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Machine learning models have emerged as powerful tools in physics and engineering. In this
work, we present an autoencoder with latent space penalization, which discovers finite dimensional
manifolds underlying the partial differential equations of physics. We test this method on the
Kuramoto-Sivashinsky (K-S), Korteweg-de Vries (KdV), and damped KdV equations. We show
that the resulting optimal latent space of the K-S equation is consistent with the dimension of the
inertial manifold. The results for the KdV equation imply that there is no reduced latent space,
which is consistent with the truly infinite dimensional dynamics of the KdV equation. In the case of
the damped KdV equation, we find that the number of active dimensions decreases with increasing
damping coefficient. We then uncover a nonlinear basis representing the manifold of the latent space
for the K-S equation.

I. INTRODUCTION

Evolution of physical and engineering systems is gener-
ally expressed as nonlinear partial differential equations
(PDEs). These PDEs are able to capture a wide range of
complex phenomena and are therefore indispensable for
making predictions of scientific interest. However, most
PDEs of practical interest are not analytically tractable.
Highly efficient numerical methods can obtain solutions
to these PDEs, but are severely limited by the strong
multi-scale nature of the underlying dynamics and lim-
itations of hardware resources. There is therefore con-
siderable interest in the development of reduced models
that capture only the most important dynamics of the
physical phenomenon of interest [1–4]. In recent years,
machine learning algorithms have been borrowed from
the computer vision community and adapted for physi-
cal applications [5–13], offering an enticing approach for
blending data with physical principles. In fact, a key
goal in merging machine learning with physics problems
is to embed known physical laws into machine learn-
ing algorithms [8]. The current work presents a general
approach to finding a dynamically-relevant manifold of
canonical PDEs using autoencoders. Other recent work
has applied autoencoders to learning inertial manifolds
of PDEs in a physically-meaningful manner [14–18]. In
particular, [17] introduces the Hybrid Neural Network
(HNN), in which an autoencoder is used to learn the dif-
ference between the data and a linear projection onto the
principle component analysis (PCA) basis. The HNN
embeds translation invariance and energy conservation
and learns the dynamics on the inertial manifold of the
Kuramoto-Sivashinsky equation. In the present work,
the traditional mean-squared error loss function between
the input and reconstruction of the autoencoder is aug-
mented with the sparsity-promoting mean absolute error
loss function, which is applied to the latent space. In this
way, the latent space of the trained autoencoder only con-
tains the minimal dimensions needed to reconstruct the
solution. This approach is tested on two equations that
are known to have an inertial manifold (the Kuramoto-
Sivashinsky equation and the damped Korteweg-de Vries

equation) and one equation whose dynamics are truly in-
finite dimensional (the undamped KdV equation). In the
case of the Kuramoto-Sivashinsky equation, the trained
autoencoder and latent space is used to find a non-linear
reduced solution basis whose dimension is consistent with
that of the inertial manifold.

II. GOVERNING EQUATIONS AND DATASETS

The Kuramoto-Sivashinsky (K-S) equation is,

ut + uux + uxx + uxxxx = 0 (1)

where u = u (x, t) is the solution field, x ∈ [0, L],
and t ∈ R+. The final integration time is denoted
by T . Equation (1) is subject to periodic boundary
conditions u (0, t) = u (L, t) and initial condition u0 =
cos
(
2π
L x
) (

1 + sin
(
2π
L x
))

. The K-S equation has its roots
in physics [19–22], and is a frequently-studied equation
in mathematics [23–30]. Of particular relevance to the
present work is the result that the dynamics of the K-S
equation are confined to an inertial manifold [24]. That
is, despite the K-S equation being a non-integrable equa-
tion whose solutions exhibit spatio-temporal chaos, the
underlying dynamics are exponentially attracted to a
finite-dimensional manifold. The dimension of the in-
ertial manifold increases with the bifurcation parameter
L.

The damped Korteweg–de Vries (KdV) equation, also
considered in this work, is,

ut + uux + uxxx − ηuxx = 0 (2)

where x ∈ [−π, π] and η ≥ 0 is a damping coeffi-
cient. The KdV equation is subject to periodic bound-
ary conditions u (−π, t) = u (π, t) and initial condition
u0 = 3A2sech2 (A (x+ 2) /2) + 3B2sech2 (B (x+ 1) /2)
with A = 16 and B = 25. The classical KdV equa-
tion is recovered for η = 0. Similarly to the K-S equa-
tion, the KdV equation is a paradigmatic equation in
mathematical physics [31, 32], leading to the discovery
of solitons, which are a direct bridge between observed
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(a) (b)

FIG. 1. Datasets from the K-S and KdV equations used in this work. (a) Contours of the K-S equation in space-time with
three spatial snapshots at different points in time and a snapshot in time at the center of the domain. The grey shaded area
of the contour was not used in the training. (b) Space-time contours of the KdV equation with spatial snapshots in time. The
shading is the same as for the K-S equation.

coherent structures in PDEs and nature. The dynam-
ics of the undamped KdV equation are truly infinite di-
mensional and are therefore not confined to an inertial
manifold while those of the damped KdV equation are
finite-dimensional [32].

