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ABSTRACT

The EPOCH (EROS-2 periodic variable star classification using machine learning) project aims to detect periodic variable stars in the
EROS-2 light curve database. In this paper, we present the first result of the classification of periodic variable stars in the EROS-2
LMC database. To classify these variables, we first built a training set by compiling known variables in the Large Magellanic Cloud
area from the OGLE and MACHO surveys. We crossmatched these variables with the EROS-2 sources and extracted 22 variability
features from 28 392 light curves of the corresponding EROS-2 sources. We then used the random forest method to classify the
EROS-2 sources in the training set. We designed the model to separate not only δ Scuti stars, RR Lyraes, Cepheids, eclipsing binaries,
and long-period variables, the superclasses, but also their subclasses, such as RRab, RRc, RRd, and RRe for RR Lyraes, and similarly
for the other variable types. The model trained using only the superclasses shows 99% recall and precision, while the model trained
on all subclasses shows 87% recall and precision. We applied the trained model to the entire EROS-2 LMC database, which contains
about 29 million sources, and found 117 234 periodic variable candidates. Out of these 117 234 periodic variables, 55 285 have not
been discovered by either OGLE or MACHO variability studies. This set comprises 1906 δ Scuti stars, 6607 RR Lyraes, 638 Cepheids,
178 Type II Cepheids, 34 562 eclipsing binaries, and 11 394 long-period variables.
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1. Introduction

Studying periodic variable stars has improved our understanding
of the Universe for many decades. For instance, Cepheid vari-
ables are one of the most important variable types as a standard
candle for measuring extra-galactic distances (Freedman et al.
2001; Riess et al. 2011) because of their well-established period-
luminosity relation (Feast & Catchpole 1997; Storm et al. 2011),
which provided evidence for the expanding Universe (Lemaître
1927; Hubble & Humason 1931). RR Lyrae stars are useful for
tracing the Galaxy formation history (e.g. see Catelan 2009, and
references therein) and for studying globular clusters (Carretta
et al. 2000) and the Galactic structure (Oort & Plaut 1975; Vivas
et al. 2001). In addition, long-period variables such as Mira vari-
ables show a period-luminosity relation that can be used for mea-
suring distances to some objects in the Galaxy, such as globular
clusters (Feast et al. 1989; Knapp et al. 2003). In brief, peri-
odic variable stars are crucial for studying and understanding
the Galaxy and the Universe.

The Expérience pour la Recherche d’Objets Sombres
(EROS) is a wide-field sky survey for probing dark matter
in the Galactic halo by detecting microlensing events (see
Tisserand et al. 2007, and references therein). EROS monitored

� A catalog of these EROS-2 LMC periodic variable stars is
available at http://stardb.yonsei.ac.kr and at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A43

the Large/Small Magellanic Cloud (LMC/SMC), the Galactic
bulge and spiral arms for about seven years, and was a major
microlensing survey together with the MACHO (Alcock 2000)
and OGLE (Udalski et al. 1997) microlensing surveys. In addi-
tion to microlensing detections, the EROS database is also useful
for detecting periodic variable stars because of its well-sampled
light curves over a long period of observation, relatively faint
limiting magnitude of ∼20 in the EROS B band1, its wide field
of view, and two simultaneous passbands.

Previous studies have found several types of variable stars
in the EROS-2 database. Beaulieu et al. (2001) discovered two
variable stars resembling Herbig Ae/Be or classical Be stars,
Tisserand et al. (2004) detected five R Coronae Borealis stars,
Marquette et al. (2009) discovered 185 new beat Cepheid vari-
ables, Spano et al. (2011) reported forty-three thousand long-
period variable candidates, and Dubath et al. (2012) found about
300 variable candidates from a subset of EROS-2 database but
without identifying their variable types. Although these works
produced some variable star candidates of various types, no
study has searched the entire EROS-2 light curve database to
classify different types of variable stars including δ Scuti stars,
RR Lyraes, Cepheids, eclipsing binaries, and long-period vari-
ables. For instance, Dubath et al. (2012) used a supervised
machine-learning method and multiple variability features to
train a classification model, but their training set is incomplete

1 EROS B and R bands (i.e., BE and RE) are not standard astronomical
B and R bands. See Sect. 2 for details.
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because it consists of visually classified variables sorted into four
classes including periodic, small-amplitude, semi-regular, and
nonperiodic variables. Thus the model cannot distinguish con-
ventional types of astronomical variable stars such as the types
of variable stars listed above.

We initiated the EROS-2 PeriOdic variable star
Classification using macHine learning (EPOCH) project2

that aims to detect periodic variables in the EROS-2 light curve
database to significantly increase the total number of known
variable stars in the EROS-2 survey fields. The EPOCH project
is different from the previous studies because we used 1) the
richest possible training set including multiple types of variable
stars; 2) a few tens of variability features to separate variable
stars from others; and 3) one of the most powerful supervised
classification methods, random forest (Breiman 2001). Random
forest combines a large number of decision trees to build a clas-
sification model and has successfully solved many astronomical
classification problems (e.g. Dubath et al. 2011; Pichara et al.
2012). Even though some of the above conditions were fulfilled
by previous work, none of the works has fulfilled all of these
conditions simultaneously.

In this paper, we present the first results of the EPOCH
project. We also present periodic variable star candidates de-
tected from the EROS-2 LMC light curve database. The EROS-2
database is briefly introduced in Sect. 2. Section 3 presents a
classification method including 1) the training set we used to
build a classification model; 2) multiple variability features; 3)
parameter optimization for the random forest model training;
and 4) performance of a trained model. We then show detection
results of periodic variable stars from the entire EROS-2 LMC
database in Sect. 4. Section 5 is a summary.

2. EROS-2 database

EROS-2 monitored the LMC/SMC, the Galactic center, and the
spiral arms during its operation from July 1996 to March 2003
using the 1 m Ritchey-Chrétien Telescope, MARLY, at ESO
(La Silla, Chile). The telescope was equipped with two cameras,
one observing in the BE (420−720 nm, blue) band, the other in
the RE (620−920 nm, red) band. Each camera contained eight
2048× 2048 CCD detectors in mosaics, and had a field of view
of 0.7◦ × 1.4◦ in RA and Dec, respectively. The pixel scale was
0.6′′ and the typical seeing at the site was 2′′ FWHM (Ansari &
EROS Collaboration 2001; Tisserand et al. 2004).

The total number of sources in the EROS-2 database is about
87 million consisting of 29 million in the LMC, 4 million in the
SMC, 44 million in the Galactic bulge, and 10 million sources
in the spiral arms. Light curves obtained using the BE band
generally have better photometric accuracy and also have more
measurements than RE-band light curves (Spano et al. 2011).
Figure 1 shows a histogram of the BE band magnitude of about
550k sources in the EROS-2 LMC fields. The limiting magni-
tude of the field sources is ∼20 BE. The number of measure-
ments for each light curve varies from field to field. For instance,
BE-band light curves around the central region of the LMC have
500 measurements on average, while BE-band light curves at the
outer region have 250 measurements on average.

3. Classification of periodic variables

In this section, we describe how we classify periodic variable
stars in the EROS-2 LMC light-curve database. In Sect. 3.1, we

2 http://stardb.yonsei.ac.kr

Fig. 1. Histogram of EROS BE band magnitude of about 550k field
sources from the EROS-2 LMC fields. The limiting magnitude is around
20 BE.

Table 1. Acronyms of each variable type.

Variable type Acronym
δ Scuti DSCT

RR Lyrae RRL
Cepheid CEPH

Type II Cepheid T2CEPH
Eclipsing binary EB

Long-period variable LPV
Blue variable BV

present a training set consisting of EROS-2 variable stars se-
lected by crossmatching with the known OGLE and MACHO
variables. Section 3.2 explains how we refined the light curve
(e.g., cleaning spurious data points) before we extracted 22 vari-
ability features that are described in Sect. 3.3. We then present
the random forest classification algorithm and summarize its per-
formance in Sect. 3.4.

