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ABSTRACT

We present a new QSO selection algorithm using a Support Vector Machine (SVM), a supervised
classification method, on a set of extracted time series features including period, amplitude, color, and
autocorrelation value. We train a model that separates QSOs from variable stars, non-variable stars
and microlensing events using 58 known QSOs, 1,629 variable stars and 4,288 non-variables using the
MAssive Compact Halo Object (MACHO) database as a training set. To estimate the efficiency and
the accuracy of the model, we perform a cross-validation test using the training set. The test shows
that the model correctly identifies ∼80% of known QSOs with a 25% false positive rate. The majority
of the false positives are Be stars.

We applied the trained model to the MACHO Large Magellanic Cloud (LMC) dataset, which
consists of 40 million lightcurves, and found 1,620 QSO candidates. During the selection none of the
33,242 known MACHO variables were misclassified as QSO candidates. In order to estimate the true
false positive rate, we crossmatched the candidates with astronomical catalogs including the Spitzer
Surveying the Agents of a Galaxy’s Evolution (SAGE) LMC catalog and a few X-ray catalogs. The
results further suggest that the majority of the candidates, more than 70%, are QSOs.
Subject headings: Magellanic Clouds - methods: data analysis - quasars: general

1. INTRODUCTION

A large catalog of Quasi-stellar object (QSO) is impor-
tant for a variety of fields in modern astrophysics and ob-
servational cosmology. QSOs have been used for studies
of a) large scale structures based on the spatial clustering
of QSOs (Shen et al. 2007; Ross et al. 2009), b) growth
of central black holes using the estimated black holes’
masses (Kollmeier et al. 2006), c) coevolution of black
holes and their host galaxies using lensed QSO hosts
(Peng et al. 2006), d) the epoch of reionization based on
high redshift QSOs (Becker et al. 2001; Fan et al. 2006),
e) dark matter substructure using gravitationally lensed
QSOs (Metcalf & Madau 2001; Miranda & Macciò 2007)
and f) properties of the intergalactic medium determined
by measuring metallicity distribution using QSO spectra
(Viel et al. 2002; Simcoe et al. 2004).

One of the most interesting properties of QSOs is the
strong flux variation over a wide range of wavelengths on
timescales from days to years (Hook et al. 1994; Hawkins
2002 and references therein). It is believed that QSO
variability is associated with accretion disk instabilities
(Rees 1984; Kawaguchi et al. 1998) although there are
other possible explanations for the source of QSO vari-
ability, including microlensing (Hawkins 1993; Zackrisson
et al. 2003), starbursts and supernovae (Terlevich et al.
1992; Aretxaga et al. 1997). It is debatable which mech-
anism is the dominant source of variability (see Hook
et al. 1994; Giveon et al. 1999; Vanden Berk et al. 2004;
de Vries et al. 2005; Bauer et al. 2009). Moreover, due to
the lack of long-time-span, well-sampled and high-quality
QSO lightcurves, all these previous studies have investi-
gated ensemble variabilities of QSOs. Thus it is impor-
tant to have a large set of well-sampled QSO lightcurves

in order to study both ensemble and individual QSO vari-
ability characteristics, which will help constrain the the-
oretical models of the variability mechanisms (see Hook
et al. 1994; Cristiani et al. 1996; Vanden Berk et al. 2004
and references therein).

Many authors have attempted to select QSO candi-
dates based on the variability characteristics. For in-
stance, Eyer (2002) selected QSO candidates from 68,000
OGLE-II variable stars (Zebrun et al. 2001) using colors,
magnitudes and the structure function of the variables.
The structure function determines the time scale of vari-
ability in a given lightcurve as a function of the time lag
between observations (Eyer 2002). Among the selected
133 QSO candidates, ∼10% were confirmed to be QSOs
(Dobrzycki et al. 2002, 2005). Geha et al. (2003) (here-
inafter G03) searched 140,000 MACHO sources that have
significant flux variation (Alcock et al. 2000). G03 used
colors, magnitudes and two statistical parameters that
quantify variability to select QSO candidates. G03 then
removed known MACHO variable stars (Alcock et al.
2001) from the candidate list and finally examined the
remaining candidates manually in order to remove false
positives. Among the final 360 candidates, 259 were spec-
troscopically observed and 47 of them confirmed to be
QSOs. Sumi et al. (2005) searched about 200,000 vari-
able objects of the OGLE-II data (Wozniak et al. 2002)
and then used a few selection cuts such as magnitudes,
structure function and manual validation. No spectro-
scopic observation was done for their final 97 QSO can-
didates.

Recently, four QSO selection methods have been sub-
mitted or published, which proposed new QSO clas-
sification algorithms using time series variability fea-
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tures. One of them is the work done by Koz lowski et al.
(2010) that used a stochastic model shown in Kelly et al.
(2009) which derives the amplitude and the time scale
of lightcurve variations. They also employed periods
of lightcurves and magnitudes. To develop their selec-
tion method, they used the known QSOs, periodic vari-
ables and non-periodic variables in the OGLE databases
(Udalski et al. 1997, 2008). They also used QSO can-
didates from Koz lowski & Kochanek (2009) that had
OGLE counterparts. To separate the QSOs from other
variables, they defined several cuts and correctly identi-
fied 63% of the QSOs while removing most of the variable
stars. The second study (Schmidt et al. 2010) proposed a
power-law model to fit the structure function and derived
the amplitude and the power index of the model. They
used the derived parameters to isolate known QSOs from
RR Lyraes and non-variable stars extracted from the
SDSS stripe 82 database (S82) (Sesar et al. 2007). Using
simple cuts on the amplitude versus power index plane,
they identified about 90% of the SDSS QSOs with a 5%
false positive rate. Butler & Bloom (2010) and MacLeod
et al. (2010) used similar approaches (i.e. structure func-
tion) with the previous two works. Both utilized the
preselected variable sources from the S82 dataset where
the majority of the variables are QSOs, RR Lyraes and
stars from the stellar locus (see Sesar et al. 2007 for
details). Butler & Bloom (2010) parameterized the en-
semble QSO structure function as a function of bright-
ness of the QSOs. They then used the parameterized
ensemble QSO model to evaluate the quasar likelihood
for individual lightcurves (see Butler & Bloom 2010 for
details). Using this method, they identified nearly all
the known SDSS QSOs (99%) with a 3% false positive
rate. MacLeod et al. (2010) also used the structure func-
tion and several cuts to identify QSOs and exclude other
variable stars from the S82 database. They correctly se-
lected about 90% of the QSOs with 10∼20% false positive
rate depending on the cuts imposed. Both works also se-
lected new QSO candidates from the preselected variable
sources (Sesar et al. 2007). These candidates have not
been spectroscopically confirmed. Note that the efficien-
cies or false positive rates of these studies should not
be directly compared because each work used their own
selected set of stars and QSOs to develop their meth-
ods. For a comprehensive comparison of the results of
the methods, see MacLeod et al. (2010).