The datasets for this work were generated by solv-
ing (1) and (2) using an exponential time-differencing
fourth-order Runge-Kutta method [33] and a pseudo-
spectral Fourier method in space. Spatial snapshots of
these solution fields are used as input to the autoencoder.
Figure 1 shows examples of the K-S dataset (Figure 1a)
and the KdV dataset (Figure 1b). The numerical pa-
rameters used for the cases in this work are presented in
Table I in Appendix A.

III. METHODOLOGY

Autoencoders are a self-supervised neural network ar-
chitecture that can be used to find a low-dimensional
manifold that represents the data [34, 35]. The input
to the encoder is mapped to a lower dimensional space
called the latent space. The latent space is then ex-
panded through the decoder to reproduce the input to
the encoder. An autoencoder with linear activation func-
tions can be shown to be equivalent to the singular value
decomposition [36]. In the present work, the input is
a snapshot of the solution field obtained from a high-
fidelity numerical simulation that used N points in space
and Nt points in time. A snapshot in space is denoted
by un = u (tn) for n = 1, . . . , Nt and u ∈ RN is a vector
representing the solution at N discrete points in space.
This snapshot is mapped to a latent space of dimension
Nz with zj (tn) the jth component of the latent space
corresponding to snapshot n. The reconstructed output
of the autoencoder is denoted by ûn. The weights and

biases associated with each node of the autoencoder are
tuned to minimize the total loss,

L = Lu + λLz (3)

where

Lu (u, û) =
1

NtN

Nt∑
n=1

N∑
i=1

(u (xi, tn)− û (xi, tn))
2

(4)

is the mean squared error (MSE) reconstruction loss and

Lz =
1

NtNz

Nt∑
n=1

Nz∑
j=1

|zj (tn)|. (5)

is the mean absolute error (MAE) penalization loss on
the latent dimensions. The sparsity of the latent space is
controlled by the regularization parameter λ ≥ 0. A
classical autoencoder corresponds to λ = 0. The di-
mension of the latent space, Nz, is not known a pri-
ori, but the MAE penalization promotes sparsity in the
latent dimensions while the MSE loss boosts the re-
construction performance. The appropriate value of λ
will therefore restrict the latent space to the dimensions
necessary for a good reconstruction. Figure 2 depicts
the autoencoder and loss functions used in this work.

All networks used in the current work used fully-
connected networks with sinusoidal activation functions.
For conciseness, we denote the encoder architecture by
N → H1 → H2 · · · → HD → Nz where Hk represents
the number of nodes in layer k and D is the number of
hidden layers. The decoder uses the reverse form of the
encoder portion. The autoencoders were trained used
gradient descent with gradient clipping [37] to limit the
maximum gradient to 10. The Adamax optimizer [38]
was used in all experiments. The transient portion of
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FIG. 2. The autoencoder architecture with latent space pe-
nalization. The reconstruction loss Lu (4) is combined with
a mean absolute error loss Lz (5). The result is a solution
reconstruction that uses only relevant latent dimensions.

the dataset was excluded from both the training and val-
idation sets. In general, 80% of the remaining dataset
was retained for training and 20% was used for valida-
tion. Table II in Appendix B contains specific details on
all autoencoder architectures used in this work including
their hyperparameters.

IV. RESULTS

Autoencoders were trained on datasets generated from
the K-S equation (1) and the KdV equation (2). The
cases considered in this work are summarized in Tables I
and II in Appendix A and B, respectively. Each case
was run for a range of regularization parameter values.
For each value of λ, the dataset was split into a training
and validation set and the MSE (4) was monitored on the
validation set during training. Two models were saved for
each experiment. One model was saved at the minimum
of the training loss curve while the other model was saved
at the minimum of the MSE loss on the validation set.
The model with the lowest MSE loss on the validation
set at each value of λ, L∗

u (uvalid, ûvalid), was taken to
represent the optimal regularization parameter for that
case and was used for analysis.