3.1. Training set

The classification quality of supervised machine-learning meth-
ods relies heavily on the training set. To build the richest possi-
ble training set, we therefore used the OGLE LMC variable star
catalogs (Soszyński et al. 2008a,b, 2009a,b; Poleski et al. 2010;
Graczyk et al. 2011), which are the most up-to-date and com-
plete catalogs of periodic variable stars over the EROS-2 fields.
Based on these catalogs, we compiled a list of periodic vari-
able stars including δ Scuti stars, RR Lyraes, Cepheids, Type II
Cepheids, eclipsing binaries, and long-period variables (DSCTs,
RRLs, CEPHs, T2CEPHs, EBs and LPVs, respectively, Table 1).
We adopted the OGLE classification scheme for variable sub-
classes (e.g. RRL ab, c, d, and e types; see Table 2 for the full
list). We added 982 blue variables detected from the MACHO
database (Keller et al. 2002). Many of these blue variables are
probably Be stars since their variability characteristics are con-
sistent with those of Be stars (Keller et al. 2002). We also added
565 quasi-stellar objects (QSOs) to the list that were selected us-
ing the OGLE LMC database (Kozlowski et al. 2013). Although
we do not aim to classify either blue variables (BVs) or QSOs
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Table 2. Number of remaining variables after crossmatching, visual removal, and light-curve refining.

Superclass Subclass After crossmatching After visual removal After refining Note
(number) (number (%a)) (number (%a ))

DSCT 1155 511 (44) 511 (44)
CEPH

fundamental (F) 1275 1275 (100) 1249 (98)
first overtone (1O) 871 844 (97) 834 (96)

Other 168 162 (96) 160 (95)
RRL

ab 8721 3434 (39) 3276 (38)
c 2461 714 (29) 637 (26)
d 511 179 (35) 172 (34)
e 603 143 (24) 141 (23)

EB
EC 605 445 (74) 418 (69) contact
ED 8615 1644 (19) 1592 (19) detached

ESD 3409 1150 (34) 1109 (33) semi-detached
ED+ESD 870 146 (17) 142 (16) detached/semi-detached

Other 254 153 (60) 146 (58)
LPV

Mira AGB C 785 754 (96) 567 (72) carbon-rich
Mira AGB O 329 329 (100) 324 (99) oxygen-rich

OSARG AGB C 2119 1416 (67) 1135 (54) carbon-rich
OSARG AGB O 22670 3368 (15) 3187 (14) oxygen-rich
OSARG RGB C 264 57 (22) 46 (17) carbon-rich
OSARG RGB O 32648 2046 (6) 1888 (6) oxygen-rich

SRV AGB C 3889 3819 (98) 2507 (65) carbon-rich
SRV AGB O 4482 4206 (94) 3672 (82) oxygen-rich

T2CEPH 123 121 (98) 112 (91)
BV 829 796 (96) 725 (88)

QSO 256 180 (78) 161 (63)
NonVar 4791 3681 (77)

Total 97 912 32 683 (33) 28 392 (29)

Notes. (a) Ratio to the number of variables after crossmatching.

from the EROS-2 database, including these pseudo- or non-
periodic variables in the list is important to exclude these vari-
able types during the selection of periodic variable candidates.
There are many BVs in the LMC, some of which show periodic
patterns in their light curves. We did not include variable can-
didates from Marquette et al. (2009), Spano et al. (2011), and
Dubath et al. (2012), because they have too few variable can-
didates of each type. More importantly, using variable sources
mainly from a single survey (i.e., OGLE) helps maintain con-
sistency of the training set. The total number of sources in the
compiled catalog is 149 388.

We then crossmatched these variables with the entire
EROS-2 LMC database with a 3′′ search radius that yielded
120 825 counterparts, 119 480 of which are OGLE periodic vari-
able stars and the remaining 1345 sources are QSOs or BVs.
Figure 2 shows a cumulative histogram of distances to the coun-
terparts. To minimize the number of incorrect crossmatches, we
only selected sources among these counterparts where the dis-
tance between the nearest neighbor and second-nearest neighbor
is larger than 3′′. After removing these objects, 97 912 EROS-2
sources remained.

Even if the known OGLE variables show clear variabil-
ity in their light curves, it is possible that the crossmatched
EROS-2 sources might not show clear variability because of the
photometric uncertainty, blending with other sources, different
sampling rate, or incorrect crossmatching. To exclude such light
curves from a training set, one of us (DWK) visually examined
raw- and phase-folded light curves of all 97 912 EROS-2 coun-
terparts. During the visual examination, we removed the light
curves without variability or periodicity. Such a pure training set

Fig. 2. Cumulative histogram of distances to the EROS-2 counterparts
crossmatched with the previously known variables. The largest search
radius for crossmatching is 3′′. Most of the variables are crossmatched
within a 1.5′′ search radius.

is important because the goal of this work is to select periodic
variable candidates from the entire EROS-2 database, which
consists of several tens of millions of light curves. Therefore
minimizing false positives mainly consisting of non-variables
is the most critical task, which is facilitated by having a high-
quality training set. Figure 3 shows example light-curves of two
RRL variables. We retained light curves with clear variability in

A43, page 3 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201323252&pdf_id=2


A&A 566, A43 (2014)

Fig. 3. EROS-2 light curves (top and middle) of two variable stars crossmatched with the OGLE RRLs. Top: raw light curves, middle: phase-folded
light curves, left: one RRL variable included in the training set, and right: another RRL variable excluded from the training set. The x-axis of raw
light curves is in the unit of Heliocentric Julian Date (HJD) – 2 450 000. We use this unit as the unit of x-axis for a raw light curve throughout
this paper. Periods shown in the top panels are derived using the Lomb-Scargle algorithm (Lomb 1976). In the bottom two panels, we show the
phase-folded OGLE light curves of the same RRLs. The periods of these light curves are taken from Soszyński et al. (2009b). Although the OGLE
RRL in the bottom-right panel shows clear periodic signals, the crossmatched EROS-2 counterpart’s light curve (top right and middle right) does
not show any variability, which is associated with blending with a nearby star. See text for details.

the EROS-2 light curves, as shown in the left panels. We visu-
ally examined an EROS-2 reference image for the source shown
in the right panel of Fig. 3 and found that the source is blended
with a nearby bright star identified as a RRL variable by the
OGLE. This particular case shows that the OGLE differential
photometry (the DIA, Alard & Lupton 1998) is more efficient
than the fixed-position photometry of the EROS (the PEIDA,
Ansari 1996) to identify variable stars in crowded fields. After
this visual removal, we had a set of 27 892 periodic variables.

We finally added non-variable sources to this set of visu-
ally cleaned light curves by randomly selecting about 5000 light
curves that are spread over the whole EROS-2 LMC fields and
are not in the 120 825 EROS counterparts mentioned in the pre-
vious paragraph. Adding non-variables to the training set is crit-
ical when selecting variable candidates from the large EROS-2
database because the majority of light curves are non-variables.
Therefore a classification model has to be trained in such a way
that it excludes non-variables during the variable-star selection.
To balance the number of light curves through the EROS-2 mag-
nitude range, we selected about 800 non-variable light curves
for each of the magnitude ranges, 13−16, 16−17, 17−18, 18−19,
19−20, and 20−21 BE. If we had randomly selected light curves
without the regular magnitude range, there would have been sub-
stantially fewer light curves at the brighter end than light curves
at the fainter end, which is undesirable because then a trained
model might be inefficient in excluding possible non-variables

at the bright end. We also visually examined these non-variable
light curves and excluded light curves with variability. After
adding these non-variables, the final number of light curves in
the training set is 32 683.