Even though some of these recent works (Schmidt et al.
2010; Butler & Bloom 2010; MacLeod et al. 2010) showed
high efficiencies and low false positive rates, they used
samples that are selected in such a way that high ef-
ficiency and low false positive rate is to be expected.
The separation of QSOs from non-varying stars and a
few types of variable stars, especially short-period vari-
ables (i.e. RR Lyraes) are relatively straightforward since
QSOs show non-periodic and long-time scale fluctuation.
The majority of the samples they used in these stud-
ies are short-period variables and do not show long-time
scale fluctuation,

QSO selection methods based on variability will be
valuable tools for on-going and future large scale survey
missions such as Pan-STARRS (Kaiser 2004) and LSST
(Ivezic et al. 2008). These surveys will keep monitoring
wide areas of the sky and will produce vast amount of
time series data in several wavelength bands (e.g. g, r, i, z

for Pan-STARRS). Because spectroscopic observations
for such wide areas are very expensive, QSO selections in
the absence of spectroscopic data are becoming impor-
tant, and thus developing QSO selection methods using
variability are rapidly attracting notable attention.

The work presented in this paper utilizes the whole
MACHO lightcurve databset considering all known vari-
able sources in the MACHO database. Thus this is the
first work that considers the efficiency and the false posi-
tive rates of QSO selection in an entire lightcurve dataset.
We have developed our method by training on the rich-
est possible dataset including all known types of sources
and testing it also on the whole dataset. The training
set includes a variety of variable objects such as QSOs,
RR Lyraes, Cepheids, eclipsing binaries, long period vari-
ables, Be stars, microlensing events and also non-variable
stars. Only one other selection method, Koz lowski et al.
(2010), has considered Be stars, which are one of the most
significant contaminants during QSO selections in LMC
(G03). Our goal is to select high confidence QSO candi-
dates in the MACHO database (Alcock et al. 1996) while
minimizing the number of false positives. Our approach
employs multiple time series features rather than using
only the lightcurve structure function. These features
can characterize various kinds of variability characteris-
tics. Therefore our algorithm is practical not only for
identifying QSOs but also for excluding other types of
variable stars and non-variable stars. To fully utilize the
features and identify QSOs, we employed a supervised
machine learning classification method, Support Vector
Machine (SVM, Boser et al. 1992; Cristianini & Shawe-
Taylor 2000; Panik 2005). In the true spirit of machine
learning, our method uses a classification model trained
with the training set and thus eliminates the need for
hard linear cuts and human input (e.g. manual prese-
lection of variable sets, manual removal of false positives
and determination of cuts).

We briefly introduce the MACHO database and known
MACHO QSOs in Section 2. Section 8 describes the
multiple time series features that we used to quantify
the variability characteristics of each lightcurve. Section
4 introduces SVM, the method used to train the classi-
fication model. We present the MACHO QSO classifi-
cation model constructed using the time series features
and SVM in Section 5.1. We then show the MACHO
QSO candidates selected using the model in Section 5.2.
Crossmatched results with astronomical catalogs are pre-
sented in Section 6. Ongoing and future work is summa-
rized in Section 7.

2. MACHO DATABASE AND MACHO QSO

2.1. MACHO database

The MACHO survey monitored a wide area of the sky
to detect microlensing events caused by Milky Way halo
objects and test the hypothesis that a significant portion
of dark matter in the Milky Way halo consists of com-
pact objects such as brown dwarfs or planets (Alcock
et al. 1996). Because microlensing events are extremely
rare, MACHO monitored several tens of millions of stars
in the Large Magellanic Cloud (LMC), Small Magellanic
Cloud (SMC) and Galactic bulge for 7.4 years. Obser-
vations started in July 1992 and were completed at the
end of December 1999. More than 5 Tbytes of image
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TABLE 1
11 time series features

Four new features Brief description; for details, see Appendix.

Nabove and Nbelow Nabove: the number of points above the upper boundary line of the autocorrelation plot.

Nbelow: the number of points below the lower boundary line of the autocorrelation plot.

Figure 11 shows the constructed boundary lines based on the autocorrelation functions (see Figure 10)

of the training set lightcurves.

Stetson KAC Stetson K (Eq. 11) variability index derived based on the autocorrelation function

of each lightcurve.

Rcs The range of a cumulative sum (Ellaway 1978).

Seven other features Brief description; for details, see Appendix.

σ/m̄ The ratio of the standard deviation, σ, to the mean magnitude, m̄.

Period and Period S/N Period and period signal-to-noise ratio of each lightcurve.

Derived using Lomb-Scargle algorithm and Lomb periodogram (Lomb 1976; Scargle 1982).

Stetson L The variability index (Stetson 1996) describes the synchronous variability of different bands.

η The ratio of the mean of the square of successive differences to the variance of data points

in each lightcurve.

B −R The average color for each lightcurve.

Con The number of consecutive data points that are brighter or fainter than 2σ of each lightcurve.

data and 70,000 exposures were collected during the pe-
riod (Alcock et al. 2000). In addition, MACHO used two
bands (MACHO B and R) for the observations.

2.2. MACHO QSOs

There are in total 59 known QSOs in the MACHO
database (50 in the LMC fields and 9 in the SMC fields;
hereinafter MACHO QSOs). Forty-seven were detected
by G03 and the remaining twelve were QSOs previously
known from other studies (Blanco & Heathcote 1986;
Schmidtke et al. 1999; Dobrzycki et al. 2002). G03 de-
tected 38 of them using variability characteristics of MA-
CHO lightcurves and nine of them by crossmatching with
X-ray and radio catalogs. To select QSO candidates, G03
applied simple cuts such as color, magnitude and ampli-
tude on 140,000 preselected MACHO sources that show
strong flux variation (Alcock et al. 2000). The lightcurves
of 12 previously known QSOs were used as references
for the variability cuts. After selecting 2,500 QSO can-
didates from the 140,000 sources, G03 removed known
MACHO variable stars from the candidate list and then
manually examined the remaining candidates to elim-
inate false positives. They eventually removed about
2,140 candidates and confirmed that the majority of
the removed candidates were objects with quasi-periodic
variability such as blue variable stars. Blue variable
stars typically show strong Balmer emission lines and
are thought to be associated with Be stars (Keller et al.
2002). It is also known that Be stars show variability
similar to QSOs (Eyer 2002; Geha et al. 2003; Mennick-
ent et al. 2002; Keller et al. 2002). Using spectroscopic
instruments, G03 observed 259 candidates selected from
the remaining 360 candidates and also the candidates se-
lected using the catalog crossmatchings. G03 confirmed
47 new QSOs with magnitudes 16.63 < mV < 20.10 and

redshifts between 0.28 and 2.77.
G03 analyzed only 30 of the 82 MACHO LMC fields,

and thus the remaining 52 MACHO LMC fields have not
been searched for QSOs. Moreover, they selected QSO
candidates from the preselected 140,000 variable sources
and did not analyze the remaining several tens of mil-
lion lightcurves. Thus it is very likely that there are a
lot more QSOs that have not been detected yet. In the
following sections, we introduce a new QSO selection al-
gorithm to detect these non-identified QSOs in the MA-
CHO LMC database.

3. TIME SERIES FEATURES

In order to separate QSOs from non-variable stars and
variable stars, we quantify the variability characteristics
of lightcurves using 11 time series features. These 11
features were independently proposed to quantify cer-
tain types of variability features including amplitudes,
periods, colors and distribution of data points. They can
complement each other because they pick out different
variability features. Thus, by using these multiple fea-
tures, we can identify various types of variability char-
acteristics (e.g. non-varying sources, periodic variables
and non-periodic variables). Note that we selected these
time series features not only for characterizing QSO time
series but also for characterizing other types of variable
sources or non-variable sources because we want to iden-
tify QSOs while excluding the other types of sources at
the same time. We briefly describe these 11 time series
features in Table 1. See Appendix for details about the
features consisting of four new features that we have de-
veloped for this work and seven previously used features.

