or
post-processing filter, and apply this idea in the astrophysics
domain. Our algorithm delivers significantly higher accuracy
than existing state of the art in estimating the periods of variable
periodic stars.

An important direction for future work is to extend our model
to develop a corresponding statistical test for periodicity, that
is, to determine whether a time series is periodic. This will
streamline the application of our algorithm to new astrophysics
catalogs such as MACHO (Alcock et al. 1993) where both pe-
riodicity testing and period estimation are needed. Another im-
portant direction is establishing the theoretical properties of our
method. Hall et al. (2000) provided the first-order properties of
nonparametric estimators such that under mild regularity con-
ditions, the estimator is consistent and asymptotically normally
distributed. Our method differs in two ways: we use a GP regres-
sor instead of Nadaraya—Watson estimator and we choose the
period that minimizes marginal likelihood rather than using a
cross-validation estimate. Based on the well-known connection
between kernel regression and GP regression, we conjecture that
similar results exist for the proposed method.

This research was partly supported by NSF grant
IIS-0803409. The experiments in this paper were performed
on the Odyssey cluster supported by the FAS Research Com-
puting Group at Harvard and the Tufts Linux Research Cluster
supported by Tufts UIT Research Computing.

APPENDIX
LOW-RANK APPROXIMATION

In this appendix, we complete the details on how the
first-order approximation with low-rank approximation can be
achieved by a series of rank one updates/downdates of the
Cholesky factors. As shown by Seeger (2007) each such up-
date can be done in O(N?) using a series of Givens rotations.

It can be easily seen that K is areal symmetric matrix. Denote
its eigendecomposition as K = UAU", then it can be written
as the sum of a series of rank one components,

N
K =" senO)(/1hlu) (/12 1u)T, (AD)
i=1

where A; is the ith eigenvalue and w; is the corresponding eigen-
vector. Furthermore, we perform a low-rank approximation to
K such that

M
K~ Z sgnOi)/ i [ui) )/ Ty )T

i=1

(A2)
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where M < N is a predefined rank and A¢) and u; are the
ith largest (in absolute value) eigenvalue and its corresponding
eigenvector. Therefore we have,

M
Ky, ~ LL"+) " sgn(h)((Aw) 26)((Aw) 22)",  (A3)
i=1

where ¢; = \/|A)|ug). We can see that the complexity for cal-

culating the Cholesky factor of K, becomes O(MN?). There-
fore, we can choose an e-net £ of the fine grid such that
Yw € F,sup,e|w — v| < €, perform the exact Cholesky
decomposition directly only on the e-net, and use the approx-
imation on the other frequencies. In this way, we reduce the
complexity from O(|F|N?) to O(|E|N? + |FIMN?).
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