Without the visual removal of non-variable sources men-
tioned in the previous paragraph, we observed a significant
drop of classification performance, in particular a performance
decreased by ∼20% for non-variables (see Sect. 3.4.2 for
the definition of classification performance). This decrease
could cause many misclassifications of non-variables into vari-
ables, which is not desired because most of the light curves
from the EROS-2 database are expected to be non-variables.
Nevertheless, even though we did not intentionally remove
weak-variability sources, our visual method might result in the
rejection of some true variables at the end because of the low
signal-to-noise ratio (S/N) of the variables3. In Sect. 3.4.3, we
show test results that alleviate these concerns for classifying
weak-variability sources.

Table 2 shows the number of variables of each type 1) af-
ter the crossmatching; 2) after the visual examination; and 3)
after the light-curve refining explained in Sect. 3.2. Although
we maintained most of the subclasses of variable types de-
fined from the OGLE catalogs, we merged some subclasses that

3 Signal-to-noise ratio here means the highest amplitude versus noise
of a light curve.
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Fig. 4. EROS-2 sources (gray dots) crossmatched with the known
OGLE (top) and MACHO (bottom) variable stars in the EROS-2 LMC
fields. The rectangles in each panel show the EROS-2 fields. The integer
numbers in the rectangles are the EROS-2 field IDs. The x- and y-axes
are RA and Dec respectively, and both are in J2000.

do not have many sources. For instance, the subclass “Other”
of CEPHs includes second-overtone (i.e., 2O), double-mode
F/1O (i.e., fundamental-mode and first-overtone), double-mode
1O/2O, double-mode 1O/3O (i.e., third-overtone) and triple-
mode classical CEPHs. One of the EB subclasses, “Other”, also
includes several types of eclipsing binaries. We also did not sep-
arate subclasses of T2CEPHs and DSCTs because of insufficient
numbers.

The top panel of Fig. 4 shows the OGLE counterparts before
the visual removal superposed on the coverage of the EROS-2
LMC fields. The counterparts are only spread over the central
region of the EROS-2 fields. About half of the region is not
overlapped by the OGLE counterparts. In addition, we show
the crossmatched counterparts with the MACHO variables in
the bottom panel of Fig. 4. We used the list of MACHO vari-
ables from Kim et al. (2011), which contains about 19k sources
including RRLs, CEPHs, EBs, LPVs, and BVs. The MACHO
variable study (Alcock 2001) provides one of the richest variable
catalogs in terms of the number of variables and variable types
along with the OGLE variable studies. As the panel shows, the
MACHO variables also do not cover the entire EROS-2 fields.
Thus it is clear that there are numerous variable stars that have
never been detected by either the OGLE or the MACHO survey.

Note that the training set explained in this section is mainly
based on the OGLE variable stars that are spread across the
central region of the LMC. Thus it is possible that a classifi-
cation model built on the training set might be biased to char-
acteristics of the light curves in the central LMC area such as
magnitudes, amplitudes, colors, and photometric uncertainties.
Nevertheless, training individual classification models adapted

to each EROS-2 field’s characteristics is beyond the scope of
this paper.

3.2. Refining light curve

To extract variability features, we used EROS-2 BE-band light
curves, which have better photometric accuracy and also more
data points than RE-band light curves. This is because the red
camera was subject to more technical problems than the blue one
during all campaigns. Before extracting variability features from
the training set light-curves explained in the previous section, we
refined each light curve as follows:

– We removed measurements with magnitudes higher than 22
or with photometric uncertainties higher than 1 mag. This
cut removes many measurements of a light curve at the faint-
end magnitude because such a light curve mainly consists of
99.999 mag values or 9.999 photometric uncertainty values,
which indicates that the measurements are unreliable.

– We removed measurements by 3σ clipping (no iteration)
about the mean, where σ is a standard deviation of the light
curve. This cut is used to remove fluctuating data points that
are occasionally caused by inaccurate photometric measure-
ments. Nevertheless, the cut typically removes less than 5%
of the data points, which does not significantly alter light
curves.

We then excluded light curves from the training set if

– there were fewer than 100 measurements;
– the estimated period was spurious, related to the solar day,

the moon phase, the sidereal months, and their multiples. We
found spurious periods by examining a scatter plot of periods
versus period S/N (e.g. see the top-left panel in Fig. A.1) and
a period histogram.

This reduced the number of light curves reduces from 32 683
to 28 392. Most of the excluded light curves were removed by
the period criterion. This set of 28 392 light curves is the final
training set.

3.3. Variability features

To identify variability, we used multiple features extracted from
the light curves instead of the light curve themselves as the
basis for classification. We tested more than 30 features and
selected the best 22 features based on their “variable impor-
tance”, estimated using the random forest algorithm explained
in Sect. 3.4.1. We found empirically that using more or fewer
features than 22 did not improve classification results. Dubath
et al. (2011) also observed that using a large number of features,
including inessential or even correlated features did not affect
random forest classification results much.

A brief description of each feature is given in Table 3.
Figure 5 shows the estimated variable importance for these
22 features. For details of the definitions of the indices, see
Appendix A.

3.4. Random forest classification model

3.4.1. Architecture and training

To train a classification model using the variability features
extracted from the training set light-curves, we used the ran-
dom forest classification method (Breiman 2001). This has been
successfully applied for many astronomical classification and
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Table 3. Variability features.

Feature A brief description. For details, see Appendix A.
Period Period derived by the Lomb-Scargle algorithm

Period S/N Signal-to-noise ratio of the derived period
η Ratio of the mean of square of successive differences to the variance of data points

ηB−R η over a BE – RE light curve
ψη η over a phase-folded light curve
ηe Modified η
BE Mean magnitude of BE band

BE − RE Color. Difference of mean magnitude of BE and RE bands
Q3−1 3rd quartile (75%) – 1st quartile (25%)

Q3−1|B−R 3rd quartile (75%) – 1st quartile (25%) over a BE – RE light curve
Cusum Range of cumulative sum
ψCS Cusum over a phase-folded light curve
σ Standard deviation
γ1 Skewness
γ2 Kurtosis
J Stetson J index
K Stetson K index

KAC Stetson K index derived over an autocorrelation function of a light curve
R21 2nd-to-1st amplitude ratio derived using the Fourier decomposition
R31 3rd-to-1st amplitude ratio derived using the Fourier decomposition
φ21 Difference between 2nd and 1st phases derived using the Fourier decomposition
φ31 Difference between 3rd and 1st phases derived using the Fourier decomposition

Notes. We used EROS BE-band light curves (either raw- or phase-folded) to derive these features, except for J, Q3−1|B−R and ηB−R, which needs
both BE- and RE-band light curves. See Appendix A for details.

Fig. 5. Variable importance of the variability features as determined by
the random forest algorithm considering the variable subclasses. Higher
importance features are more relevant for classification than lower im-
portance features. A brief summary of these features is given in Table 3.

regression problems (e.g. Carliles et al. 2010; Dubath et al.
2011; Richards et al. 2011; Pichara et al. 2012). Random for-
est uses multiple decision trees (Quinlan 1993) and the bagging
(Breiman 1996) to train a classification model. Each decision
tree is trained using a subset of features that are randomly se-
lected from all features (here the 22 variability features men-
tioned in the previous section). Random forest then chooses a
class for a sample that has the most votes of the all decision
trees. In principle, random forest does not need to do cross-
validation to estimate the classification error because each tree

is constructed based on the bootstrap sample from the training
set, where two thirds of the samples are used to train the tree and
the remaining one third of samples, which are out-of-bag (oob)
samples, is used to estimate an error, which is an oob error. The
process of constructing each decision tree is as follows:

1. Generate N light curves randomly selected from the training
set with replacement, where N is the total number of light
curves in the training set, which is called bootstrap aggregat-
ing (bagging). This sample is used to train the tree.

2. At each node, randomly select m features from the all fea-
tures, where m < M. M is the total number of features. The
m value is fixed during the training.