Figure 1 shows scatter plots of all 11 time series fea-
tures. Different colors and symbols denote different types
of sources. The red squares are QSOs, the blue crosses
are Be stars, the magenta crosses are microlensing events,



4

Fig. 1.— Scatter plots of the 11 time series features. The axis of each panel is different time series feature. As the panels show, each type
of variables is clustered in certain areas. 1) The top left panel: each type of the periodic variables are clustered at each different area. It
also shows one day or multiple days period aliases caused by MACHO’s observational nightly pattern. 2) The top right panel: η is relatively
small for QSOs, Be stars and LPVs which have positive autocorrelation. Color (i.e. difference between average magnitude of MACHO
B and R bands) is useful in separating QSOs from some other types of variables as several other studies suggested (Giveon et al. 1999;
Eyer 2002; Geha et al. 2003). 3) The middle left panel: Nabove vs Nbelow. The panel shows almost none of the non-variables and periodic
variables except LPVs because they do not have data points above (below) the boundary lines by construction. 4) The middle right panel:
Rcs is relatively larger for QSOs. σ/m̄ also separates some variable types. For instance, Be stars have relatively smaller values of σ/m̄
than QSOs. 5) The bottom left panel: Stetson L is effective in separating any type of variables from non-variables except microlensing
events while Stetson KAC is practical to separate QSOs, Be stars and LPVs from others. 6) The bottom right panel: Con can be used to
separate non-variables from others because non-variables have relatively smaller Con than the others. For details about each feature, see
the text and Appendix.
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the cyan crosses are LPVs, the green x’s are Cepheids,
the yellow x’s are RR Lyraes, the black x’s are eclips-
ing binaries and the gray dots are non-variables. As
each panel shows, not only QSOs but also other types
of variables are clustered in certain areas, which means
each time series feature is good at separating some of
the variable types. Thus we did not implement a feature
selection algorithm that removes uninformative features.
See Section 4 for a brief explanation about a general fea-
ture selection concept. We selected a subset of MACHO
lightcurves of each variable type to derive the time series
features shown in the figure. We also used the same sub-
set to train the classification model for selecting MACHO
QSO candidates. For details about the training set, see
Section 5.1.

A simple and conventional method for selecting QSOs
using these features is to define cuts in the 2D-space
shown in Figure 1 motivated by empirical observations
of known classes. However, each panel exhibits a unique
and complex structure of the features, which suggests
that defining simple cuts is difficult. Moreover note that
each panel in the figure is a 2D projection of the original
11D time series feature space. This implies that even if
there exist proper cuts in the hyperspace that can sepa-
rate the classes, these cuts could be obscured or invisible
in any of the projections. Therefore, using simple cuts
empirically derived from the projection could be inap-
propriate for the classification. In order to alleviate the
problem of introducing empirical cuts and thus to fully
utilize the derived 11 time series features, a classification
algorithm should be capable of defining boundaries (e.g.
cuts) in the hyperspace. For this purpose, we employed
SVM which produces hyperplanes between classes in any
multi-dimension space. SVM also can define non-linear
boundaries using kernel functions while cuts are gener-
ally linear. In the following section, we briefly explain
SVM.

4. SUPPORT VECTOR MACHINES

SVM (Boser et al. 1992) is a family of supervised ma-
chine learning algorithms that can train a 2-class classi-
fication model using samples of two known classes (i.e.
training data). A SVM classifier can be seen as a single
node neural network with an implicitly defined high di-
mensional feature space. It is currently one of the best
classification methods in machine learning. Compared
to neural networks SVM provide a flexible classification
model, avoid the problems of local minima, and reduce
the need for parameter tuning. Several efficient optimiza-
tion methods have been developed for SVM training in
recent years. For an overview, discussion and practi-
cal details the reader is referred to Cristianini & Shawe-
Taylor (2000); Bennett & Campbell (2000); Hsu et al.
(2003).

SVM have been applied extensively in many appli-
cation areas, and in particular to various astronomical
applications such as the classification of variable stars
(Woźniak et al. 2004b), the selection of Active Galac-
tic Nuclei (AGN) candidates (Zhang & Zhao 2004),
the determination of photometric redshift (Wadadekar
2005), the classification of galaxies using synthetic galaxy
spectra (Tsalmantza et al. 2007) and the morphologi-
cal classification of galaxies using image data (Huertas-
Company et al. 2008).

The classifier of a SVM defines a linear hyperplane that
separates two classes in a training set. To select a unique
hyperplane among the set of possible hyperplanes that
separate the data, SVM chooses the hyperplane which
maximizes the margin between the two classes, and is
therefore often called the maximum margin separator.
However, in many cases, it is not possible to find any
hyperplane that can perfectly separate two classes. In
other words, a training set of two classes cannot be sep-
arated without errors. In order to solve this problem,
soft margin SVM which allows errors in a training set
(i.e. mislabeled samples) was proposed (Cortes & Vap-
nik 1995). The soft margin SVM uses a modified opti-
mization criterion where a constant, C > 0, controls a
tradeoff between maximizing the margin and minimizing
the errors of a classification model. The parameter C
needs to be selected appropriately in every application
to balance the margin with the errors. Small C allows a
large margin between two classes and thus tends to ignore
mislabeled samples. On the other hand, large C allows a
small margin and tries to separate even mislabeled sam-
ples. Another approach to address non-separability is
to map the examples into a (typically high dimensional)
feature space where the data might be better separated.
Such mappings are captured implicitly by SVM as well
as several other learning methods. To achieve this, SVM
employ non-linear kernel functions that capture inner
products in the implicit feature space. Intuitively the
kernel can also be seen to be a similarity function acting
in the expanded space. When this is done the hypothesis
of SVM has the form:

Class(z) = sign(
∑
i

αiyiK(z, xi)) (1)

where z is the example we are predicting the label for, xi
are the training data (i.e. the vectors of time series fea-
tures), yi are the labels for the ith training data, and i are
indices for training examples. The αi are the parameters
learned by the training procedure. The construction of
SVM shows that this form captures a linear separator in
the feature space for which K(z, xi) is an inner product,
and the training procedure chooses the αi that maximize
the criterion of soft margin. Despite the mapping to a
potentially high dimensional space, the maximum mar-
gin criterion leads to automatic capacity control and thus
avoids overfitting.

Many forms of kernels exist in the literature, and the
the most commonly used are the polynomial and the
RBF (radial basis function) kernels. In this work, we
followed standard practice (Hsu et al. 2003) and used
the RBF defined as:

K(xi, xj) = exp(−γ||xi − xj||2), γ > 0, (2)

where xi, xj are two examples, and the kernel parame-
ter γ determines the width of the kernel function. The
implicit feature space in this case is known to be of infi-
nite dimension. As in the case of the parameter C, the
value of γ needs to be selected appropriately for the ap-
plication. One can readily observe that this kernel mea-
sures similarity between examples and that γ controls
how fast the similarity decays with respect to the dis-
tance between the examples. Seen in this light, the clas-
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sifier (Equation 1) can also be seen to be a weighted form
of nearest neighbor classification where the αi weight the
importance of training examples.

It is well known that the choice of γ and C can affect
the results dramatically. In order to determine the best
values for our application we used grid search with the
10-fold cross-validation and technique (Hsu et al. 2003).