A. Kuramoto-Sivashinsky Equation

Using the K-S dataset with L = 22, the autoencoder
was trained to find û (x, t) with the total loss (3) for
λ ∈

[
10−4, 2

]
. The architecture of the encoder was

512→ 256→ 128→ 64→ 32, corresponding to Nz = 32.
Figure 3 (a) presents L∗

u (uvalid, ûvalid) for different val-
ues of λ and shows a minimum at λ = 0.398. Figure 3
(b) shows the reconstruction by the trained autoencoder
using λ = 0.398 on a snapshot from the validation set.
More insight can be obtained by passing each snapshot
through the trained network and extracting the latent di-
mensions corresponding to each snapshot. This process
results in Nt vectors (one for each snapshot), each of size
Nz. Figure 4 shows that of the 32 latent dimensions, only
10 are consistently active. This is consistent with, but
slightly larger than, the known dimension of the inertial

manifold for the K-S equation [30, 39]. The interquartile
range (IQR) can be used as an indicator of the variabil-
ity of the latent dimensions. When normalized by the
largest IQR (the most active latent dimension) a very
clear separation between “active” and “non-active” di-
mensions emerges as shown in the bottom of Figure 4.
The largest IQR of the remaining 22 dimensions is 0.238
of the most active dimension.

The trained autoencoder model also provides a way to
develop a nonlinear basis for the learned manifold using
the technique of activation maximization. The idea be-
hind this technique is to determine the input that maxi-
mizes the output of a specific node in the neural network.
In the present work, we were interested in the inputs that
would maximize each latent dimension. The input that
maximized a given latent dimension was interpreted as
a component of the basis of the low-dimensional mani-
fold. The input that maximizes latent dimension zj is
determined from,

bj = arg max
v

Sj (v) , j = 1, . . . , Nz (6)

where

Sj = zj (v)− βRTV (v) (7)

and

RTV (v) =
1

N − 1

N−1∑
i=1

(v (xi+1)− v (xi))
2

(8)

is a regularization used to smooth the resulting field with
the regularization parameter β ≥ 0. The function evalu-
ation zj (v) corresponds to an evaluation of the encoder
portion of the trained autoencoder with input v. Note
that v is not a temporal snapshot of the dataset, but in-
stead represents an arbitrary input to the autoencoder.
Gradient ascent was used to solve (6),

v
(l+1)
j = v

(l)
j + γ

∂Sj
∂vj

. (9)

The step size γ was set to 1 and the regularization
strength β was set to 3. The maximization of each la-
tent dimension was initialized from a random distribution
in space where each point was drawn uniformly in [0, 1].
The result is a basis for the reduced manifold. Figures 5a
and 5c show the components of the basis and their power
spectra, respectively. The power spectra clearly show
that the components of the discovered basis consist of a
handful of distinct modes. In contrast to the active di-
mensions, Figures 5b and 5d show that the inputs that
maximize the non-active dimensions are constants near
zero. Finally, we compute the optimal number of latent
dimensions for L = [22, 26, 30, 35, 43, 45, 50] and repeat
the experiment ten times for each value of L. Figure 6 de-
picts the scaling of the number of latent dimensions with
L, along with uncertainty bounds, and shows a nearly
linear scaling, consistent with the scaling of the number
of active modes [40].
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(a) (b) (c)

FIG. 3. (a) Reconstruction loss on the validation set for the K-S equation with L = 22 across different values of penalization
parameter λ. In each case the network architecture was 512→ 256→ 128→ 64→ 32. The minimum value occurs at λ = 0.398.
(b) Solution reconstruction and input solution for the K-S equation. (c) Solution reconstruction and input solution for the K-S
equation.
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FIG. 4. Active latent dimensions for the model with the low-
est total loss (3) (λ = 0.398). Top: Box plots of each dimen-
sion of the latent space generated by passing all snapshots
through the autoencoder and extracting the latent space.
Bottom: Normalized IQR for each dimension showing a gap
between the 10 active and remaining non-active dimensions.

B. KdV Equation

The latent space penalization enabled the discovery
of a reduced basis for an equation that has an iner-
tial manifold. In contrast to the K-S equation, the un-
damped KdV equation does not possess an inertial man-
ifold and, moreover, the dynamics are truly infinite di-
mensional [32]. The undamped KdV equation therefore
provides a test for the method in which the optimal la-
tent space penalization is expected to be zero. Before
training the autoencoder, the input was normalized by
its maximum value. Following the same procedure as
for the K-S equation, the optimal latent space regular-
ization was determined to be λ = 0 implying that the
system does not possess an underlying finite-dimensional
manifold. Figure 3 (c) presents a snapshot of a solution
from the validation set and the corresponding prediction
from the autoencoder at λ = 0. The lack of a finite-
dimensional manifold is further supported by Figure 7,
in which the IQR for each snapshot of the dataset is vi-
sualized for each dimension in the latent space. There is
no separation of the latent space dimensions into “active”
and “nonactive” components.