3. These randomly selected m features are used to split the
node. At each node, every possible split is tested, and then
a feature for the best split is chosen. The tree is grown to its
full extent without pruning. Each leaf node of the tree returns
a single sample.

4. Repeat t times the above processes, where t is the number of
decision trees.

While training a random forest model, one needs to set two free
parameters, t and m, which is the number of decision trees and
the number of features, respectively. We briefly explain the pa-
rameter selection in the following section.

We can use random forest to estimate the variable impor-
tance relevant to classification as follows:

1. train a normal random forest model, RFnormal;
2. train another random forest model after randomly permuting

values of a feature among the training set, RFpermute;
3. during the training processes, calculate differences in oob er-

ror between the trees from the RFnormal and the RFpermute.
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Table 4. Confusion matrix of the random forest model without considering subclasses.

Class DSCT RRL CEPH T2CEPH EB LPV BV QSO Nonvar Recall
(%)

DSCT 253 1 1 99.2
RRL 3 2088 4 2 16 98.8

CEPH 10 1094 3 12 1 1 97.6
T2CEPH 8 37 10 1 66.1

EB 1 11 6 1652 20 14 96.9
LPV 1 6 6642 1 1 12 99.7
BV 2 353 1 6 97.5

QSO 1 2 71 7 87.7
NonVar 2 1 6 12 5 4 1812 98.4

Precision 97.7 99.0 98.4 86.0 96.9 99.5 97.5 92.2 97.8 98.6, 98.6a

(%)

Notes. Each row is a true class and each column is a predicted class. Bold numbers show the true positives. (a) Average weighted recall and
precision by the proportion of classes in the training samples.

Average the differences over all trees and normalize the aver-
age differences by its standard deviation derived from the dif-
ferences. This averaged and normalized difference is a mea-
sure of the importance of the feature.

Thus stronger features generally have higher variable impor-
tance values. The derived variable importance of the 22 variabil-
ity features is given in Fig. 5.

Random forest results can be used to estimate class proba-
bilities for each light curve based on a simple voting strategy,

Pclass(i) =
nclass(i)

N
, (1)

where Pclass is the probability of a class for a sample, nclass is the
number of trees that identify the sample as class, and N is the
total number of trees. For each light curve, we accepted the class
corresponding to the highest probability among probabilities of
all classes. We did not modify the probability according to class
population in the training set since it is not the true population.

3.4.2. Training a classification model and performance
optimization

Although random forest can internally estimate the classification
error, as mentioned in the previous section (oob error), we sep-
arated the training set mentioned in Sect. 3.1 into two sets of
samples to 1) measure performance; and 2) find the best t (the
number of trees) and m (the number of features). The samples
consist of 50% of the training set (∼14 000 light curves) to train
the model and the remaining 50% to estimate the trained model’s
classification performance. We call these two set S 1 and S 2. We
assessed the classification performance using a weighted aver-
age of recall and precision by class size in the training set. The
recall and precision are defined as

recall =
NTP

NTP + NFN
, precision =

NTP

NTP + NFP
, (2)

where NTP is the number of the true positives, NFP is the num-
ber of the false positives, and NFN is the number of the false
negatives. To select the best t and m, we trained a random forest
model for all possible combinations of t and m with 20 ≤ t ≤ 400
and 5 ≤ m ≤ 21 with a step size of 20 and 2, respectively. We
then applied each trained model to S 2 to measure the model’s
performance. Finally, we chose the t and m with the best perfor-
mance. Figure 6 shows the classification performance for each

Fig. 6. Classification performance according to the number of trees, t,
and the number of features, m. Performance degrades when m > 14,
which might be caused by overfitting of a classification model.

combination of t and m. The classification performance through
this parameter space is relatively stable, as shown in the figure.

Tables 4 and 5 show the performance of the trained models
using the optimized parameters, t and m. In Table 4, we present
the confusion matrix of the model trained with only super-
classes (i.e., without considering subclasses of variable types).
We see that recall and precision for each superclass is higher than
95%, and average recall and precision is about 99%. Only the
T2CEPH class shows low recall and precision. This is because
1) the number of variables in this class is substantially lower
than that of the other classes; and 2) the variability characteris-
tics of T2CEPHs are similar to other classes (i.e., sinusoidal pat-
tern of the light curves). Table 5 shows the recall and precision
of the model trained with the subclasses4. The average recall and
precision drop to 87%, not because of the misclassification be-
tween superclasses, but mainly because of the misclassification
of subclasses within a superclass. This is not surprising since
the classification of each subclass within a same superclass is
harder than the separation of superclasses. It is also possible that
the OGLE classification is not sufficiently accurate, especially

4 Due to the length of the confusion matrix, we do not show it but just
show the recall and precision for each class. The confusion matrix is
available in Appendix B.
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Table 5. Recall and precision of the random forest model considering subclasses.

Class Subclass Recall Precision
(%) (%)

DSCT 97.6 98.0
CEPH

F 97.3 97.7
1O 91.1 91.6

Other 71.3 73.1
RRL

ab 99.6 99.0
c 95.9 87.4
d 65.1 93.3
e 83.1 85.5

EB
EC 52.6 70.1
ED 88.9 79.9

ESD 73.0 65.0
ED+ESD 5.6 50.0

Other 11.0 44.4
LPV

Mira AGB C 88.3 86.5
Mira AGB O 82.1 86.9

OSARG AGB C 57.0 71.9
OSARG AGB O 80.8 76.1
OSARG RGB C 13.0 30.0
OSARG RGB O 84.4 83.4

SRV AGB C 88.2 85.3
SRV AGB O 84.4 84.9

T2CEPH 71.4 88.9
BV 96.1 97.2

QSO 92.5 91.4
NonVar 98.2 97.6

Average recall and precisiona 86.7 86.3

Notes. (a) Average weighted by the proportion of classes in the training samples.

for EBs and LPVs, as the OGLE papers Soszyński et al. (2009a)
and Graczyk et al. (2011) indicate.

In Fig. 7 we show two example EB light curves. The proba-
bility of being in the EB class for the light curve in the left panel
is 1.0, while the probability for the light curve in the right panel
is 0.38. As the figure clearly shows, the light curve with a high
probability has a much stronger signal in the raw- and phased-
folded light curve than the one on the right. The estimated pe-
riods for EBs are probably half of the true periods, particularly
when there is little difference between amplitudes of primary and
secondary eclipses. However, it would not significantly affect the
classification performance because the model is trained not only
on period, but other variability features as well. In Fig. 8, we
show the distribution of probability of related class for S 2 (prob-
ability, for short). About half of the light curves’ probabilities are
higher than 0.9. Conversely, there are fewer samples with low
probabilities. This is because we visually removed light curves
with no or feeble variability when constructing the training set.

The final model is trained using the 22 variability features,
the entire training set consists of 28 392 light curves (i.e., S 1 +
S 2) and all the variable subclasses, where t = 160 and m =
13. This model was used to select and classify periodic variable
candidates from the EROS-2 database.

3.4.3. Evaluation of the trained model

As mentioned in Sect. 3.1, we removed 65 229 (i.e.,
97 912−32 683; see Table 2) sources from the training set by

visual examination. Thus it is possible that we accidentally ex-
cluded true variables with low-level variability. In this section,
we assess the classification quality of the trained model for weak
variability using these visually removed sources.