• Cross-validation

We divide each class into 10 subsets (i.e. 10-fold
cross-validation) and select nine subsets to train
a classification model. We then apply the trained
model to the remaining subset and count the num-
ber of true positives (i.e. number of QSOs that
the model identifies as QSOs), the number of false
positives (i.e. number of non-QSOs that the model
identifies as QSOs) and the number of false nega-
tives (i.e. number of QSOs that the model iden-
tifies as non-QSOs). We repeat this process ten
times with all different combinations. Finally we
sum the true positives, false positives and false neg-
atives from each iteration, and calculate the recall
and precision defined as:

recall =
NTP

NTP +NFN
, precision =

NTP
NTP +NFP

, (3)

where NTP is the sum of the true positives, NFP is
the sum of the false positives and NFN is the sum
of the false negatives1.

• Grid search

To select the best C and γ, we search in a log-scale
evenly spaced 10x10 grid with values from 10−1

to 104. We then perform a 10-fold cross-validation
and select C and γ that gave the best recall and the
best precision. We then define a finer 10x10 grid
and repeat the 10-fold cross-validation test with the
new set of parameters. We repeat this procedure
until recall and precision are not improving any
more.

Standard SVM does not provide probability output.
Thus we employed Platt’s probability estimation (Platt
1999) to derive class probabilities. The Platt posterior
probability is calculated using a sigmoid function as:

Pr(y = 1|x) =
1

1 + eAf+B
, (4)

where f is a decision function such that sgn(f(x)) de-
cides the class of sample x. y is the label for sample x
(i.e. a value for the class) and takes the values of +1
or -1. As Platt notes, this amounts to assuming that
f corresponds to the log-odds of the positive label; this
assumption is not fully justified but has been shown to
work well in many applications. The parameters A and B
are calculated by minimizing the negative log-likelihood
of a training data:

1 False positive rate is 1 − precision = NFP /(NTP +NFP )

min{−
l∑
i=1

(ti log(pi) + (1− ti) log(1− pi))},

ti =
yi + 1

2
, pi =

1

1 + eAfi+B
,

(5)

where i are indices of training data, l is the total number
of the training data and yi is a label for ith example. The
derived Platt class probabilities can be used to check the
confidences of the predicted classes.

Many authors have studied feature selection methods
to remove irrelevant features (e.g. see Blum & Langley
1997; Bradley & Mangasarian 1998; Weston et al. 2001;
Li et al. 2003; Chen & Lin 2006 and references therein).
Such feature selections could be useful when there are
too many features (e.g. more than a few hundred) in-
cluding both relevant and irrelevant features. However,
Nilsson et al. (2006) found that most known feature selec-
tion methods occasionally discard even relevant features.
This work also noticed that SVM is robust against unin-
formative features as long as there are a sufficient number
of informative features. Another reason for feature selec-
tion is to reduce CPU time for extracting features and
for training models when there exist a great number of
features. Note that we employed only 11 time series fea-
tures (see the previous section and Appendix), and all of
them are informative for separating some of the classes as
shown in Figure 1. Thus it is not necessary to implement
feature selection methods in this work.

5. MACHO QSO CANDIDATE SELECTIONS USING SVM
CLASSIFICATION MODELS

5.1. Training Classification Models

Using the 11 time series features and SVM, we trained
a classification model for selecting MACHO QSO candi-
dates. To train the model, we first selected a training
set which consists of 58 MACHO QSOs2, 1,629 variable
sources of known types (128 Be stars, 582 microlens-
ing events, 193 eclipsing binaries, 288 RR Lyraes, 73
Cepheids and 365 LPVs) and 4,288 non-variable sources.
We selected these variables from the list of known MA-
CHO variable sources. Table 2 shows the number of the
known MACHO variables we collected from SIMBAD’s
MACHO variable catalog3 (Alcock et al. 2001) and also
from several literature sources (Alcock et al. 1997c,a,b;
Wood 2000; Keller et al. 2002; Thomas et al. 2005).4

To select non-variable stars, we randomly chose a subset
of MACHO lightcurves from a few MACHO LMC fields
and removed all the known MACHO variables from the
subset.

We then derived the 11 time series features for indi-
vidual MACHO lightcurves in the training set. Before

2 We removed one MACHO QSO from the dataset because it
has only 50 data points while the rest of the MACHO QSOs have
at least several hundred data points.

3 http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=II/247
4 We added more than several thousands of new variable

candidates selected in the MACHO LMC database to the ta-
ble. These were identified by an another group at the Time
Series Center, Initiative in Innovative Computing at Harvard
(http://timemachine.iic.harvard.edu). The statistical characteris-
tics of the candidates will be separately published soon. For details
about the selection algorithm, see Wachman et al. (2009).

http://simbad.u-strasbg.fr/simbad/
http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=II/247
http://timemachine.iic.harvard.edu
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TABLE 2
Number of known MACHO variables

Variable types # References

RR Lyraes 9,722 Alcock et al. (2001)

Cepheids 1,868 Alcock et al. (2001)

Eclipsing binaries 6,835 Alcock et al. (2001)

LPVs 3,049 Wood (2000)

Blue variables 1,262 Keller et al. (2002)

Microlensings 626 Alcock et al. (1997c,a,b)

Thomas et al. (2005)

Be stars 136 private communication

with Geha, M.

RR Lyraes 8,292 from a separate work done

Cepheids 1,452 by our group.

see the text for details.4

Total 33,242

deriving the features, we removed all data points in each
lightcurve with photometric errors greater than three
times the average photometric errors.5 The photomet-
ric errors are given by the MACHO photometric pipeline
(Alcock et al. 1999).

We then employed a 2-class classification SVM6 us-
ing the RBF. We empirically found that 2-class SVM
with the RBF achieves better recall and precision than
2- or multiple-class SVM with other kernels including
linear kernel. We applied a 10-fold cross-validation and
grid search to all the combinations of 2- or multiple-class
SVM and different kernels. We found that 2-class SVM
with the RBF showed the best recall and precision. To
use a 2-class SVM, we defined the MACHO QSOs as the
members of one class and all others as members of the
other class. In order to derive the best C and γ, we per-
formed a 10-fold cross-validation and grid search using
the training set as described in the previous section. We
performed the test on each MACHO band; one for the
B band and one for the R band. Table 3 shows the de-
rived best recall and precision of each band. As can be
seen from the table, the B (R) model shows 82.8 (72.4)%
recall and 75% precision, which means the B (R) model
misses 17.2 (27.6)% of the MACHO QSOs and has 25
(25)% false positive rate. For the B model, the false pos-
itives consist of 12 Be stars, three microlensing events
and one LPV; for the R model, 11 Be stars and three
microlensing events. Although the majority of the false
positives were Be stars as expected, the models excluded
more than 90% of the 128 Be stars in the training set. It
is worth mentioning that recall and precision could vary
depending on which set of variables and non-variables we
choose to use as a training set. For instance, if we exclude
the 128 Be stars from the training set, we can increase re-
call to 95% with a 7% false positive rate. We can further
increase recall and precision if we also remove microlens-
ing events and LPVs from the training set. However,
note also that the higher recall and precision does not
guarantee a better model because the model would not
be able to distinguish QSOs from the false positives such
as Be stars, microlensing events and LPVs when applied
to the whole dataset.