C. Damped KdV Equation

As a final test case, the damped KdV equation was
studied over a range of damping coefficients, η (see Ta-
ble I in Appendix A). The damped KdV equation pos-
sesses an inertial manifold and it therefore provides a
fertile test ground for understanding the behavior of the
latent space as the damping coefficient is varied. For each
damping coefficient, the autoencoder with latent space
penalization was trained across a number of regulariza-
tion parameters. The number of active dimensions for
each damped KdV equation had to be determined. How-
ever, the minima in the MSE loss, Lu vs. regularization
parameter, λ, on the validation sets were shallow. Fig-
ure 8a presents a representative example for one particu-
lar model. Rather than extract a single minimum as was
done in the K-S case, a different procedure was employed
to provide a more robust result. As before, the model
with the minimum validation loss was extracted at each
λ and used for the analysis. Instead of retaining a sin-
gle model at the minimum of the Lu (λ) curve, all models
were retained in the shallow minimum. The latent dimen-
sions for every snapshot of the dataset were computed
for each of these models and the IQR was again used to
assess the activity of each latent dimension. The num-
ber of active dimensions was computed by counting the
number of latent dimensions with IQR above a certain
threshold, IQRthresh, for each model. To guard against
sensitivity in the choice of IQRthresh, a range of thresh-
olds was tested between 0.1 and 0.8. This process results
in an array representing the number of active dimensions
for each value of η. The array contains the number of
active dimensions for each model in the shallow mini-
mum and each threshold value. The median number of
dimensions over each model in the shallow minimum for
each case and each threshold value was computed, which
resulted in an array for each case that represents the
number of active dimensions for each choice of threshold.
As expected, the threshold value only shifts the number
of active dimensions up and down, but the behavior of
the number of active dimensions over η for each threshold
value remains the same. The final result is obtained by
taking the median over the threshold values. Figure 8b
shows the variation of active dimensions as the thresh-
old is increased. The number of active latent dimensions
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FIG. 5. (a) The nonlinear basis for the 10− dimensional manifold found for the K-S equation with L = 22. (b) Examples of
the non-active dimensions. (c) Power spectrum of the basis for the active dimensions. (d) Power spectrum of two non-active
dimensions. Wavenumbers in the power spectra have been truncated to highlight the peaks in the power spectra. There are
no peaks for |κ| > 5.
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FIG. 6. Scaling of the optimal number of latent dimensions
with domain size L for the K-S equation.
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FIG. 7. Active latent dimensions for the KdV equation at
λ = 0 visualized with the normalized IQR. The least active
dimension is more than 60% of the most active dimension in-
dicating that all latent dimensions are required to reconstruct
the solution.

decreases nearly monotonically with increasing damping
coefficient as shown in Figure 9.

V. CONCLUSIONS

We introduced an autoencoder with latent space penal-
ization applied to datasets generated from nonlinear par-
tial differential equations in physics. The latent space pe-
nalization is used to restrict the dimensionality of the la-
tent space to the minimal number of dimensions, thereby
ensuring that the dynamics embodied in the dataset are
captured by a low-dimensional manifold. In the case of
the K-S equation, the optimal latent space dimension was
consistent with the known dimensionality of the inertial
manifold for bifurcation parameter L = 22. We then
determined a nonlinear basis for this manifold, which
could in principle be used in a reduced order model. The
KdV equation does not posses an inertial manifold and
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FIG. 8. (a) Validation loss as a function of regularization parameter for the damped KdV equation with η = 1.5. The dashed
line is presented as a reference to highlight the shallow minimum / plateau. (b) The number of active dimensions as a function
of damping parameter for different IQR thresholds. The mean and median show the overall scaling. The paper presents the
median.
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FIG. 9. Active latent space dimensions vs. damping param-
eter η for the damped KdV equation.

has truly infinite dimensional dynamics. In this case, we
found optimal results without any latent space penaliza-
tion, which is consistent with the known properties of the
KdV equation. Finally, when applying this technique to
the damped KdV equation, which once again has an iner-

tial manifold, we found the beginnings of power law scal-
ing for the number of active dimensions for sufficiently
large damping coefficient. This technique opens interest-
ing directions for determining reduced order models.
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de Mathématiques Pures et Appliquées 67, 197 (1988).
[25] R. Conte and M. Musette, Journal of Physics A: Mathe-

matical and General 22, 169 (1989).
[26] M. S. Jolly, I. Kevrekidis, and E. S. Titi, Physica D:

Nonlinear Phenomena 44, 38 (1990).
[27] J. C. Robinson, Physics Letters A 184, 190 (1994).
[28] M. S. Jolly, R. Rosa, R. Temam, et al., Advances in Dif-

ferential Equations 5, 31 (2000).
[29] P. Constantin, C. Foias, B. Nicolaenko, and R. Temam,

Integral manifolds and inertial manifolds for dissipative
partial differential equations, vol. 70 (Springer Science &
Business Media, 2012).
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Appendix A: Numerical Simulations

The one-dimensional Kuramoto-Sivashinsky (K-S) and
Korteweg-de Vries (KdV) equations were solved using a
pseudo-spectral Fourier discretization in space and an ex-
ponential fourth-order Runge-Kutta method [33] in time.
The spatial domain was discretized using N points in
physical space. The nonlinear terms were computed in
physical space using the 2/3 dealiasing rule. Table I
presents the runs that were used to generate the figures
in the paper.

Appendix B: Autoencoder Architectures
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TABLE I. Details of the numerical simulations that were used
to generate the datasets. The damping coefficient η only ap-
plies to the damped KdV equation. N represents the number
of discrete points in the physical domain. The final integra-
tion time is T and the constant time step is given by ∆t.

Case Equation Domain η N T ∆t

1 K-S [0, 22] — 512 4 · 104 0.125

2 K-S [0, 22] — 1024 4 · 104 0.125

3 K-S [0, 26] — 1024 4 · 104 0.125

4 K-S [0, 30] — 1024 4 · 104 0.125

5 K-S [0, 35] — 1024 4 · 104 0.125

6 K-S [0, 43] — 1024 4 · 104 0.125

7 K-S [0, 45] — 1024 4 · 104 0.125

8 K-S [0, 50] — 1024 4 · 104 0.125

9 KdV [−π, π] 0 512 5 · 10−3 0.125

10 KdV [−π, π] 0.01 512 10−2 10−7

11 KdV [−π, π] 0.05 512 10−2 10−7

12 KdV [−π, π] 0.1 512 10−2 10−7

13 KdV [−π, π] 0.25 512 10−2 10−7

14 KdV [−π, π] 0.63 512 10−2 10−7

15 KdV [−π, π] 1.0 512 10−2 10−7

16 KdV [−π, π] 1.5 512 10−2 10−7

17 KdV [−π, π] 1.58 512 10−2 10−7

18 KdV [−π, π] 2.0 512 10−2 10−7

19 KdV [−π, π] 2.5 512 10−2 10−7

20 KdV [−π, π] 3.0 512 10−2 10−7

21 KdV [−π, π] 3.5 512 10−2 10−7

22 KdV [−π, π] 3.98 512 10−2 10−7
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TABLE II. Parameters used for the trained autoencoders. The cases correspond to those in Table I. The Start Index column
represents the snapshot index from which the training and validation sets were taken. Data before this index was not used.

Case Architecture Learning rate Batch size Epochs Start Index

1
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 40 3 · 104 5 · 104

2
(E): 1024→ 256→ 64

(D): 64→ 256→ 1024
10−3 40 3 · 104 5 · 104

3
(E): 1024→ 256→ 64

(D): 64→ 256→ 1024
10−3 40 3 · 104 5 · 104

4
(E): 1024→ 256→ 64

(D): 64→ 256→ 1024
10−3 40 3 · 104 5 · 104

5
(E): 1024→ 256→ 64

(D): 64→ 256→ 1024
10−3 40 3 · 104 5 · 104

6
(E): 1024→ 256→ 64

(D): 64→ 256→ 1024
10−3 40 3 · 104 5 · 104

7
(E): 1024→ 256→ 64

(D): 64→ 256→ 1024
10−3 40 3 · 104 5 · 104

8
(E): 1024→ 256→ 64

(D): 64→ 256→ 1024
10−3 40 3 · 104 5 · 104

9 (λ = 0)
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
5 · 10−3 100 105 104

9 (λ > 0)
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
5 · 10−3 100 105 104

10
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 60 5 · 104 104

11
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 60 7.5 · 104 104

12
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 60 7.5 · 104 104

13
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 60 7.5 · 104 104

14
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 60 7.5 · 104 104

15
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 60 7.5 · 104 104

16
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 60 7.5 · 104 104

17
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 60 7.5 · 104 104

18
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 60 7.5 · 104 104

19
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 60 7.5 · 104 104

20
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 60 7.5 · 104 104

21
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 60 7.5 · 104 104

22
(E): 512→ 256→ 128→ 64→ 32

(D): 32→ 64→ 128→ 256→ 512
10−3 60 7.5 · 104 104
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