We first refined these 65 229 light curves as explained in
Sect. 3.2, which yielded 38 201 sources. Most of the light curves
were removed by the period criterion. Figure 9 shows histograms
of variability features of 1) non-variables in the training set;
2) RRLs in the visually removed 38 201 sources; and 3) RRLs
in the training set. The set of RRLs that were removed is al-
most entirely overlapped by the RRL training set, implying that
this visual removal has not significantly biased the training set.
Figure 10 shows histograms of the variability features of LPVs.
LPVs that were visually removed lie between the non-variables
and the final LPV training set. Objects in the left part of the his-
togram for the removed LPVs have parameters similar to those
of the non-variables in the training set, which means that they
are probably also non-variables. The right half is similar to the
LPVs in the training set, which indicates that they are probably
weakly variable LPVs mistakenly excluded by the visual inspec-
tion (an inevitable consequence of trying to build a very clean
training set). Nevertheless, as the figure shows, the training-set
LPVs cover the right half of the histogram well. We have con-
firmed that other types of variables show a similar distribution to
either Figs. 9 or 10.

We then applied the trained model to these 38 201 sources.
Among these sources, 12 875 sources are classified as non-
variables and the remaining 25 326 sources are classified as vari-
ables. Figure 11 shows the probability distribution of the variable
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Fig. 7. Example light curves of two EB variables with a high (left panel) and low probability (right panel). The two left (right) panels are light
curves of a same star. The top panels are raw light curves and the bottom panels are phase-folded light curves. The light curve with a high
probability shows much stronger and clearer transit signals than the other light curve.

Fig. 8. Cumulative histogram of probabilities of related class for S 2.
There are more high-probability than low-probability light curves.
About half of the light curves have probabilities higher than 0.9.

Table 6. Superclass recall and precision for the removed sources.

Class Recall Precision
(%) (%)

DSCT 100.0 80.3
CEPH 20.7 37.5
RRL 94.7 98.6
EB 96.4 93.0

LPV 99.7 99.9

sources. A relatively larger portion of sources has low probabili-
ties than in Fig. 8. This is not surprising since these sources prob-
ably have weak variability and thus low probabilities. Table 6
shows recall and precision for superclass classification. The re-
call of CEPH is much worse than others. Most of the CEPHs

Fig. 9. Histograms of three variability features, Stetson J, ψCS, and pe-
riod S/N (from top to bottom). Each panel shows three histograms, each
of which is a histogram of 1) non-variables (dotted line) in the training
set; 2) the visually removed RRLs (dashed line); and 3) RRLs (solid
line) in the training set. See text for details.

are classified as RRL c type stars that generally show a simi-
lar variability pattern with CEPHs – slow increase and decrease
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Fig. 10. Histograms of three variability features, Stetson J, ψCS, and
period S/N (from top to bottom). Each panel shows three histograms,
each of which is a histogram of 1) non-variables (dotted line) in the
training set; 2) the visually removed LPVs (dashed line); and 3) LPVs
(solid line) in the training set. See text for details.

Fig. 11. Cumulative histogram of probabilities of the visually removed
sources that are identified as variable stars by the trained model.
Compared with Fig. 8, there are more low-probability light curves.

of flux during its phase (i.e., sinusoidal). We visually examined
these misclassified CEPHs and found that their light curves are
not clearly distinguishable from RRLs. Nevertheless, the high
recall and precision of other periodic variable classes indicates
that the trained model is successful in classifying weak variabil-
ity sources. We also show recall and precision for the subclass
classification of these variables in Table 7. The recall and pre-
cision of EBs and LPVs are poorer than others, which might

Table 7. Subclass recall and precision for the removed sources.

Superclass Subclass Recall Precision
(%) (%)

CEPH
1O 12.5 42.9

Other 0.0 0.0
RRL

ab 93.3 99.4
c 90.1 87.3
d 70.6 86.0
e 80.2 74.1

EB
EC 40.3 26.5
ED 85.6 75.4

ESD 43.0 56.1
ED+ESD 7.3 10.2

Other 0.0 0.0
LPV

OSARG AGB C 82.7 11.5
OSARG AGB O 76.4 50.5
OSARG RGB C 15.8 0.4
OSARG RGB O 37.7 95.2

SRV AGB C 38.3 38.6
SRV AGB O 75.3 16.2

Notes. We do not show some subclasses (e.g. CEPH F) whose recall
or precision we were unable to calculate because of the lack of the
subclasses either in the OGLE classification or in the trained model’s
classification.

be associated with either 1) misclassification due to weak vari-
ability; or 2) incomplete OGLE subclass classification (e.g. see
Soszyński et al. 2009a; Graczyk et al. 2011).

We visually examined the light curves with probabilities
higher than 0.9 (see Fig. 11) and found that the majority of them
show strong variability, but were mistakenly excluded during the
visual removal. We trained another classification model after in-
cluding these high-probability sources into the training set to
check whether or not these samples help improve the model per-
formance. We found that the newly trained model showed almost
identical performance to the original model.

In this section, we assessed the classification quality of the
trained model for weak variability. Although some true variables
might be mistakenly removed during the visual inspection be-
cause of the low level of variability, most of the removed sources
are relatively well covered by the training set, as shown in Figs. 9
and 10. Moreover, Tables 6 and 7 show that the model has a fairly
acceptable classification quality for such sources. Nevertheless,
note that the goal of this work is to select variables from the
29 million EROS-2 sources where the majority of the sources
are expected to be non-variables. Therefore minimizing possible
false positives is the most critical task. As mentioned in Sect. 3.1,
we observed a substantial decrease of classification performance
without this visual removal.

4. Variable candidates from the EROS-2 LMC
database

We refined all light curves as depicted in Sect. 3.2 from the en-
tire EROS-2 LMC database5, extracted 22 variability features
from them, and applied the trained model. This yielded 150 115
variable candidates. From these light curves, we removed light

5 About 50% of the EROS-2 light curves were removed by the criteria.
Five sixths of them were removed by the period criterion.
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Table 8. Number of variable candidates selected from the EROS-2
LMC fields.

Superclass Subclass C1a C2b

DSCT 2481 1906
CEPH

F 1993 246
1O 1527 318

Other 343 74
RRL

ab 16407 3599
c 5367 1904
d 968 311
e 1636 793

EB
EC 6120 5159
ED 13372 7216

ESD 13970 10627
ED+ESD 674 422

Other 11471 11138
LPV

Mira AGB C 918 313
Mira AGB O 454 99

OSARG AGB C 3538 883
OSARG AGB O 15192 3992
OSARG RGB C 1015 217
OSARG RGB O 8863 3031

SRV AGB C 3884 1122
SRV AGB O 6712 1737

T2CEPH 329 178
Total 117 234 55 285

Notes. (a) After applying BE ≤ 20 and period S /N ≤ 20 cuts. (b) After
additional removal of the known OGLE and MACHO variables.

curves with BE fainter than 20, which is around the limiting
magnitude. 27 224 light curves were removed by the magnitude
cut. We also visually examined some of the variable-candidate
light curves and found that some light curves with a period S/N
lower than 20 are likely false positives (i.e., non-variables). For
instance, the top-left panel of Fig. A.1 shows a scatter plot of
period and period S/N of the training-set light curves (symbols).
The panel also shows a contour line of ∼550k field sources from
the EROS-2 LMC database. The majority of the non-variable
sources (gray circles) in the training set and the field sources
have a period S/N lower than 20. Figures 9 and 10 show the
same distribution. Low-period S/N can be caused by large pho-
tometric uncertainties, relatively weak periodic signals, insuffi-
cient number of measurements, etc. Although not every source
with BE > 20 or period S /N < 20 is a non-variable, we removed
all such sources to minimize the number of potential false pos-
itives6. 5657 light curves were removed by the period S/N cut.
After this removal, the number of variable candidates is 117 234,
which is about 0.44% of the total sources in the EROS-2 LMC
database. In Table 8, we show the number of variable candidates
after these cuts.

Among these 117 234 variable candidates, we found that
58 069 variable candidates are previously known OGLE vari-
ables. We also crossmatched the 117 234 EROS-2 variable can-
didates with the known MACHO variables. The list of known
MACHO variables is taken from Kim et al. (2011) and con-
tains 19 097 variables. Among these 19 097 MACHO variables,
16 543 are crossmatched with the EROS-2 variable candidates.