Finally, we trained two models, one each for the MA-

5 SVM cannot consider errors of features while training a model.
6 We used the LIBSVM package (Chang & Lin 2001).

TABLE 3
Recall and precision during the cross-validation

Band Recall Precision False Positivesa

B 82.8% 75.0% 25.0%

R 72.4% 75.0% 25.0%

a1 - Precison

Fig. 2.— Platt probabilities for the known MACHO QSOs. The
top (bottom) panel is the Platt probabilities of the B (R) band
lightcurves.

CHO B and R bands, using the derived best C, γ on
the whole training set7. We used the trained models to
select QSO candidates from the MACHO database (see
Section 5.2). Although the rate of derived false positives
mentioned in the previous paragraph is 25%, it should
not be expected that the selected MACHO QSO candi-
dates using the models would have 25% false positives.
This is because the training set is not complete; also, it is
nearly impossible to take into account every known type
of variability existing in the MACHO database, which
includes not only astronomical variables but also non-
astronomical photometric defects or systematic errors.
In addition, the fraction of QSO in the whole dataset
is likely to be different than the training set. Thus the
true false positive rate for the MACHO QSO candidates
could be higher than 25%. We will come back to this
point when we discuss crossmatching the candidate list
with known catalogs in Section 6.

In addition, Figure 2 shows the Platt probabilities of
the known MACHO QSOs for B (the top panel) and
R (the bottom panel) band lightcurves. As the figure
shows, the majority of the QSOs have higher probabil-
ities than 80%. We used the Platt probability of each
MACHO lightcurve to select MACHO QSO candidates
(see Section 5.2).

5.2. MACHO QSO Candidate Selections

To select the MACHO QSO candidates, we first de-
rived the 11 time series features for the whole 40 million

7 This model is slightly different from the one used for the cross-
validation because it was trained on the whole training set as op-
posed to 9/10 of the training set.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Fig. 3.— Example lightcurves of the QSO candidates. The x-axis
is modified Julian Date (MJD), and the y-axis is V magnitude, mV .
Each lightcurve manifests non-periodic and strong flux variation.

MACHO LMC lightcurves.8 We removed the data points
in each lightcurve which have photometric errors greater
than three times the average photometric errors as we
did during model training (see Section 5.1). We then
applied the trained models to each lightcurve and de-
rived the QSO Platt probability estimation. Finally we
selected only the lightcurves which had the probability
product of B and R bands higher than 25% (e.g. 50%
probabilities in both B and R bands). Using the 25%
cut, we selected 1,620 QSO candidates from the entire
MACHO LMC database. We show example lightcurves
of the QSO candidates in Figure 3. As the figure shows,
all the lightcurves have strong and non-periodic flux vari-
ation, which is the variability characteristic of QSOs.

Figure 4 shows recall and false positive rates corre-
sponding to the probability product cuts on the training
set. Using the 25% cut, we correctly identified 82.8%
of the known MACHO QSOs (48 out of 58) with a 0%
false positive rate. Although a probability cut lower than
25% yields better recall and also a 0% false positive rate,
we choose the 25% cut because our training set is not
complete, as mentioned in the previous section.

6. CROSSMATCHING RESULTS WITH INFRARED AND
X-RAY CATALOGS

In order to estimate the true false positive rate without
spectroscopic confirmation, we crossmatched the candi-
dates with other astronomical catalogs. In the following
subsections, we present the crossmatching results and the
false positive rate estimated on the basis of the cross-
matched counterparts.

6.1. Crossmatching with the Spitzer SAGE LMC catalog

8 If an object does not have a lightcurve of any particular band,
we ignore that object. Nevertheless, almost all of the 20 million
MACHO objects have both B and R band lightcurves, so the overall
selection efficiency is not affected.

Fig. 4.— Recall and false positive rate of the models based on
the training set. Using 25% cut, we ca identify more than 80% of
the known MACHO QSOs while removing all other variables and
non-variables.

It is known that mid-IR color selection is efficient at
separating AGNs from other galaxies or stars because the
spectral energy distributions of these types are substan-
tially different from each other (Laurent et al. 2000; Lacy
et al. 2004; Trichas et al. 2010; Kalfountzou et al. 2010).
Based on these characteristics, Lacy et al. (2004) and
Stern et al. (2005) introduced a mid-IR color cut to sep-
arate AGNs using the the Spitzer SAGE (Surveying the
Agents of a Galaxy’s Evolution; Meixner et al. 2006) cat-
alog. Koz lowski & Kochanek (2009) (hereinafter KK09)
employed the mid-IR color cut and selected about 5,000
AGN candidates from the Spitzer SAGE catalog. KK09
also confirmed that the mid-IR color cut successfully
identified most of the known QSOs in the SAGE foot-
prints.

To check whether our candidates are inside the mid-
IR selection cut that KK09 used, we crossmatched them
with the Spitzer SAGE LMC catalog containing 6 million
mid-IR objects and found 1,239 counterparts. We first
searched the nearest SAGE source from each of the can-
didates within a 1′′ search radius. In order to minimize
false crossmatchings, we defined the source as a counter-
part only if there exist no other Spitzer sources within a
3′′ radius from the candidate.

Of the crossmatched counterparts, about 500 had been
observed with at least three Spitzer IRAC (InfraRed Ar-
ray Camera) bands. Note that we need a minimum of
three Spitzer IRAC magnitudes to apply the mid-IR color
cut. Figure 5 shows the color-color and color-magnitude
diagrams of these counterparts (529 in the color-color
diagram and 544 in the color-magnitude diagram). The
solid line in the figure shows the mid-IR color selection
cut. KK09 suggested that the sources inside region B
could either be AGNs or black bodies such as stars, while
the sources inside region A are likely AGNs (left panel).
In the color-magnitude diagram (right panel), there are
two regions as well. The region labeled as YSO is thought
to be dominated by young stellar objects (YSO) while
the region labeled QSO is thought to be dominated by
QSOs. Nevertheless, all the sources inside these four re-
gions (AGN region) are potential QSOs. According to
Stern et al. (2005), the candidates inside the AGN re-
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gion are most likely broad emission line QSOs (i.e. Type
1 AGNs). Among them, the sources inside the QSO and
A regions are the most promising QSO candidates. As
the figure clearly shows, most of the crossmatched QSO
candidates are inside the QSO (88.2%; 480 out of 544)
and the A regions (76.9%; 407 out of 529), which implies
that most of the candidates are likely true QSOs. The
number of QSO candidates that are in both the QSO and
the A regions are 391 out of 5299 (73.9%). Under the as-
sumption that all the 391 candidates are QSOs, the false
positive rate is 26.1%, which is the upper bound of the
false positive rate. There are only about 9% of the candi-
dates outside the AGN region (9.3% outside A and B re-
gions, 9.0% outside YSO and QSO regions), giving us the
lower bound of the false positive rate. Nevertheless, we
confirmed that most of the candidates outside the AGN
region also show strong variability. We show example
lightcurves of these candidates in Figure 6. As the figure
shows, they have strong and non-periodic flux variation.
Note that our method used variability characteristics of
lightcurves in order to select QSO candidates which could
be missed by the mid-IR color selection. Moreover, the
mid-IR color cut is not very efficient at selecting narrow
emission line QSOs (Stern et al. 2005). Therefore some
of the candidates could be either broad or narrow emis-
sion line QSOs even though they are not inside the AGN
region, which would further decrease the lower bound of
the false positive rate.