6 The training set light curves of variable sources show strong variabil-
ity regardless of their BE magnitudes or period S/N.

Fig. 12. Color–magnitude diagram of the newly detected 55 285 vari-
able candidates. DSCTs: red dots, RRLs: blue dots, EBs: gray dots,
LPVs: green dots, CEPHs: yellow circles and T2CEPHs: magenta cir-
cles. The magnitudes are not corrected for interstellar extinction. The
arrow represents average interstellar extinction of E(V − I) = 0.09 for
the LMC (Haschke et al. 2011). The typical distance modulus to the
LMC is 18.5 mag (Tisserand et al. 2009).

We excluded EROS-2 DSCT and T2CEPH candidates during
the crossmatching because the list of the known MACHO vari-
ables does not have these classes. Table 8 shows the number
of variable candidates of each type after removing the known
OGLE and MACHO variables. Figure 12 is a color–magnitude
diagram of the new EROS-2 variable candidates. We trans-
formed EROS-2 bands BE and RE to the standard V Johnson and
I Cousins broadband (Tisserand et al. 2009). Figure 13 shows
examples of phase-folded light curves of six new variable candi-
dates. There is clear and strong variability in the phase-folded
light curves. In Fig. 14, we show period histograms of each
variable type. It is well-known that different types of periodic
variable stars have different ranges of periods such as DSCTs:
0.02−0.25 days (Poleski et al. 2010), RRLs: 0.2−0.9 days
(Alcock et al. 1996) and CEPHs: days to months (Soszyński
et al. 2008a). We visually examined the two T2CEPHs with pe-
riods longer than 1000 days and found that they might be mis-
classified LPVs. The probabilities of these two T2CEPHs are
relatively low, 18% and 25%. The histogram of the EB periods
in Fig. 14 shows two populations, one with periods shorter than
20 days, another with periods longer than 20 days. We confirmed
that the shorter period EBs are on the main sequence, while the
longer period EBs are on the red giant branch, which is a known
behavior (Graczyk et al. 2011). Figure 15 shows the probabilities
of the candidates. Most of DSCTs, RRLs, and CEPHs have prob-
abilities higher than 90%. In contrast, many T2CEPHs, EBs, and
LPVs have probabilities lower than 50%. In particular, about two
thirds of EBs have probabilities lower than 50%, which is prob-
ably caused by either misclassification within EB subclasses or
misclassification between superclasses. Nevertheless, we visu-
ally examined these low-probability candidates and confirmed
that almost all of them show variability in their light curves.

Figures 16 to 18 show the relationships between features
of each subclass of RRLs, CEPHs, and LPVs in the newly de-
tected 55 285 variable candidates. We do not show EBs since
they are mixed in most of the 2D-plane of variability features.
This is not surprising since the subclass classification perfor-
mance of EBs is relatively poor (see Table 5). Figure 16 shows
period and amplitude ratio, R21, of the RRL variable candidates;
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Fig. 13. Examples of phase-folded light curves of six new variable candidates.

see Appendix A for details of R21. Each subclass is shown in
a different color and is distinguishable from each other, which
is a known property of RRL variables (Soszyński et al. 2009b).
Figure 17 shows the period and R21 of CEPH variable candi-
dates, and each subclass is again relatively well distinguishable.
Figure 18 displays the relation of period versus σ of the LPVs.

5. Summary

We presented the first result of the EPOCH project: the classifi-
cation of periodic variable stars in the EROS-2 LMC light-curve
database. We first compiled the richest possible training set
based mainly on the previously known OGLE variable stars. We
chose 22 variability features based on the variable importance
estimated by the random forest algorithm and then calculated
the features using the visually examined training set. We then
trained a random forest classification model using these vari-
ability features. We applied the model to the 29 million EROS-2
LMC sources and detected 117 234 variable candidates. The cat-
alog of the variable candidates containing EROS IDs, RA, Dec,
colors (i.e., BE −RE), magnitudes (i.e., BE), periods, period S/N,
probabilities and crossmatched OGLE/MACHO information is
available at http://stardb.yonsei.ac.kr and at the CDS.

Note that the catalog contains all 150 115 variable candidates
without removal of the faint sources or low-period S/N sources
mentioned in Sect. 4.

The classification quality of any supervised machine-
learning methods depends on the richness of the training set and
informativeness of the features on which a classification model
is trained. In this work, we used previously known OGLE vari-
able sources to build a training set. Thus a classification model
would not be feasible for selecting and classifying variable types
that do not exist in the OGLE variable source catalogs. In future
works, we will consider adding more variable sources of dif-
ferent types to increase the completeness of the training set. In
addition, we visually removed sources without variability while
building the training set, which might result in an incomplete
training set because of unintended removal of weak-variability
sources. Although we showed that the trained model was able
to classify both strong and weak variability sources, additional
investigation on an enhanced training set would be useful to in-
crease classification quality. We used 22 variability features of
the highest variable importance estimated with the random forest
method. We did not see any noticeable improvements by using
more or fewer features. Nevertheless, it would be interesting to
perform a comprehensive feature selection based on a variety
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Fig. 14. Period histograms of the new variable candidates. From top to
bottom: DSCTs, RRLs, CEPHs, T2CEPHs, EBs, and LPVs. Each type
of variable star has a different period distribution.

Fig. 15. Probability histograms of the new variable candidates.
Although most of DSCTs, RRLs, and CEPHs show a probability higher
than 90%, a relatively large portion of candidates of T2CEPHs, EBs,
and LPVs show a probability lower than 0.9, which might be caused by
misclassification within or between superclasses.

Fig. 16. Period versus R21 for the new variable candidates of RRL type.
RR ab: black circles, RR c: cyan circles, RR d: red circles and RR e:
blue circles. The vertical blanks are attributed to spurious periods.

Fig. 17. Period versus R21 for the new variable candidates of CEPH
type. F: black circles, 1O: cyan circles, and others: red circles.

Fig. 18. Period versus σ for the new variable candidates of LPV type.
OSARG AGBs: red circles, OSARG RGBs: blue circles, SRV AGBs:
cyan circles and Mira AGBs: magenta circles. The carbon-rich LPVs
(top panel) show relatively longer periods than the oxygen-rich LPVs
(bottom panel) (Soszyński et al. 2009a). Mira LPVs have larger am-
plitude than other LPVs, which is a known property of Mira variables
(Soszyński et al. 2009a, 2013). The vertical lines at longer periods are
caused by a sparse sampling of the periodogram derived by the Lomb-
Scargle method.
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of methods (e.g. see Guyon & Elisseeff 2003 and references
therein) to find irrelevant and/or highly correlated features that
could be removed without detriment to the classification quality.

In future works, we will apply a similar classification ap-
proach to the one presented for the EROS-2 SMC, Galactic
bulge, and spiral arm databases to select and classify variable
candidates.
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Appendix A

In this appendix, we explain each variability feature that we used
to train the classification model. Q3−1|B−R, ψCS, ψη, ηB−R, and ηe

have been developed for this work. Some other features were
developed and/or used in other works such as Shin et al. (2009),
Kim et al. (2011, 2012), Pichara et al. (2012) and Shin et al.
(2012).

– Period and period S/N. In the top-left panel of Fig. A.1,
we show the period versus period S/N. Most of the variable
types are grouped in different regions. For instance, LPVs
(magenta x) have longer periods than others, such as RRLs,
EBs, CEPHs, and DSCTs. The period was derived using
the Lomb-Scargle algorithm (Lomb 1976) and is the high-
est peak in the periodogram.
We define the signal-to-noise ratio (S/N) of the highest
peak as

S/N =
max(pLS) − p̄LS

σpLS

, (A.3)

where pLS is power of all frequencies in the periodogram,
max is the maximum value, p̄LS is a mean power, and σpLS

is a standard deviation. Although the S/N of a peak (Scargle
1982) is generally defined as

S/N =
max(pLS)

p̄LS
, (A.4)

we used the alternative definition since we empirically found
that σpLS of peridograms of EROS-2 light curves are rela-
tively large, which could be attributed to noise in the light
curves such as systematic trends and high photometric uncer-
tainty. The top-left panel of Fig. A.1 shows that the majority
of non-variables (gray circles) and the field sources (contour
line) have a lower period S/N than other variables.