In addition, we also crossmatched the known MACHO
QSOs and the 33,242 MACHO variables shown in Ta-
ble 2 with the SAGE catalog to check how many known
MACHO QSOs and known variables are inside the AGN
region. Such variables inside the AGN region could be
contaminants (i.e. false positives) for any mid-IR color
selection method. We found about 50 counterparts with
the known MACHO QSOs and about 3,900 counterparts
with the variables. We also crossmatched about 200,000
MACHO field sources from one randomly selected MA-
CHO field with the SAGE catalog and found ∼10,000
counterparts. These field source counterparts might con-
sist of all types of objects including non-variable stars,
unclassified variable stars and galaxies. Figure 7 shows
all the crossmatched counterparts. The black squares
are the MACHO QSO counterparts (48 in the color-color
diagram and 49 in the color-magnitude diagram). The
black crosses are the counterparts with the variables in-
cluding RR Lyraes, Cepheids, eclipsing binaries, LPVs
and blue variable stars (3,871 in the color-color diagram
and 3,880 in the color-magnitude diagram). We sepa-
rately depict eight Be stars as gray diamonds in the fig-
ure. The gray dots are the MACHO field source coun-
terparts (10,238 in the color-color diagram and 10,292
in the color-magnitude diagram). As the figure shows,
almost all of the MACHO QSOs are inside the AGN re-
gion as expected. However, a few tens of the variables
and the MACHO field sources are also inside the AGN
region. We checked these variables in the AGN region
and found that they consist of all types of the known
MACHO variable stars such as RR Lyraes, Cepheids,
eclipsing binaries, blue variables and LPVs. Moreover
nearly all Be stars that have Spitzer counterparts are in-

9 529 is the total number of the Spitzer counterparts inside both
color-color diagram and color-magnitude digram.

side the region as well. It is known that Be stars are
characterized by their IR emission due to dusty circum-
stellar environments (Malfait et al. 1998; Leinert et al.
2004). Also note that we crossmatched only 200,000 MA-
CHO field sources with the Spitzer catalog. If we scaled
our selection to the total MACHO LMC database cov-
ering 20 million stars, more than several thousand field
sources would be in the AGN region, providing signifi-
cant contaminantion for QSO selection. According to the
results, it seems that the mid-IR cut is not efficient for
separating QSO candidates from various types of stars
although it is practical for confirming QSO candidates,
especially when applied to massive databases. In other
words, the mid-IR selection cut shows relatively low pre-
cision, although it shows high recall. Thus it is clear that
algorithms based on the variability of lightcurves, includ-
ing ours, are important for QSO candidate selections.

6.2. Crossmatching with X-ray Catalogs

We crossmatched our QSO candidates with the Chan-
dra X-ray source catalog (Evans et al. 2009) and XMM-
Newton 2nd Incremental Source catalog (Watson et al.
2009). We searched for the nearest Chandra (XMM)
source within a 5′′ search radius from the candidate. We
only selected the source as a counterpart if there existed
no other Chandra (XMM) sources within the search ra-
dius. Nevertheless, most of the X-ray counterparts were
placed within a 3′′ distance from the candidates.

As a result, we found 60 X-ray counterparts. It is
known that QSOs show higher X-ray to optical flux ra-
tios than typical galaxies or stars, fX/fr, owing to the
accretion on the central black holes (Reeves & Turner
2000; Hornschemeier et al. 2001). To calculate fX/fr, we
first derived the mV and mR (i.e. standard Johnson’s V
and Kron−Cousins R) using the MACHO B and R mag-
nitudes (Alcock et al. 1999; Kunder & Chaboyer 2008).
We then converted the mV and mR to SDSS r magni-
tude using the formula from the SDSS website10 (Lupton
et al. 2005). Note that this formula was derived not based
not on QSOs but on photometric standard stars (Stetson
2000). Thus the converted SDSS r magnitudes of QSOs
could have larger errors (i.e. standard deviation) than
the estimated errors for the standard stars, σ ' 0.01.
Nevertheless, we finally used the following equation from
Green et al. (2004) to derive log(fX/fr):

log
fX
fr

= log fX + 0.4 r + 5.67, (6)

where fX is the X-ray flux in units of ergs cm−2 s−1

in the range of 0.5-2.0 keV, which is extracted from the
Chandra and XMM catalogs11. fr is the optical flux and
r is the converted SDSS r magnitude.

The top panel of Figure 8 shows the fX/fr of 60 coun-
terparts with the Chandra and XMM catalogs. The x-
axis is log(fX/fr), and the y-axis is the converted r mag-
nitude. In the panel, we also show 16 known MACHO
QSOs that have X-ray counterparts. The black marks
are the MACHO QSO counterparts, and the gray marks

10 http://www.sdss.org/dr4/algorithms/sdssUBVRITransform.html
11 ergs cm−2 s−1, which is the unit for the Chandra sources,

is identical with 10−3 Watt m−2, which is the unit for the XMM
sources.

http://www.sdss.org/dr4/algorithms/sdssUBVRITransform.html#Lupton2005
http://www.sdss.org/dr4/algorithms/sdssUBVRITransform.html#Lupton2005
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Fig. 5.— Mid-IR color-color and color-magnitude diagrams of the Spitzer SAGE counterparts crossmatched with the QSO candidates.
Each axis of the figure is either Spitzer magnitude or color. All sources inside the region A, B, QSO and YSO are potential QSOs (Koz lowski
& Kochanek 2009). The majority of the candidates are inside the region A and QSO, which is the most promising QSO regions.

Fig. 6.— Examples lightcurves of the QSO candidates outside the
AGN region. The x-axis is MJD, and the y-axis is V magnitude.
All of them show strong and non-periodic flux variation. These
QSO candidates could either broad or narrow emission line QSOs
although they are outside the AGN region.

are the QSO candidate counterparts. The squares are
XMM counterparts, and the triangles are Chandra coun-
terparts. The dashed line corresponds to fX/fr = 0.1,
which is the criterion separating AGNs and typical galax-
ies or stars (Green et al. 2004). The two dash-dotted lines
are boundaries of the confusion area shown as the dashed
area in the bottom panel (see the following paragraph).
As the figure shows, most of the MACHO QSOs (75.0%;
12 out of 16) and our QSO candidates (73.3%; 44 out
of 60) show higher fX/fr than 0.1. If all the candidates
with higher fX/fr than 0.1 are QSOs, the false positive
rate is 27.3%.

In addition, to estimate how a large portion of non-
AGNs could have fX/fr ≥ 0.1, we crossmatched all the
objects from one MACHO field with the Chandra X-

ray catalog. We selected the field so that it overlapped
with the Chandra footprints. In the top panel of Figure
8, we show the fX/fr of the 21 crossmatched MACHO
objects (black dots). These counterparts could be ei-
ther stars or AGNs, although they are most likely X-ray
emitting stars such as X-ray binaries, W-UMa binaries
(Chen et al. 2006), Algol type binaries (Singh et al. 1995)
and cataclysmic variable stars (e.g. see Wonnacott et al.
1994) since the number density of such stars surpasses
the number density of AGNs. Of the 21 MACHO ob-
jects, 16) have fX/fr smaller than 0.1, which implies that
non-AGN objects generally have smaller fX/fr than 0.1.
The remaining five objects have fX/fr larger than 0.1
and could be AGN candidates. We show the lightcurves
of these five objects in Figure 9. As the figure shows, they
do not manifest any strong flux variation and thus were
not selected as QSO candidates by our selection method.