– η. η measures the degree of trends (e.g. monotonic increase
or decrease of flux in a long-term baseline) (von Neumann
1941). η is defined as

η =
1

(N − 1) σ2

N−1∑
i=1

(mi+1 − mi)2, (A.5)

where N is the total number of measurements of a light
curve, σ is the standard deviation, m is the magnitude, and i
is the index of time. η is known to be useful to separate light
curves with long-term variation, as shown in the bottom-
right panel of Fig. A.1.

– Color and magnitude. Color and magnitude are powerful in-
dices for variable separation because different variable types
are generally placed at different regions in a color-magnitude
diagram (CMD). The CMD of the training set is shown in the
top-right panel of Fig. A.1. Although there is some overlap
between classes, some classes are clearly distinguishable in
the CMD, for example, LPVs.

– Q3−1. Q3−1 is the difference between the third quartile, Q3,
and the first quartile, Q1, of a raw light curve. Q1 is a split
between the lowest 25% and the highest 75% of data. Q3 is
a split between the lowest 75% and the highest 25% of data.

– Cusum. Cusum is the range of a cumulative sum (e.g. see
Ellaway 1978) of a light curve and is defined as

Cusum = max(S ) −min(S )

S l =
1

N σ

l∑
i=1

(mi − m̄),
(A.6)

where max (min) is the maximum (minimum) value of S
and l = 1, 2, . . . ,N. m̄ is a mean magnitude. Cusum is gener-
ally high for light curves with long-term variability such as
LPVs, BVs, and QSOs, while it is relatively low for light
curves of short-periodic variables and non-variables (Kim
et al. 2011).

– Q3−1|B−R and ψCS. Q3−1|B−R and ψCS are not the features de-
rived from a raw light curve but the features derived from
a BE − RE light curve, Q3−1|B−R, and from a phase-folded
light curve, ψCS. We generated a BE − RE light curve us-
ing only the simultaneous measurements from BE and RE.
If a variable star’s flux variability is achromatic, the gener-
ated BE−RE light curve follows the normal distribution (i.e.,
Gaussian noise). Otherwise it would show a certain variabil-
ity in the BE − RE light curve.
ψCS is the range of the cumulative sum (Cusum) of a phase-
folded light curve. A phase-folded light curve is generated
using the period estimated from the Lomb-Scargle method.
For relatively short-period variables such as DSCTs, RRLs,
CEPHs, and EBs, a phase-folded light curve would have a
different shape from a raw light curve and thus embrace dif-
ferent variability characteristics. In the bottom-left panel of
Fig. A.1, we show the scatter plot of Q3−1|B−R versus ψCS

of short-period variables including DSCTs, RRLs, CEPHs,
and EBs. The short-period variables are relatively well dis-
tinguishable. We do not show other types of variables be-
cause they are spread across the plane.

– ψη. ψη is the η index calculated from the phase-folded light
curve. Dubath et al. (2011) used a conceptually identical fea-
ture with ψη, which they termed P2p scatter.

– ηB−R. This is an η index calculated from the BE − RE light
curve.

– ηe. Although η is a powerful index for quantifying variability
characteristics of a light curve, it does not take into account
unequal sampling. Thus we define ηe as

ηe = w̄ (tN−1 − t1)2

∑N−1
i=1 wi (mi+1 − mi)2

σ2 ΣN−1
i=1 wi

wi =
1

(ti+1 − ti)2
,

(A.7)

where t is the measurement epoch, ti+1 > ti, and w̄ is the
mean value of wi. The right panel in Fig. A.2 shows the ηe

histogram of RRLs, CEPHs, and EBs. Although the separa-
tion between the classes is not perfect, CEPHs are clearly
distinguishable from others. We designed ηe considering dif-
ferent sampling rates and baselines between light curves,
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Fig. A.1. 2D scatter plots of variability features of the training set explained in Sect. 3.1. DSCTs: black squares, RRLs: green x, CEPHs: red x,
EBs: blue x, T2CEPHs: yellow squares, LPVs: magenta x, QSOs: red squares, BVs: cyan squares, and NonVars: grey crosses. From left to right,
clockwise: period versus period S/N, BE −RE (i.e., color) versus BE band magnitude, η versus ηe, and ψCS versus Q3−1|B−R. The contour line shows
spatial distribution of about 550k field sources. To generate the contour line, we built a 2D histogram of the field sources and then used the counts
in each 2D-bin. The figure shows the two contour levels of 100 (thick gray line) and 1000 (thick black line). The majority of these field sources
are probably non-variables. Different variable classes are separately grouped in the 2D space of variability features. We plot only one out of ten
samples from the training set for better legibility of the figure. See text for details.

Fig. A.2. Histogram of η (left panel) and ηe (right panel) of RRLs (dashed), CEPHs (solid), and EBs (dotted). Using ηe, CEPHs are distinguishable
from the other two classes.
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which is useful in some cases such as shown in Fig. A.2 and
also in the bottom-right panel of Fig. A.1. Additional inves-
tigation, however, would be necessary to examine detailed
characteristics of ηe.

– σ, γ1 and γ2. σ is a standard deviation, γ1 is a skewness and
γ2 is a kurtosis of a light curve. γ1 and γ2 are defined as

γ1 =
N

(N − 1)(N − 2)

N∑
i=1

(mi − m̄
σ

)3

γ2 =
N(N + 1)

(N − 1)(N − 2)(N − 3)

N∑
i=1

(mi − m̄
σ

)4

− 3(N − 1)2

(N − 2)(N − 3)
,

(A.8)

– J and K. J is a Stetson J index (Stetson 1996), which is
calculated based on simultaneous measurements from light
curves in two bands, p and q, of the same star. It is defined as

J =
1
N

N∑
i=1

sign(Pi)
√|Pi|

Pi = δp(i) δq(i)

δp(i) =

√
N

N − 1

mp,i − m̄

σp,i
,

(A.9)

where N is the total number of measurements, i is an index
for each measurement, and sign(Pi) is the sign of Pi. σp,i is
the standard error of ith measurement of band p. In case of
the EROS-2 database, p and q indicate BE and RE bands.

Stetson K is calculated using a single band light curve as

K =
1√
N

∑N
i=1 |δ(i)|√∑N

i=1 δ(i)2
, (A.10)

A pure sinusoid signal has K = 0.900 and Gaussian distribu-
tion has K = 0.798.

– KAC. KAC is Stetson K index calculated over the autocorre-
lation function of a light curve. This feature is useful to sep-
arate long- or non-periodic variables including QSOs from
periodic variables (see Kim et al. 2011, for details).

– R21, R31, φ21, and φ31. These features are derived using the
Fourier decomposition (Petersen 1986; Grison 1994). Rk1 is
an amplitude ratio and φk1 is a phase difference, which is
defined as

R2
k1 =

A2
k+B2

k

A2
1+B2

1
(A.11)

φk1 = φk − kφ1, where φk = tan−1
(
− Bk

Ak

)
· (A.12)

To calculate Ak and Bk, we adopted the Grison model-fitting
procedure (Grison 1994), which first constructs a zero-mean
light curve and then fits a Fourier series, defined as

M∑
i=1

[
Ai cos

(
i
2π
P

t

)
+ Bi sin

(
i
2π
P

t

)]
, (A.13)

where M is the number of series to fit, P is the derived period
from the Lomb-Scargle method, and t is the time epoch. The
features Rk1 and φk1 can distinguish different shapes of light
curves and thus are useful to separate subclasses of short-
period variables such as CEPHs (Beaulieu et al. 1995).