Based on the crossmatching results mentioned in the
previous paragraphs, we further improved the region of
confidence using the histogram of log(fX/fr) shown in
the bottom panel of Figure 8. The x-axis is log(fX/fr),
and the y-axis is normalized count. The solid line with
light gray is the histogram of the QSO candidate counter-
parts, the dashed line with medium gray is the histogram
of the MACHO QSO counterparts and the dotted line
with dark gray is the histogram of the 21 MACHO object
counterparts. The dashed area shows the confusion area
where stars and QSOs could be mixed together. Con-
sidering all the histograms, we modified the confidence
regions as:

• log(fX/fr) < −1.5 : the non-QSO area

In this region, log(fX/fr) is much smaller than the
AGN criterion of log(fX/fr) = −1. Thus the can-
didates in this region are not likely QSOs. There
are only 1 out of 16 (6.2%) MACHO QSOs, 4 out
of 21 (19%) MACHO objects, 7 out of the 60 (11%)
candidates inside this region.

• −1.5 ≤ fX/fr < −0.5 : the confusion area that is
a mixture of stars and QSOs

Most of the MACHO objects (76.2%; 16 out of 21)
are in this region. More than a half of the MACHO
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Fig. 7.— Mid-IR colors of the Spitzer SAGE counterparts with the known MACHO variable stars and the MACHO field sources. Each
axis of the figure is either Spitzer magnitude or color. The black squares are MACHO QSOs, the gray diamonds are Be stars, the black
crosses are variable stars including RR Ryraes, Cepheids, eclipsing binaries, LPVs and blue variable stars. The gray dots are MACHO field
sources. Almost all MACHO QSOs are inside the region A, B, QSO and YSO, which indicates the mid-IR selection criteria is efficient at
confirming QSOs. However there are a lot of other variable stars including Be stars inside the regions as well. Thus the mid-IR selection
might not be practical for selecting QSO candidates.

QSOs (55.3%; 9 out of 16) and 32 out of the 60 QSO
candidates (53.3%) are also in this region.

• fX/fr ≥ −0.5 : the QSO area

Most of the candidates in this region would be
QSOs because of their high fX/fr. As the his-
togram shows, only 1 out of 21 (5%) MACHO ob-
jects is in this region while 6 out of 16 (37.5%)
MACHO QSOs and 21 out of 60 (35%) candidates
are inside the region.

As we mentioned above, 21 out of the 60 candidates
are inside the QSO area and are likely true QSOs, which
gives the upper bound of the false positive rate, 65.0%
(39/60). In addition, some of the 32 candidates inside
the confusion area could be also QSOs because more than
half of the known MACHO QSOs are inside the confusion
area. Thus the lower bound of the false positive rate is
11.7% (7/60).

7. ONGOING AND FUTURE WORKS

We will observe the QSO candidates with spectroscopic
instruments to check whether they are QSOs. Based on
the projection of the models and the crossmatching re-
sults, we expect at least several hundred candidates to
turn out to be QSOs.

Using the confirmed QSOs and the false positives, we
will improve our model. The current model is con-
structed based on the relatively small number of known
QSOs (i.e. 58 known MACHO QSOs), which may be too
small a sample to represent the true variability character-
istics of all QSOs in the MACHO database. Thus using
a large number of QSOs (i.e. more than a few hundreds)
would help improve the models.

In addition, our model is effective at selecting not only
QSOs but also other types of variable sources. Prelimi-
nary tests showed that recall and precision for periodic
variables such as RR Lyraes, Cepheids and eclipsing bi-
naries, were almost 100%; for LPVs, microlensing events
and Be stars, recall and precision were 80%.

8. SUMMARY

In this paper, we presented a new QSO selection algo-
rithm based on 11 time series features and a supervised
classification. We first introduced 11 time series features
to quantify variability characteristics of lightcurves. We
then used Support Vector Machine (SVM) to train a clas-
sification model which separates QSOs from other types
of variable stars and non-variable stars. Using the train-
ing set of the MACHO variables (128 Be stars, 582 mi-
crolensing events, 193 eclipsing binaries, 288 RR Lyraes,
73 Cepheids and 365 LPVs), 4,288 non-variables and the
58 known MACHO QSOs, we trained the models for each
MACHO B and R band. The trained model correctly
identified about 80% of the MACHO QSOs with 25%
false positive rates on a cross-validation test. The ma-
jority of false positives during the training were Be stars
known to show variability similar to with QSOs.

We applied the model to the whole MACHO LMC
database consisting of 40 million lightcurves (i.e. 20 mil-
lion from each MACHO band) in order to select QSO
candidates. As a result, we found 1,620 candidates from
the MACHO LMC database. During the selection, none
of the known MACHO variables were mis-selected as
QSO candidates. To estimate the true false positive rate
of the QSO candidates, we crossmatched the candidates
with astronomical catalogs, including the Spitzer SAGE
LMC catalog and some X-ray catalogs. The crossmatch-
ing results confirmed that most of our candidates are
promising QSO candidates. For instance, the majority
of candidates with Spitzer counterparts are inside the
AGN region that is defined by a mid-IR color cut and
is known to be effective in confirming QSO candidates.
The crossmatching with X-ray catalogs shows that most
of the X-ray counterparts have fX/fr ≥ 0.1 and therefore
are likely QSOs.

In addition, during the crossmatching with the SAGE
LMC catalog, we found that using only the mid-IR color
cut is not a very efficient method in selecting QSO can-
didates, although it is an effective method in confirming
QSOs. This suggests that selection methods using vari-
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Fig. 8.— fX/fr of the X-ray counterparts with the MACHO
QSOs, the QSO candidates and the MACHO field objects. The
top panel: the x-axis is log(fX/fr), and the y-axis is the converted
SDSS r magnitude. The squares are the XMM counterparts and
the triangles are the Chandra counterparts. The black marks are
the MACHO QSOs and the gray marks are the candidates. The
gray dots are the MACHO field objects. The dashed line is the
criterion between AGN and others such as galaxies and stars. Most
of the MACHO QSOs and the candidates have higher fX/fr than
the criterion while most of the MACHO field objects have smaller
fX/fr than the criterion, which implies most of the candidates
are promising QSO candidates. The bottom panel: the histogram
of fX/fr. The x-axis is log(fX/fr), and the y-axis is normalized
count. Based on the histogram, we refined the region of confidence.
See the text for details.

ability characteristics of lightcurves, including ours, are
important to further remove false positives, both vari-
ables and non-variables.
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APPENDIX

In this appendix, we introduce the 11 time series features including four new features that we have developed for
this work and the remaining seven features.

Four new time series features:

• Three autocorrelation Indices

These three indices are based on the autocorrelation function. The autocorrelation function is defined as:

AC(τ) =
1

(N − τ) σ2

N−τ∑
i=1

(mi − m̄)(mi+τ − m̄), (7)

where N is the total number of data points, τ = 1, 2, . . . , N − 1 is the time lag, σ is the standard deviation, m
is the magnitude, i is the index for each data point and m̄ is the mean magnitude. Figure 10 shows the AC(τ)
for various types of variables and non-variables extracted from the MACHO database. Note that, in each panel,
we show the AC(τ) of multiple objects of that type to demonstrate the overall AC(τ) patterns. We used more
than 50 objects of non-variables, RR lyraes, Cepheids, eclipsing binaries and microlensing events. The overall
AC(τ) patterns were preserved even if we used more objects (i.e. several hundreds). For long period variables
(LPVs), Be stars and QSOs, we used about 10 object of each type to show individual AC(τ) pattern. The x-axis
is the time lag, τ in days and the y-axis is the autocorrelation value. As the figure shows, non-variables and all
periodic variables but LPVs show different AC(τ) patterns from QSOs, Be stars, LPVs and microlensing events.
Schild et al. (2009) also noticed that the AC(τ) could be useful for discovering QSOs. Thus, by quantifying the
AC(τ), we can separate certain types of variables. In the following paragraphs, we introduce three time series
features that we are using to quantify AC(τ).

– Nabove, Nbelow
We constructed empirical boundary lines on the AC vs τ diagram to separate non-variables and periodic
variables from others. To do so, we calculated the average and standard deviation of the autocorrelation
functions for non-variables and periodic variables (except LPVs), for each time lag τ . We then constructed
upper and lower boundary lines to be ±4σ from the average line. Figure 11 shows the calculated upper and
lower boundary lines12. To derive Nabove and Nbelow for each lightcurve, we counted the number of points
above, Nabove, and number of points below, Nbelow, these lines.

– Stetson K

Stetson K (Eq. 11) was defined to observe the distribution of measurements between the maximum and
minimum values of the measurements (Stetson 1996). For details including the definition of Stetson K, see
the Appendix. We used Stetson K to characterize the different AC(τ) patterns, Stetson KAC .

• Rcs
Rcs is the range of a cumulative sum (Ellaway 1978) of each lightcurve and is defined as:

12 We removed fluctuated data points using moving average.
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Fig. 10.— Set of autocorrelation functions of variable and non-variable stars. The x-axis is the time lag, τ , in days, and the y-axis is
the autocorrelation function value. Non-variable stars, Cepheids, eclipsing binaries and RR Lyraes show different patterns from QSOs, Be
stars, LPVs and microlensing events.

Rcs = max(S)−min(S),

Sl =
1

N σ

l∑
i=1

(mi − m̄) ,

(8)

where max (min) is the maximum (minimum) value of S and l = 1, 2, . . . , N . Rcs is typically large for LPVs,
microlensing events, Be stars and QSOs while it is relatively small for non-variables and other periodic variables
such as RR Lyraes, Cepheids and eclipsing binaries.
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Fig. 11.— Two boundary lines constructed using autocorrelation functions of non-variable stars, eclipsing binaries, RR Lyraes and
Cepheids. The x-axis is the time lag, τ , in days, and the y-axis is the autocorrelation value. Based on the lines, we derived Nabove and
Nbelow. See the text for details.

Other seven time series features:

• σ

m̄
This is a simple variability index and is defined as the ratio of the standard deviation, σ, to the mean magnitude,
m̄. If a lightcurve has strong variability, σ/m̄ of the lightcurve is generally large.

• Period and Period S/N

To derive periods and their signal to noise ratios (S/N), we employed the Lomb-Scargle algorithm (Lomb 1976;
Scargle 1982; Press & Rybicki 1989; Press et al. 1992). We search for periods between 0.1 and 1000 days13, which
covers not only short period variable stars such as RR Lyraes, Cepheids and eclipsing binaries but also LPVs.
Among the detected periods, we selected the period with the highest S/N. The S/N of each period is calculated
based on the Lomb periodogram (Scargle 1982; Press et al. 1992).

• Stetson L

Stetson L variability index (Stetson 1996) describes the synchronous variability of different bands and is defined
as:

L =
JK

0.798
, (9)

where J and K are different Stetson indices. Stetson J is calculated based on two simultaneous lightcurves of a
same star (e.g. MACHO B and R bands) and is defined as:

J =
1

N

N∑
i=1

sgn(Pi)
√
|Pi|,

Pi = δp(i) δq(i),

δp(i) =

√
N

N − 1

mp,i − m̄
σp,i

,

(10)

where i is the index for each data point, N is the total number of data points, sgn(Pi) is the sign of Pi and m is
the magnitude. p and q indicate two different bands. σp,i is the standard error of ith magnitude of band p. In
case of the MACHO database, p and q indicate the MACHO B and R bands. To derive J from each MACHO
time series, we used only the data points which have observations from both MACHO B and R bands at the
same epoch.

13 We used VARTOOLS (Hartman et al. 2008) for deriving periods and period S/Ns.

http://www.cfa.harvard.edu/~jhartman/vartools/
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Steston K is calculated using a single band lightcurve and is defined as:

K =
1√
N

∑N
i=1 |δ(i)|√∑N
i=1 δ(i)

2

. (11)

It is known that K = 0.900 for a pure sinusoid and 0.798 for a Gaussian distribution. For details, see Stetson
(1996).

In brief, Stetson L is generally large for achromatic variable sources and small for non-variables or chromatic
variables.

• η
Variability index η is the ratio of the mean of the square of successive differences to the variance of data points.
The index was originally proposed to check whether the successive data points are independent or not. In other
words, the index was developed to check if any trends exist in the data (von Neumann 1941). It is defined as:

η =
1

(N − 1) σ2

N−1∑
i=1

(mi+1 −mi)
2. (12)

The index has been substantially investigated by several authors (see von Neumann 1941; Press 1969 and ref-
erences therein). In brief, if there exists positive serial correlation, η is relatively small. On the other hand, if
there exists negative serial correlation, η is large. Shin et al. (2009) used η to select variable candidates from the
Northern Sky Variability Survey database (Woźniak et al. 2004a).

As the top right panel of Figure 1 shows, η is relatively small for the variables which have positive autocorrelation
such as QSOs, Be stars and LPVs. Non-variables or microlensing events show large η since they do not have
strong positive correlation. In the cases of other periodic variables such as RR Lyraes, Cepheids and eclipsing
binaries, η is also relatively large even though they are periodic variables and therefore have positive correlation.
This is because 1) we derive η not from the folded MACHO lightcurves but from the original lightcurves and
2) MACHO observed a field a few times per week, which is not enough to reveal positive correlation for small
time scales. In other words, most raw MACHO lightcurves of the periodic variables do not have strong positive
correlation and thus have large η.

• B −R
We used an average color for each MACHO lightcurve as:

B −R = m̄BM
− m̄RM

, (13)

where m̄BM
, m̄RM

are the mean magnitudes of MACHO B, R bands.

Color information, B−R, is useful in separating QSOs from some other types of variables as several other studies
suggested (Giveon et al. 1999; Eyer 2002; Geha et al. 2003). Nevertheless it is known that color14 is not very
efficient discriminator for selecting intermediate redshift QSOs (i.e. 2.5 < z < 3.0) although it is efficient for
selecting high and low redshift QSOs (Richards et al. 2006; Schmidt et al. 2010). Note that we used not only color
information but also other multiple time series features derived solely based on the variability characteristics of
lightcurves, which helps to identify intermediate redshift QSOs as well as high and low redshift QSOs.

• Con
The index was introduced for the selection of variable stars from the OGLE database (Woźniak 2000). To
calculate Con, we counted the number of three consecutive data points that are brighter or fainter than 2σ
and normalized the number by N − 2. Con is close to zero for non-variable stars while it is relatively large for
variables. In addition, Con is relatively large for the long-time scale varying sources such as LPVs because such
variables tend to have plenty of consecutive data points bigger than 2σ.

14 SDSS u− g color. See Schmidt et al. 2010 for details.
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