Appendix B: Confusion matrix

Table B.1. Performance of the classification model without considering subclasses.

Class DSCT RRL CEPH T2CEPH EB LPV BV QSO NoneVar Recall (%)

DSCT 253 1 0 0 0 0 0 0 1 99.2

RRL 3 2088 4 2 16 0 0 0 0 98.8

CEPH 0 10 1094 3 12 0 1 0 1 97.6

T2CEPH 0 0 8 37 10 1 0 0 0 66.1

EB 1 11 6 0 1652 20 0 0 14 96.9

LPV 0 0 0 1 6 6642 1 1 12 99.7

BV 0 0 0 0 2 0 353 1 6 97.5

QSO 0 0 0 0 0 1 2 71 7 87.7

NoneVar 2 0 0 0 6 12 5 4 1812 98.4

Precision (%) 97.7 99.0 98.4 86.0 96.9 99.5 97.5 92.2 97.8 98.6, 98.6
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Table B.2. Performance of the classification model considering subclasses.

Class BV CEPH_1O CEPH_F CEPH_Other DSCT EB_EC
BV 349 0 0 0 0 0
CEPH_1O 0 380 5 16 1 0
CEPH_F 0 10 608 3 0 0
CEPH_Other 0 19 2 57 0 0
DSCT 0 0 0 0 249 2
EB_EC 0 3 0 0 0 110
EB_ED 0 0 0 0 0 3
EB_ED_ESD 0 0 0 0 0 0
EB_ESD 1 0 1 0 0 24
EB_Other 0 0 1 0 0 9
LPV_Mira_AGB_C 0 0 0 0 0 0
LPV_Mira_AGB_O 0 0 0 0 0 0
LPV_OSARG_AGB_C 0 0 0 0 0 0
LPV_OSARG_AGB_O 0 0 0 0 0 0
LPV_OSARG_RGB_C 0 0 0 0 0 0
LPV_OSARG_RGB_O 2 0 0 0 0 4
LPV_SRV_AGB_C 0 0 0 0 0 0
LPV_SRV_AGB_O 1 0 0 0 0 1
NoneVar 6 0 0 0 2 0
QSO 0 0 0 0 0 0
RRL_RRab 0 0 0 2 0 1
RRL_RRc 0 0 0 0 0 2
RRL_RRd 0 1 0 0 0 0
RRL_RRe 0 0 0 0 2 0
T2CEPH 0 2 5 0 0 1
Precision (%) 97.2 91.6 97.7 73.1 98.0 70.1

Table B.2. continued.

Class EB_ED EB_ED_ESD EB_ESD EB_Other LPV_Mira_AGB_C LPV_Mira_AGB_O
BV 0 0 1 1 0 0
CEPH_1O 0 0 6 0 0 0
CEPH_F 0 0 3 0 0 0
CEPH_Other 0 0 0 0 0 0
DSCT 0 0 0 0 0 0
EB_EC 2 0 77 6 0 0
EB_ED 708 3 73 1 0 0
EB_ED_ESD 52 4 15 0 0 0
EB_ESD 106 1 405 2 0 0
EB_Other 16 0 30 8 0 0
LPV_Mira_AGB_C 0 0 0 0 250 6
LPV_Mira_AGB_O 0 0 0 0 3 133
LPV_OSARG_AGB_C 0 0 0 0 0 0
LPV_OSARG_AGB_O 0 0 2 0 1 0
LPV_OSARG_RGB_C 0 0 0 0 0 0
LPV_OSARG_RGB_O 0 0 0 0 0 0
LPV_SRV_AGB_C 0 0 0 0 29 0
LPV_SRV_AGB_O 0 0 0 0 5 14
NoneVar 0 0 2 0 0 0
QSO 0 0 0 0 1 0
RRL_RRab 1 0 1 0 0 0
RRL_RRc 0 0 2 0 0 0
RRL_RRd 0 0 2 0 0 0
RRL_RRe 0 0 0 0 0 0
T2CEPH 1 0 4 0 0 0
Precision (%) 79.9 50.0 65.0 44.4 86.5 86.9
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Table B.2. continued.

Class LPV_OSARG_
AGB_C

LPV_OSARG_
AGB_O

LPV_OSARG_
RGB_C

LPV_OSARG_
RGB_O

LPV_SRV_
AGB_C

LPV_SRV_
AGB_O

BV 0 0 0 0 0 0
CEPH_1O 0 0 0 0 0 0
CEPH_F 0 0 0 0 0 0
CEPH_Other 0 0 0 0 0 0
DSCT 0 0 0 0 0 0
EB_EC 0 0 0 3 0 0
EB_ED 1 0 0 1 0 0
EB_ED_ESD 0 0 0 0 0 0
EB_ESD 0 0 0 5 0 0
EB_Other 0 1 0 4 0 0
LPV_Mira_AGB_C 0 1 0 3 18 5
LPV_Mira_AGB_O 0 0 0 0 2 24
LPV_OSARG_AGB_C 323 123 0 15 95 7
LPV_OSARG_AGB_O 66 1288 1 62 15 153
LPV_OSARG_RGB_C 2 3 3 9 3 2
LPV_OSARG_RGB_O 2 82 2 797 12 42
LPV_SRV_AGB_C 40 29 0 10 1105 39
LPV_SRV_AGB_O 7 163 3 45 45 1550
NoneVar 8 3 1 2 1 1
QSO 0 0 0 0 0 0
RRL_RRab 0 0 0 0 0 0
RRL_RRc 0 0 0 0 0 0
RRL_RRd 0 0 0 0 0 0
RRL_RRe 0 0 0 0 0 0
T2CEPH 0 0 0 0 0 2
Precision (%) 71.9 76.1 30.0 83.4 85.3 84.9

Table B.2. continued.

Class NoneVar QSO RRL_RRab RRL_RRc RRL_RRd RRL_RRe T2CEPH Recall (%)
BV 11 1 0 0 0 0 0 96.1
CEPH_1O 1 0 1 5 1 1 0 91.1
CEPH_F 0 0 0 0 0 0 1 97.3
CEPH_Other 0 0 0 1 1 0 0 71.3
DSCT 2 0 0 0 0 2 0 97.6
EB_EC 0 0 3 2 0 0 3 52.6
EB_ED 6 0 0 0 0 0 0 88.9
EB_ED_ESD 0 0 0 0 0 0 0 5.6
EB_ESD 1 0 9 0 0 0 0 73.0
EB_Other 4 0 0 0 0 0 0 11.0
LPV_Mira_AGB_C 0 0 0 0 0 0 0 88.3
LPV_Mira_AGB_O 0 0 0 0 0 0 0 82.1
LPV_OSARG_AGB_C 4 0 0 0 0 0 0 57.0
LPV_OSARG_AGB_O 6 0 0 0 0 0 0 80.8
LPV_OSARG_RGB_C 1 0 0 0 0 0 0 13.0
LPV_OSARG_RGB_O 1 0 0 0 0 0 0 84.4
LPV_SRV_AGB_C 1 0 0 0 0 0 0 88.2
LPV_SRV_AGB_O 1 0 0 0 0 0 1 84.4
NoneVar 1807 6 0 0 0 1 0 98.2
QSO 5 74 0 0 0 0 0 92.5
RRL_RRab 0 0 1632 1 0 0 0 99.6
RRL_RRc 0 0 1 306 2 6 0 95.9
RRL_RRd 0 0 2 25 56 0 0 65.1
RRL_RRe 0 0 0 10 0 59 0 83.1
T2CEPH 1 0 0 0 0 0 40 71.4
Precision (%) 97.6 91.4 99.0 87.4 93.3 85.5 88.9 87.7,86.3
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